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Enhanced Prediction Model for Blast-Induced Air
Over-Pressure in Open-Pit Mines Using Data Enrichment
and Random Walk-Based Grey Wolf Optimiza-
tion–Two-Layer ANN Model
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In this study, two innovative techniques were introduced, including data enrichment and
optimization, with the aim of significantly improving the accuracy of air over-pressure
(AOP) prediction models in mine blasting. Firstly, the Extra Trees algorithm was applied to
enrich the collected dataset with the goal of enhancing the understanding of the predictive
models for AOP prediction. Then, a neural network model with two hidden layers (ANN)
was designed to predict AOP using both the original and enriched datasets. Secondly, to
further enhance the accuracy of the ANN model, a novel optimization algorithm based on a
random walk strategy and the grey wolf optimization algorithm (RWGWO) was employed
to optimize the weights of the ANN model. This optimized model, referred to as the
RWGWO–ANN model, was developed and evaluated for predicting AOP using both the
original and enriched datasets. To comprehensively assess the impact of data enrichment and
the proposed RWGWO-ANN model, three other optimization algorithms—particle swarm
optimization (PSO), fruit-fly optimization algorithm (FOA), and single-based genetic
algorithm (SGA)—were also applied to optimize the ANN model for AOP prediction.
These models were named PSO–ANN, FOA–ANN, and SGA–ANN, respectively. The
tenfold cross-validation procedure was applied and repeated three times to ensure the
objectivity and consistency of the models. Additionally, conventional ANN and the United
States Bureau of Mines empirical model were developed for comparison, serving similar
purposes to evaluate the efficiency of the optimization algorithms employed in this study. To
demonstrate the advantages of the proposed method and models, a dataset comprising 312
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blasting events and six input parameters at the Coc Sau open-pit coal mine in Vietnam was
gathered and analyzed. These parameters included burden, spacing, rock hardness, powder
factor, monitoring distance, and maximum explosive charge per delay. An additional input
variable—Extra Trees—was introduced, making the total number of input variables seven in
the enriched dataset. The proposed hybrid model, along with others, was developed based on
both the original and enriched datasets. The results revealed that the Extra Trees algorithm
is robust and effectively enriches the raw dataset, enhancing the understanding of predictive
models and providing improved accuracy. Sensitivity analysis results also highlighted the
robust contribution of the Extra Trees variable in the enriched dataset. Compared to the
original dataset, the performance of AOP predictive models was improved by 7–24% using
the enriched dataset enriched by the Extra Trees algorithm. Furthermore, the findings
indicated that the RWGWO–ANN model exhibited the highest accuracy in predicting AOP
in this study, achieving an accuracy of 96.2%. This marked a 16–20% improvement over the
accuracy of the conventional ANN model.

KEY WORDS: Open-pit mine safety, Mine blasting, Air over-pressure, Sustainable and responsible
mining, Metaheuristic algorithms, Data enrichment, Random walk grey wolf optimization, Extra Trees.

INTRODUCTION

Rocks and ores in open-pit mines typically
possess high degrees of hardness, necessitating their
breaking prior to shoveling/loading, hauling/trans-
porting, crushing, and other associated tasks. To
achieve optimal rock fragmentation, drilling and
blasting are widely acknowledged as the most effi-
cient techniques. However, these methods have
negative consequences, including air over-pressure
(AOP), ground vibration (PPV), flyrock, and air
pollution, which can endanger the nearby environ-
ment, especially neighboring areas and residential
zones. Among these, AOP stands out as a significant
contributor to environmental and human health
degradation. The powerful shockwaves produced by
explosive activities in open-pit mines can damage
nearby structures like buildings, windows, and pi-
pelines. This damage can be immediate or may oc-
cur over time due to repeated exposure. At a high-
level of AOP, it can cause permanent hearing loss or
damage to people who are exposed to it without
adequate hearing protection (e.g., workers on the
working sites of mines). In addition, AOP can cause
disturbance to wildlife and disrupt their habitats.
Thus, accurately predicting AOP poses a challenge
in mitigating its negative effects on the surrounding
environment and in promoting sustainable and
responsible mining practices.

Numerous strategies have been explored by
researchers to tackle the above-mentioned issue,
including practical measures/techniques (such as
adjusting blasting parameters, utilizing air-deck

stemming, etc.), as well as the use of empirical
equations to estimate AOP. In recent times, there
has been a focus on soft computing approaches, such
as artificial intelligence (AI) and machine learning
(ML). These models have been created and studied,
revealing encouraging outcomes in forecasting
AOP. It is worth mentioning that these AI/ML
models exhibited superior precision in AOP pre-
diction compared to traditional empirical models
(Armaghani et al., 2016).

Concerning the anticipation of AOP, Arma-
ghani et al. (2015b) employed the adaptive neuro-
fuzzy inference system (ANFIS) model to predict it.
This involved taking into account blasting parame-
ters and the distance (D) between monitoring posi-
tions and blast sites. The outcomes underscored the
ANFIS model’s supremacy, achieving a precision
level of 96%. This surpassed the predictive prowess
of both a pre-existing artificial neural network
(ANN) model and a multiple linear regression
model for AOP prediction. In another study, Ra-
mesh Murlidhar et al. (2021) developed two tree-
based ML models, including genetic programming
(GP) and M5¢ decision tree models for predicting
AOP. The most accurate model found in their study
had R2 of 0.862.

