Metal-organic frameworks and applications

Toan VU

Metal–organic frameworks

 Metal–organic frameworks (MOFs) are a class of porous polymers consisting of metal clusters (also known as Secondary Building Units - SBUs) coordinated to organic ligands to form one-, two- or three-dimensional structures. The organic ligands included are sometimes referred to as "struts" or "linkers", one example being 1,4benzenedicarboxylic acid (BDC).

MOF structure and synthesis

MOF structure and synthesis

MOF structure and synthesis

- Solvothermal synthesis at low temperature (< 250 °C)
- Microwave irradiation

Conditions: pH, solvent, concentration, and temperature
Common polar solvents: water, dimethyl/ethyl formamides, dimethyl sulfoxide or acetonitrile

Characteristics of the ligand: bond angles, molecular length, etc. and of the metal ion play a very important role in the structure of MOF

MOF structure and synthesis - Post-synthetic modification

- Ligan functionalize
- Metal exchange
- Open coordination sites

MOF characteristics- porosity

Name	Chemical formula	Pore size (Å)	Window size (Å)	Specific surface area (cm ² g ⁻¹)	Pore volume (cm ³ g ⁻¹)
MOF-5	$[Zn_4O(O_2C-C_6H_4-CO_2)_3]$	12	8	2900	0.61–0.54
IRMOF-3	Zn ₄ O[O ₂ C–C ₆ H ₃ (NH ₂)–CO ₂] ₃	10.15	<8	2160	0.63
HKUST-1/ MOF-199	$[Cu_{3}\{(C_{6}H_{3}-(CO_{2})_{3}\}_{2}]$ or $[Cu_{3}(BTC)_{2}]$	9.0	-	692	0.33
MIL-53	AI(OH)[O ₂ C–C ₆ H ₄ – CO ₂]·[HO ₂ C–C ₆ H ₄ –CO ₂ H] _{0.70}	8.5	8.5	1140	0.57
MIL-100	Cr ₃ F(H ₂ O) ₃ O[C ₆ H ₃ –(CO ₂) ₃] ₂	25–30	4.8-8.6	3100	1.16
MIL-101	Cr ₃ X(H ₂ O) ₂ O[(O ₂ C–C ₆ H ₄ – CO