By another approach based on the combination
of multiple ML/AI models, Nguyen and Bui (2019)
utilized the random forest (RF) algorithm to create
a new model called ANNs–RF for predicting AOP
by combining the outcome predictions of pre-de-
veloped ANN models. The model was tested at an
open-pit coal mine in Vietnam and it outperformed
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other models, with MAE (mean absolute error) of
0.620, RMSE (root mean squared error) of 0.847, and
R2 of 0.985. The results showed significant improve-
ments when combining multiple algorithms as such.
Similarly, Armaghani et al. (2016) showed that the
ANN model�s performance can be improved by the
imperialist competitive algorithm (ICA), named as
ICA–ANN, and they developed this model to predict
AOP in three quarries (Malaysia) with an accuracy of
approximately 96%. Hasanipanah et al. (2017) uti-
lized another optimization algorithm based on the
swarm behaviors in nature (i.e., particle swarm opti-
mization algorithm—PSO) to optimize the support
vector machine algorithm for predicting AOP,
resulting in the PSO–SVR model. Different kernel
functions were experimented with while creating the
PSO–SVR model for forecasting AOP, employing a
comparable methodology. The suggested PSO–SVR
model established a correlation coefficient of 0.997
within the testing dataset. In another work, Haran-
dizadeh and Armaghani (2021) developed a model
using a combination of an ANFIS, polynomial neural
network (PNN), and optimization through the ge-
netic algorithm (GA) to forecast AOP levels. The
Fuzzy Delphi (FD) method was applied to select the
potential features before developing the GA–AN-
FIS–PNN model. Finally, a correlation coefficient of
0.92 was defined for the proposed GA–ANFIS–PNN
model in predicting AOP. In 2022, Ye et al. (2022)
employed the stochastic fractal search (SFS) algo-
rithm for optimizing the ANFIS model with a similar
objective. They subsequently compared the perfor-
mance of the SFS–ANFIS model to the PSO–ANFIS
and GA–ANFIS models. The outcomes demon-
strated the superiority of the SFS–ANFIS model, as it
achieved the highest accuracy, with RMSE of
1.223 dB. Similar works for predicting AOP using
ML/AI-based models are introduced in the literature
(Armaghani et al., 2015a; Amiri et al., 2016; Nguyen
et al., 2020; He et al., 2021; Zhang et al., 2022).

After reviewing the literature, it is evident that
ML/AI-based models have been used extensively in
predicting AOP with promising results. Among
these models, hybrid approaches that combine
multiple algorithms tend to exhibit higher accuracy
compared to individual models. On the other hand,
in the mining industry, particularly concerning
blasting effects, data represent one of the most sig-
nificant challenges. This challenge can impact the
accuracy of prediction and optimization models due
to the influences of geological and geographical
conditions and their inherent uncertainties. Typi-

cally, to enhance the accuracy of prediction models,
researchers often apply various data analysis tech-
niques, such as feature selection, data clustering,
imputation of missing data, outlier handling, dataset
scaling, and data transformation (Refaat, 2010;
Garcı́a et al., 2015; de-Paz-Centeno et al., 2023). It is
advisable to utilize these methods as they have the
potential to enhance the effectiveness of predictive
models. Bagging and stacking techniques have also
been applied to combine the outcome predictions of
weak models into a new dataset to develop stronger
models for predicting AOP, PPV, flyrock, and other
parameters (Nguyen & Bui, 2018; Tran et al., 2023).
However, there is still a need for the development of
new hybrid models and handling the dataset to fur-
ther enhance predictive accuracy and contribute to
advancing knowledge in this field.

This research aimed to fill the existing voids by
presenting an innovative method in data augmen-
tation. This technique focuses on enriching data to
offer supplementary information to the initial data-
set, benefiting predictive models for AOP through
the utilization of the Extra Tree (ExTree) algorithm.
The enriched dataset was then used to develop a
novel hybrid intelligence model called RWGWO–
ANN for predicting AOP in open-pit mines. This
model combines the innovative random walk grey
wolf optimization algorithm (RWGWO) with an
ANN model, resulting in the RWGWO–ANN
model. Both of these techniques aim to significantly
improve the accuracy of AOP predictions in mine
blasting.

In addition to the RWGWO–ANN model,
other hybrid models such as PSO–ANN, FOA–
ANN (fruit-fly optimization algorithm), and SGA–
ANN (single-based GA), as well as conventional
ANN models and an empirical model (i.e., United
States Bureau of Mines—USBM), were developed
and compared to showcase the novelty and superi-
ority of the RWGWO–ANN model, along with the
effectiveness of the Extra Tree algorithm in data
enrichment for predicting AOP.

ARTIFICIAL INTELLIGENCE
APPROACHES

Extra Tree for Data Enrichment

The ExTree model, as introduced by Maier
et al. (2015), is a type of ensemble machine learning
method built on the foundations of supervised
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learning. Renowned for its high level of random-
ization, this model consists of a collection of highly
randomized trees, serving purposes in both regres-
sion and classification (Geurts et al., 2006). Acting as
an extension of the random forest (RF) model, Ex-
Tree was formulated to tackle the challenge of
overfitting.

Much akin to the RF algorithm, ExTree em-
ploys randomized subsets for training individual
base models. These model predictions are then
harmonized into a cohesive framework, yielding
outcome predictions (John et al., 2015). Nonethe-
less, ExTree distinguishes itself by opting for opti-
mal feature selection via randomized node splits.
Structurally, ExTree encompasses numerous deci-
sion trees, each comprising a root node, split nodes,
and leaf nodes, as illustrated in Figure 1. Given a
dataset (e.g., AOP dataset in this study), ExTree
initiates the process by segmenting data into ran-
domized feature subsets at the root node. Each of
these subsets evolves into a split or child node, with
splitting progressing until a leaf node is reached.
Within each tree, predictions are computed, even-
tually amalgamated across trees. The model’s official

outcome is then established as the average of these
predictions, particularly for regression tasks.

When constructing the ExTree model, three
vital parameters come into play: the quantity of
trees, the selection of random features, and the
minimum samples required for splitting. An inher-
ent strength of ExTree lies in its ability to diminish
variance and bias within the training dataset,
accomplished through cut-point selection and the
deliberate randomization of attribute subsets (Saeed
et al., 2021). In a previous study (Tran et al., 2023),
we introduced the ExTree model and its stacking
model (BA–ExTree) for predicting PPV with
promising results. The ExTree algorithm was ap-
plied in this research to enhance the initial dataset’s
content, aiming to predict AOP caused by blasting
activities in open-pit mines.

The novelty of this work compared to the
ensemble methods is the use of machine learning
(i.e., ExTree algorithm) for data enrichment. In this
approach, the ExTree algorithm was employed to
predict blast-induced AOP in open-pit mines using
the original dataset. Then, the AOP predictions
from the ExTree model were utilized as an addi-
tional input variable for developing other predictive

Figure 1. Configuration of the ExTree model aimed at predicting AOP.
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models. This process enhances the overall predictive
capabilities and the insights of the original dataset
generated by the ExTree algorithm. Meanwhile, in
traditional ensemble methods, multiple models are
combined to make predictions. These models can be
combined by the same algorithms (e.g., random
forest) or different algorithms (e.g., neural networks,
random forest, support vector machine, etc.). The
predictions from these individual models are then
averaged or combined to create a final prediction.

Prediction Model with Two-Layer ANN Model

With its robust processing and calculation abil-
ities inspired by the human brain, ANN has gained
renown as a promising tool for addressing a multi-
tude of real-world problems in the fields of mining
engineering (Tadeusiewicz, 2015; Kan, 2017; Bui
et al., 2021), geotechnical engineering (Chao et al.,
2018; Baghbani et al., 2022), geosciences (Li &
Zheng, 2003; Dramsch, 2020; Zhang et al., 2021),
environment and climate change (Liu et al., 2010;
Han &Wang, 2021), to name a few. Numerous types
of neural networks exist, featuring a range of
architectures that span from straightforward to
intricate topological structures, e.g., ANN, extreme
learning machine neural network, recurrent neural
network, convolutional neural network, long-short
terms memory neural network, among others. Of
those, ANN is well-known as one of the simple
neural networks, and it can solve many problems
with a simple topology network (i.e., containing a
single hidden layer).

Many previous works applied a simple ANN
model with a single hidden layer to predict AOP or
other side effects of blasting operations in open-pit
mines (Saadat et al., 2014; Mohamad et al., 2016;
Hosseini et al., 2021; Murlidhar et al., 2021). This
simple network was chosen primarily because it can
prevent the overfitting problem that occurs with
small datasets. Nonetheless, researchers face the
challenge of improving network accuracy without
encountering overfitting issues.

In order to enhance the accuracy of ANN
models, several techniques can be employed. These
techniques include increasing the model size by
adding more neurons in each layer, using a deeper
network with additional layers, implementing regu-
larization techniques like Lasso regularization (L1)
or Ridge regularization (L2), employing various
activation functions such as ReLU, sigmoid, and

tanh, applying batch normalization, utilizing differ-
ent optimization algorithms like Adam, SGD,
RMSprop, and metaheuristic algorithms, as well as
implementing feature scaling techniques.

In this study, the following techniques were
applied to enhance the accuracy of the ANN model
for predicting AOP: (1) a topology network with two
hidden layers (ANN); (2) feature scaling technique;
(3) different activation functions; and (4) various
optimization algorithms for training the ANN
model. The general structure of an ANN model for
predicting AOP is illustrated in Figure 2.

Principle of Optimization Algorithms

Random Walk Grey Wolf Optimization Algorithm

RWGWO is an enhanced iteration of the grey
wolf optimization (GWO) algorithm, initially pre-
sented by Gupta and Deep (2019), for refining the
search capability through the leadership within the
GWO algorithm (i.e., a; b; d). Accordingly, the
leading wolves play a crucial role as responsible
search agents in guiding the pack towards the opti-
mal direction to approach the prey. It is crucial for
these dominant wolves to have the highest level of
fitness during each iteration, and so they can offer
the best possible guidance to the rest of the wolves.
However, a question arises regarding how the a wolf,
being the dominant wolf, benefits from the guidance
of the less fit (inferior) b; d wolves to update its
position. Likewise, what is the reason for the b wolf
adjusting its location in collaboration with the sub-
ordinate d wolf? This limitation in the GWO algo-
rithm hinders the convergence of the pack towards
the global optima. The selection of leading wolves
becomes critical during each iteration as they update
the position of every wolf in the pack. An
enhancement is necessary in the selection of pack
leaders to address the issue of early convergence due
to getting stuck in local optimal points and to ensure
the continuation of social interactions within the
pack. To address these issues, Gupta and Deep
(2019) proposed the use of a random walk technique
as an improvization of the GWO algorithm. This
technique overcomes the drawbacks mentioned
above and enhance the algorithm’s overall effec-
tiveness, and it is expressed as:
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RWN ¼
XN

i¼1

Stepi ð1Þ

where Stepi denotes the ith random step that is
selectable from any random distribution, and it can
be expressed as:

RWN ¼
XN

i¼1

Stepi ¼
XN�1

i¼1

Stepi þ LN

¼ RWN � 1þ StepN ð2Þ

where the relationship between the current state
( RWN � 1) and the next state ( RWN) demonstrates
that the latter is solely influenced by the former and
the step taken from the former to reach the latter.

Figure 2. Structure of the AOP prediction model and techniques used for the network.
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The step size ( Stepi) can either remain constant or
vary.

Finally, a random walk can be defined as:

An ¼ a0 þ a1Step1 þ a2Step2 þ � � � þ aNStepN

¼ a0 þ
XN

i¼1

aiStepi ð3Þ

where we assumed that a wolf starting at a point a0

and its final location as aN . The ai stands for the
control parameter of Stepi and ai[0.

In order to implement the random walk in the
GWO algorithm (RWGWO), step sizes drawn from a
Cauchy distribution are performed. From the initial
population of wolves, in each iteration, a random
walk is applied exclusively to the leaders a; b; d of the
population. The parameter ai is a vector that linearly
decreases from 2 to 0 as the iterations progress. This
allows for occasional large jumps, which can be highly
effective during periods of stagnation. These larger
jumps assist the leading wolves in exploring the
search space to locate prey and provide valuable
guidance to the other wolves. Importantly, it should
be noted that no additional efforts are made to
evaluate the objective function in the algorithm.
Thus, the number of function evaluations remains
unchanged in both algorithms. Figure 3 depicts the
pseudo-code for the RWGWO algorithm.

Particle Swarm Optimization Algorithm

In this research, the PSO algorithm was utilized
to optimize the ANN model for the prediction of
AOP. This was then contrasted with the suggested
RWGWO–ANN model. Comprehensive insights
regarding the PSO algorithm can be found in Bansal
(2019), Bensingh et al. (2019) and Guo et al. (2019).
The PSO algorithm, introduced by Eberhart and
Kennedy (1995), stands as a remarkably effective
metaheuristic approach influenced by the actions of
social animals or particles, like a swarm of birds in
flight. Its application revolves around tackling opti-
mization issues, wherein every conceivable solution
is depicted as an individual particle. The sequential
phases of the PSO algorithm were as delineated by
Kennedy (2011):

Phase 1: Commence by initializing a population
of particles along with their corresponding veloci-
ties. Evaluate the particles’ fitness and ascertain
both the most favorable local and global positions.

Phase 2: Every individual particle fine-tunes its
position based on its velocity. During each cycle,
determine the global paramount and local best
positions to gauge the efficacy of the PSO–ANN
model in prognosticating AOP. The global para-
mount denotes the unsurpassed position achieved by
any particle, while the local best signifies the optimal
solution within the ongoing cycle.

Phase 3: Revise the position of each particle.
Subsequent to predicting particle velocity, tweak
their positions within the exploration domain using
the computed velocity. Update the new velocity as:

viþ1
j ¼ -v

ðiÞ
j þ C1 � r3 � Lbest j � x

ðiÞ
j

� �� �

þ C2 � r4 � Gbest j � x
ðiÞ
j

� �� �
;

vmin � v
ðiÞ
j � vmax

ð8Þ

where particle position, velocity, inertial weight
coefficient ( -), iteration number (i), and random
numbers ( r3; r4) are taken into account. When a
new and improved solution is found, updates can be
made to both the global best position and the local
best positions. The position of each particle is then
recalculated and modified as:

xiþ1
j ¼ x

ðiÞ
j þ v

ðiþ1Þ
j ; j ¼ 1; 2; . . . ; n ð9Þ

Upon reaching the conclusion, the termination
criteria are assessed. If these criteria are met, the
optimized solution for the current problem is
deemed to be the global best position. Refer to
Figure 4 for the visual representation of the PSO
algorithm’s flowchart.

Fruit-Fly Optimization Algorithm

The FOA is an optimization algorithm inspired
by the behavior of fruit flies that was proposed by
Xing et al (2014). Mathematically, the FOA involves
seven steps, illustrated in Figures 5 and 6. In this
study, the FOA was employed to optimize the ANN
model and predict AOP. The objective was to assess
its performance in optimizing a ANN and compare it
to the proposed RWGWO–ANN model.

Single-Based Genetic Algorithm

The SGA, also preferred as mutation-based
genetic algorithm, was proposed by Falco et al.
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(2002) to introduce the undervalued role of muta-
tion in the realm of evolutionary computation,
especially focusing on mutations beyond the tradi-
tional point mutation. In this algorithm, the nature-
inspired mutation operators, namely frame-shift and
translocation, were introduced and investigated.

Also, their effectiveness in solving test functions was
assessed.

As a matter of fact, the SGA was widely applied
in various domains, such as structural optimization
(Azad et al., 2012), solving the processor configura-
tion problems (Lau & Tsang, 1997), optimization of
neural networks (Nadi et al., 2009), optimization of

Figure 3. Pseudo-code of the RWGWO algorithm.
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nuclear fusion devices (Gómez-Iglesias et al., 2009),
to name a few. However, it has not been applied to
optimize a neural network or a machine learning
algorithm for predicting AOP in open-pit mines.
Therefore, in this study, we introduced this algo-
rithm and used it to optimize the two-layer ANN
model for predicting AOP. The pseudo-code of the
SGA is presented in Figure 7.

Optimization of AOP Prediction Models

In this study, the ANN model is the key model
that was used to predict AOP based on dependent

variables. Normally, gradient descend (GD)-based
algorithms can be used to train neural networks,
including ANN and ANN models, in which back-
propagation algorithm is a key component of GD
for training neural networks. It computes the gra-
dients of the objective function with respect to the
weights and biases of the network by propagating
the errors backwards through the layers of the net-
work (Alzubaidi et al., 2021). This allows for
updating the weights and biases in a way that re-
duces the error in the AOP predictions.

However, back-propagation algorithm is sus-
ceptible to getting trapped in local optima (Pedram
et al., 2022). Because it relies on gradient informa-
tion to update the model parameters, it can converge
to a suboptimal solution if it gets stuck in a local
optimal point in the optimization landscape (Bai
et al., 2023). Moreover, it is sensitive to the initial-
ization of the weights and biases in the neural net-
work (Sreejith et al., 2020). Starting with poor initial
values can result in the network converging to sub-
optimal solutions or not converging at all. Finding
good initial values for the weights and biases can be
challenging, especially for deeper networks.

Because prediction of AOP in open-pit mines is
a complex, nonlinear and noisy problem, meta-
heuristic algorithms may be a potential solution to
overcome the limitations of the back-propagation
algorithm. Indeed, many metaheuristic algorithms
were demonstrated to provide promising results, as
reviewed above. Metaheuristic algorithms, with their
global exploration capabilities, can potentially
overcome local optima and search for better solu-
tions across the entire search space. In addition,

Figure 4. The PSO algorithm flowchart.

Figure 5. Illustration of the FOA mechanism.
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Figure 6. Steps to conduct an optimization problem using the FOA.
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metaheuristic algorithms often have mechanisms to
explore the search space more effectively, reducing
sensitivity to initialization. Therefore, in this study,
we applied four different metaheuristic algorithms
for training and optimizing the ANN model in pre-
dicting AOP, including RWGWO, PSO, FOA, and
SGA. These algorithms have different search
strategies, parameters, and strengths. Of those, the
RWGWO is an improved algorithm that is com-
bined with the random walk technique.

To enhance the ANN model through the uti-
lization of the RWGWO algorithm, an initial pop-
ulation of potential solutions is established. This
process includes the random initialization of the
weights and biases within the ANN model. Each
potential solution embodies a distinct arrangement
of weights and biases, aligned with the architecture
and specifications of the ANN. Subsequently, a fit-
ness function (i.e., RMSE or MSE) is selected to
evaluate the fitness of each candidate solution in the
created population. The fitness value indicates how
well a particular candidate solution performs on the
optimization objective. To search for better solu-
tions, the optimization process of the RWGWO is
performed through iterations, including the selec-
tion, variation, evaluation, update, and termination
steps. The objective is to continue the iterations until
the stopping condition is satisfied. This condition
could be either reaching the maximum iteration
count or attaining a specific fitness level. When the
RWGWO algorithm concludes, the optimal collec-

tion of weights and biases for the ANN model is
embodied by the best solution identified within the
last population. It should be noted that the remain-
ing metaheuristic algorithms, i.e., PSO, FOA, and
SGA, also follow the outlined steps of the RWGWO
algorithm in optimizing ANN model. The opti-
mization mechanism of the RWGWO–ANN model
for predicting blast-induced AOP is presented in
Figure 8. The optimization mechanisms of the other
hybrid models (i.e., PSO–ANN, SGA–ANN and
FOA–ANN) are similar to that of the RWGWO–
ANN model. However, the main difference depends
on the specific optimization algorithms employed in
each model.

EXPERIMENTAL APPLICATION

Study Area

To showcase the effectiveness of the
RWGWO–ANN model in forecasting AOP result-
ing from blasting activities in open-pit mines, we
opted for the Coc Sau open-pit coal mine in
Northern Vietnam as a representative example
(Fig. 9). This mine, a significant player in Vietnam’s
open-pit coal mining sector, boasts an annual pro-
duction rate of 2.7 million tons, while currently
operating at a depth of � 300 m relative to sea level.

The geological conditions in this region are
notably intricate, with rock hardness falling within

Figure 7. Pseudo-code of the SGA algorithm (Falco et al., 2002).
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the 11 to 14 range as per the rock hardness grading
by Protodiakonov et al. (1964). As a result,
employing blasting becomes a pivotal technique for
effectively fragmenting rocks prior to their subse-
quent loading and transportation to waste reposito-
ries. Moreover, the Coc Sau open-pit coal mine is
surrounded by residential zones at distances ranging
from 600 to 700 m, while other open-pit coal mines
such as Deo Nai and Cao Son are situated at dis-
tances spanning 400 to 500 m (Fig. 9b). Conse-
quently, the adverse repercussions of the blasting
operations carried out at the Coc Sau open-pit coal
mine hold notable significance.

Data Collection, Preparation and Analysis

Original Dataset

In mine blasting, there are several parameters
that can affect the intensity of ground vibration,
including blasting parameters and geological/geo-
graphical conditions. Among these, blasting param-
eters are categorized as controllable variables, as
they are designed by engineers and can be adjusted
in the blast pattern design. Geological and geo-
graphical conditions are classified as uncontrollable
factors, because their properties cannot be altered
due to their inherent uncertainty. Thus, this study

Figure 8. The RWGWO–ANN framework proposed for predicting AOP.
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Figure 9. (a) Location of the Coc Sau open-pit coal mine and blasting events. (b) Satellite image of the Coc Sau open-pit

coal mine (Google Earth) and surroundings.
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focused on blasting parameters and their relation-
ships with induced AOP.

To gather the dataset for this study, parameters
like B (burden), S (spacing), f (rock hardness), PF
(powder factor), and Q (maximum explosive charge
per delay) were extracted from blast patterns cre-
ated by mine engineers. The D parameter was cal-
culated based on the blast site’s location and the
position of the placed Micromate device. AOP val-
ues were monitored using the Micromate, produced
by Instantel—Canada, as depicted in Figure 10, and
the properties of the dataset exhibited weak corre-
lations (Fig. 11). This observation signifies a
notable degree of independence among the input
variables. Moreover, these weak correlations high-
light that each variable can offer distinct insights to
the analysis, enhancing the efficacy of prediction
models. Hence, all the variables were utilized to
formulate the AOP predictive models in this study.

Data Enrichment by ExTree model

As previously introduced, a notable feature of
this study is the utilization of the ExTree model for
data enrichment prior to the development of AOP

predictive models. The ExTree model was crafted
using the original dataset, and subsequently, the
outcome predictions generated by the ExTree model
were incorporated as supplementary input variables.
The ExTree model demonstrated a remarkable
93.2% accuracy in explaining the relationships be-
tween the input variables and AOP within the
original dataset, as listed in Supplementary
Table S1. Ultimately, the enriched dataset encom-
passed seven input variables, and their interrela-
tionships are illustrated in Figure 12, which reveals a
robust correlation between the supplementary input
variable (ExTree) and S. To tackle the issues of
multicollinearity and reduced model interpretability,
it was necessary to eliminate one of these variables.
Given that the new supplementary input variable,
ExTree, possesses the capability to elucidate the
relationships among the other variables, the decision
was made to remove the S variable from this en-
riched dataset. Consequently, the enriched dataset
comprised solely six input parameters: B, f, PF, Q,
D, and ExTree (Fig. 13). This enriched dataset was
used to develop predictive models, which were
compared to the models developed based on the
original dataset.

Figure 10. Micromate device and AOP measurement by the microphone.
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RESULTS AND DISCUSSIONS

As previously mentioned, the primary model
utilized in this study was an ANN model. However,
we delved into a more intricate architecture, aiming
to enhance the performance of the predictive model.
Consequently, it became imperative to formulate
the network topology prior to the construction of the
hybrid models intended for forecasting AOP within
the scope of this investigation.

Design of Topology Network of ANN Model

The topology network of the ANN model for
predicting AOP was devised using a trial and error
approach. The range of hidden layers explored was
from 1 to 3, aiming to assess the performance of the
ANN model with a more intricate structure (com-
prising multiple hidden layers) in predicting AOP.
Both the original dataset and the enriched dataset
employed the same topology network during the

development of predictive models. This facilitated
the comprehensive comparison and evaluation of
models built upon the original dataset and those
constructed using the enriched dataset. To accom-
plish this objective, an ANN model was utilized,
employing the Adam training algorithm along with
the mean squared error (MSE) fitness function over
the course of 500 epochs. Diverse numbers of hidden
layers, spanning from 1 to 3, were experimented
with. The outcomes demonstrated that the optimal
number of hidden layers was 2 (Figs. 14 and 15).

Once the appropriate number of hidden layers
was determined, the task involved designing and
calculating the number of neurons (nodes) within
each of these hidden layers. The same techniques
were employed for this stage, and a range of dif-
ferent quantities of hidden nodes, varying from 6 to
20, were subjected to experimentation. With the
decision to employ 2 hidden layers, each of these
layers comprised a designated number of hidden
nodes. Figure 14 illustrates that the two most
effective configurations for hidden node layers were

Figure 11. Properties of the dataset collected (original dataset).
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15 and 6. Consequently, the initial hidden layer
consisted of 15 nodes, while the subsequent hidden
layer was composed of 6 nodes. This culminated in
the establishment of the optimal structure for the
ANN model, meticulously chosen for the purpose of
predicting AOP within the context of this study
(Fig. 16).

Development of AOP Prediction Models based
on the Original Dataset

Once the structure of the ANN was appropri-
ately designed as detailed above, the focus shifted to
developing AOP predictive models. The initial
development utilized the original dataset, which was
subsequently divided into two random portions. The
training set comprised 70% of the entire dataset for
model training, while the remaining 30% served as a
testing set to assess the developed models. To miti-
gate potential overfitting, a combination of tenfold
cross-validation and MinMax scaling techniques

were employed. Notably, due to the randomness
introduced by predictive models during each itera-
tion of the tenfold cross-validation, this procedure
was repeated three times to ensure the objectivity
and consistency of the models.

Moreover, as discussed in the preceding section,
a technique for enhancing the accuracy of the ANN
model involved the use of various activation func-
tions. Illustrated in Figure 2, the ANN model con-
sisted of two hidden layers. Consequently, the
‘‘ReLU’’ activation function was applied to the first
layer, while the ‘‘tanh’’ activation function was
implemented in the second layer. The evaluation of
the ANN model’s performance during each iteration
of training utilized the RMSE as the chosen loss
function.

Subsequent to this, the ANN model underwent
training via distinct metaheuristic algorithms (re-
ferred to as hybrid models) and the conventional
stochastic gradient descent algorithm (conventional
model). This training was executed within the
framework presented in Figure 8. It is important to

Figure 12. The enriched dataset after applying the Extra Trees algorithm.
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note that before commencing the training of the
ANN model with the metaheuristic algorithms,
proper configuration of the algorithm parameters
was a necessary step, which is outlined as follows:

� The SGA algorithm�s parameters:

� Crossover probability: 0.75
� Mutation probability: 0.1
� Selection: ‘‘Roulette’’
� Crossover: ‘‘Uniform’’
� Mutation: ‘‘Swap’’
� Population size: 450
� Epoch: 500
� The PSO algorithm�s parameters:

� Local coefficient: 1.2
� Global coefficient: 1.2
� Minimum of weight: 0.4
� Maximum of weight: 0.9
� Population size: 450
� Epoch: 500

� The FOA algorithm�s parameters:

� Population size: 450
� Epoch: 500
� The RWGWO algorithm�s parameters:
� Population size: 450
� Epoch: 500

The established parameters reveal a distinction
between the SGA and PSO algorithms, which fall
under the category of parametric algorithms, and the
FOA and RWGWO algorithms, which are catego-
rized as nonparametric algorithms. Stated differ-
ently, the FOA and RWGWO algorithms exhibit
simplicity compared to the more intricate PSO and
SGA algorithms. Subsequently, employing the
framework illustrated in Figure 8, the ANN model’s
training was conducted using the SGA, PSO, FOA,
and RWGWO algorithms. The optimization out-
comes for the SGA–ANN, PSO–ANN, FOA–ANN,

Figure 13. The final enriched dataset after analysis.
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and RWGWO–ANN models on the original dataset
are illustrated in Figures 17 and 18.

Development of AOP Prediction Models Based
on Enriched Dataset

Regarding the development of predictive mod-
els based on the enriched dataset for predicting
AOP, the same techniques and parameters as those
used for the models developed based on the original
dataset were applied. The main difference was the
use of the enriched dataset instead of the original
dataset. The optimization outcomes for the SGA–

ANN, PSO–ANN, FOA–ANN, and RWGWO–
ANN models on the enriched dataset are illustrated
in Figures 19 and 20.

Figure 14. Evaluating the ANN model’s performance in

predicting AOP using varying numbers of hidden layers.

Figure 15. The ANN model’s performance in predicting AOP

using varying numbers of hidden nodes.

Figure 16. The network topology of the ANN model crafted

for AOP prediction in this research. (a) The topology network

for the original dataset; (b) The topology network for the

enriched dataset.
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Figure 17. Training and testing loss curves of the optimization-based ANN models for predicting AOP on the original dataset.

Figure 18. Comparison of the hybrid models for predicting AOP through the fitness function on the original dataset.
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Development of the empirical model (USBM)

In an effort to establish a comparison with the
ANN and hybrid optimization-based ANN models,
the USBM empirical equation (Eq. 15) was em-
ployed to estimate AOP resulting from blasting
activities in open-pit mines, thus:

AOP ¼ kðSDÞ�b ð15Þ

where SD is the distance scale that is calculated
based on the relationship between D and Q
parameters, thus:

SD ¼ DQ�0:33 ð16Þ

where k and b are site coefficients and computed by
multiple regression analysis. The site coefficients
vary based on the different conditions of each mine.

In constructing the USBM empirical model to
predict AOP, both the training and testing datasets

employed were identical to those utilized in the
development of the AI-based models. However, gi-
ven that the USBM empirical model relies exclu-
sively on two variables (i.e., D and Q), there was no
distinction between the USBM empirical model
constructed using either the original dataset or the
enriched dataset. After analyzing the training data-
set by multiple regression analysis, the site coeffi-
cients k and b were determined, as shown in the
empirical Eq. (17). The convergence of the USBM
empirical model for predicting AOP on the training
dataset based on the distance scale is shown in Fig-
ure 21.

AOP ¼ 117:879(SD)�0:055 ð17Þ
Observing the outcomes presented in Figure 21,

it became evident that the predicted AOP and
scaled distance exhibited strong correlation with
power function, yielding a R2of 1. This suggests that
the constructed USBM empirical model aligns well

Figure 19. Training and testing loss curves of the optimization-based ANN models for predicting AOP on the enriched dataset.
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with the scaled distance parameter. Nonetheless, a
more comprehensive assessment is required to
gauge the model’s precision in forecasting AOP.

Evaluation and Discussion

Once all predictive models, encompassing AI-
based and empirical approaches, were developed,
their performances were evaluated using both
training and testing datasets. This assessment aimed
to determine the adequacy of their performance and
to identify potential occurrences of overfitting.
Illustrated in Figure 17, the training and testing

curves of the RWGWO–ANN, PSO–ANN, and
SGA–ANN models displayed remarkable perfor-
mance on the original dataset. Their errors exhibited
similarity, indicating appreciable convergence and
absence of overfitting issues. Among these models,
the RWGWO–ANN variant demonstrated the most
favorable performance curves. Conversely, the
FOA–ANN model exhibited less desirable perfor-
mance curves, with noticeable dissimilarity between
its training and testing curves for the original data-
set. Despite this, the error disparity between its
training and testing phases remained relatively
modest, suggesting absence of overfitting. The
comparison extended to Figure 18 gives evidence
that the RWGWO–ANN model exhibited the low-
est error among the four hybrid models developed in
this study for the original dataset.

Similarly, examining the outcomes on the en-
riched dataset, as depicted in Figures 19 and 20,
highlighted the superior performance curves of the
RWGWO–ANN, PSO–ANN, and SGA–ANN
models compared to the FOA–ANN model. These
models demonstrated convergent performance
curves. The FOA–ANN model’s curves, conversely,
exhibited greater disparity, akin to the trends ob-
served in the original dataset analysis. Moreover,
Figure 20 underscored the continued prominence of
the RWGWO–ANN model in terms of accuracy
when predicting AOP on the enriched dataset. Fig-
ure 22 presents a comprehensive comparison of the
variations between the predicted AOP values from
various AI-based models and the USBM empirical

Figure 20. Comparison of the hybrid models for predicting AOP through the fitness function on the enriched dataset.

Figure 21. The USBM model’s convergence for

forecasting AOP.
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model, both on the original dataset and the enriched
dataset.

Illustrated in Figure 22, the RWGWO–ANN
model’s predicted AOP values closely align with the
measured AOP values, outperforming the predic-
tions by other models with respect to the original
dataset, encompassing both training and testing
data. Subsequently, the AOP values projected by the
ANN model are presented. Notably, these values
exhibited higher accuracy than those generated by
the PSO–ANN, SGA–ANN, and FOA–ANN mod-
els for the original dataset. This discrepancy suggests
that the PSO, SGA, and FOA algorithms are com-
paratively weak compared to the conventional SGD
algorithm in training the ANN model using the ini-
tial AOP dataset. In contrast, the USBM empirical
model showcased the worst predictive accuracy in
this study although the relationship between the
scaled distance and AOP of this model was 1
(Fig. 21).

Meanwhile, turning attention to the AI-based
models constructed using the enriched dataset,
remarkable results come to the fore in Figure 22.
Most of the hybrid AI-based models demonstrated
heightened accuracy, barring the FOA–ANN model.
Compared to the individual ANN model, the
RWGWO–ANN, PSO–ANN, and SGA–ANN
models yielded more precise AOP predictions with
the enriched dataset. Moreover, when measured
against their AOP predictions on the original data-
set, a substantial enhancement in accuracy was evi-
dent for the RWGWO–ANN, PSO–ANN, and
SGA–ANN models. This underscores the pivotal
role played by the ExTree model in data enrich-
ment, profoundly ameliorating the accuracy of AI-
based models (namely, RWGWO–ANN, PSO–
ANN, and SGA–ANN) alongside fortifying the po-
tency of metaheuristic algorithms.

To further compare these hybrid models across
both the original and enriched datasets, and to assess

Figure 22. Comparison of the measured AOP values and predicted AOP values by different AI-based models and USBM empirical

model with respect to the: (a) original training dataset; (b) enriched training dataset; (c) original testing dataset; and (d) enriched testing

dataset.
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their advancements relative to the ANN and
empirical models, four performance metrics—MAE,
RMSE, R2, and VAF (variance accounted for)—-
were computed using Eqs. (18–21), with the out-
comes detailed in Table 1.

MAE ¼ 1

nblast

Xnblast

blast¼1

AOPi � dAOPi

���
��� ð18Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

nblast

Xnblast

blast¼1

ðAOPi � dAOPiÞ2
s

ð19Þ

R2 ¼ 1�

Pnblast

blast¼1

AOPi � dAOPi

� �2

Pnblast

blast¼1

AOPi �AOPi

� �2 ð20Þ

VAF ¼ 1�
var AOPi � dAOPi

� �

var dAOPi

� �

0
@

1
A� 100 ð21Þ

where nblast represents the overall count of datasets

employed; AOPi, dAOPi, and AOPi symbolize the
measured AOP, predicted AOP, and the mean of
measured AOP values, respectively.

Drawing from the performance metrics in Ta-
ble 1, it is evident that the RWGWO–ANN model
exceled not only on the original dataset but also on
the enriched dataset. Remarkably, its performance
improved by approximately 7% with the enriched
dataset due to the ExTree model. The other models,

such as PSO–ANN and SGA–ANN, also showed
significant enhancements (ranging from 20 to 27%)
when compared to their performance on the original
dataset. In essence, the ExTree algorithm added
valuable information to the original dataset, aiding
the RWGWO, PSO, and SGA algorithms in
exploring the nuances and value of the enriched
dataset, resulting in improved accuracies during the
training of the ANN model.

Clearly, the amalgamation of data enrichment
(utilizing the ExTree algorithm) and metaheuristic
algorithms, combined with an ANN model (two
hidden layers), substantially enhanced the accuracy
of the AOP predictive models in this study. Addi-
tionally, it appeared that the FOA algorithm did not
align well with the AOP datasets in this study, even
when enriched by the ExTree algorithm. In Fig-
ure 23, the correlations between measured AOP
values and predicted AOP values were depicted for
both the original and enriched datasets.

The analysis depicted in Figure 23 reveals that
the RWGWO–ANN model exhibited the most
favorable convergent outcomes for both the original
and enriched datasets, outperforming the other
models. Notably, the convergences achieved on the
enriched dataset, for both training and testing pha-
ses, surpassed those obtained from the original da-
taset. This is evident from the tighter clustering of
the grey circles and purple triangles in Figure 23,
compared to the dispersion between the blue circles
and red triangles. The subsequent models in con-
sideration are the PSO–ANN and SGA–ANN

Table 1. Performances of AI-based and empirical models for AOP prediction based on the original and enriched datasets

Model Training dataset Testing dataset

MAE RMSE R2 VAF MAE RMSE R2 VAF

Original dataset

SGA–ANN 13.391 16.957 0.688 70.619 13.094 17.001 0.632 68.531

PSO–ANN 10.660 13.565 0.800 80.048 11.465 14.241 0.741 74.416

FOA–ANN 24.107 27.445 0.183 18.602 21.807 25.447 0.175 17.981

RWGWO–ANN 8.292 9.634 0.899 89.939 8.173 9.666 0.881 89.079

ANN 11.585 13.692 0.797 80.241 10.229 12.402 0.804 80.528

USBM 27.184 30.700 �0.022 77.933 25.148 29.838 �0.092 67.130

Enriched dataset

SGA–ANN 6.153 7.877 0.933 94.068 7.193 8.693 0.904 92.038

PSO–ANN 5.108 6.229 0.958 95.793 5.478 6.713 0.943 94.284

FOA–ANN 24.239 27.423 0.185 18.517 21.904 25.578 0.166 17.948

RWGWO–ANN 3.075 4.472 0.978 97.833 3.860 5.499 0.961 96.186

ANN 11.928 13.453 0.804 82.512 12.739 14.438 0.734 76.035

USBM 27.184 30.700 �0.022 77.933 25.148 29.838 �0.092 67.130
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Figure 23. Relationship between measured AOP values and predicted AOP values through regression line fitting.
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models. It is worth highlighting that the FOA–ANN
model exhibited notably poor convergence. This
model seemed to generate AOP predictions span-
ning a range of 80 to 120 dB, with data points
showing minimal vertical displacement. Surprisingly,
this performance even lagged behind that of the
single ANN model.

In stark contrast, the USBM empirical model
demonstrated the least favorable convergence, with
majority of predicted AOP values falling within the
range of 90 to 100 dB. This implies that the USBM
empirical model, as indicated by the regression line
fitting in Figure 23, lacked accuracy in predicting
AOP in the context of this study. Consequently, its
application for AOP prediction in this area is not
recommended.

Further evaluations of the developed AI-based
and USBM empirical models in this study for pre-
dicting AOP were made through the histogram of
errors (Fig. 24). Based on the histogram of errors,
we see the error range of each model and how each
model fits with the prediction of AOP in practical
engineering.

As depicted in Figure 24a, the distinction is clear:
the RWGWO–ANN model applied to the enriched
dataset displayed reduced errors (± 4 dB) in contrast
with its counterpart developed using the original da-
taset (± 15 dB). Similarly, the PSO–ANN model
applied to the enriched dataset exhibited errors
within the range of ± 10 dB, the errors expanded
to ± 15 dB for predictions of AOP on the original
dataset. On the other hand, the SGA–ANN model
showed marginally greater errors, spanning from
� 20 to 35 dB on the original dataset and narrowing
within � 10 and 15 dB on the enriched dataset.

It is worth highlighting that the error ranges for
the FOA–ANN model were similar between the
original and enriched datasets, both residing within
the range of ± 40 dB. This deviation was notably
higher than that observed in the previous models.
Despite the conventional ANN model having smal-
ler error ranges than the FOA–ANN model, its
performance did not seem to improve on the en-
riched dataset compared to the original dataset,
despite a distinct difference in error distribution.
Lastly, the USBM model exhibited the most sub-
stantial errors, spanning from � 40 to 60 dB, and
demonstrating a non-normal distribution.

In summary, a marked enhancement was ob-
served in most of the developed AOP prediction
models when applied to the enriched dataset, par-
ticularly notable for the RWGWO–ANN, PSO–

ANN, and SGA–ANN models. Among these models,
the RWGWO–ANN model stood out as the domi-
nant choice for predicting AOP at the Coc Sau open-
pit coal mine.

SENSITIVITY ANALYSIS

The RWGWO–ANN model was chosen as the
optimal predictor for AOP in this study due to its
strong performance on both the original and en-
riched datasets. To assess the significance of the in-
put variables, a sensitivity analysis using the Morris
method (Morris, 1991) was conducted (Fig. 25).

Figure 25 presents the sensitivity analysis of input
variables using the chosen RWGWO–ANN model.
This analysis was performed on datasets both with and
without enrichment. Examination of the insights pro-
vided by Figure 25 unveiled the significance and indi-
vidual contributions of each input variable throughout
the RWGWO–ANN model’s development. Notably,
this model was identified as the most proficient for
AOPprediction in this study. In the case of the original
dataset, the spacingparameter (S) emergedas themost
influential variable, closely followed by the burden (B)
with slightly lower significance.Other inputs, namely f,
PF, Q, and D, exhibited comparable and relatively
lower importance levels compared to B and S in the
construction of the RWGWO–ANN model for AOP
prediction.

In contrast, examining the sensitivity analysis
outcomes for the RWGWO–ANN model using the
enriched dataset highlights that the additional vari-
able, ExTree, took on the highest importance in
predicting AOP. The remaining parameters con-
tributed similarly in importance to the RWGWO–
ANN model’s AOP prediction. Despite the similar
importance levels of the ExTree variable and the S
variable, the enriched dataset demonstrated that the
ExTree variable significantly enhanced the model’s
understanding of the interrelationships among vari-
ables, surpassing the lone S variable. The ExTree
variable imparts a more comprehensive dataset
representation to the RWGWO–ANN model,
resulting in heightened accuracy compared to the
original dataset.

CONCLUSIONS AND RECOMMENDATIONS

Ensuring the safety of surrounding areas relies
heavily on precise prediction and control of AOP,
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Figure 24. Error distributions of the developed models for predicting AOP.
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Figure 24. continued.
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which arises from blasting activities in open-pit
mines. This study introduced two innovative strate-
gies toward this goal:

1. Utilizing the ExTree algorithm, we enriched the
dataset to provide comprehensive information
for AOP predictive models, enhancing their
understanding of the dataset’s nuances.

2. We introduced the novel RWGWO–ANN
model, which combines an ANN model with two
hidden layers and the new RWGWO optimiza-
tion algorithm (developed based on the GWO
algorithm and random walk strategy). This
advancement aims to enhance the accuracy of
conventional ANN models in AOP prediction.

The outcomes obtained underscore the signifi-
cant role of the ExTree algorithm in data enrich-
ment. It substantially improves the models’ grasp of
the dataset, thereby elevating the accuracy of pre-
diction outcomes. Moreover, the proposed
RWGWO–ANN model emerged as an exceptional
contender for AOP prediction. Notably, its accuracy
surged from 89 to 96.2% following dataset enrich-
ment through the ExTree model.

We strongly recommend the adoption of these
techniques in practical applications and future re-
search endeavors. By doing so, the accuracy of
predictions, especially concerning the adverse ef-
fects of blasting in open-pit mines, can be enhanced
substantially.
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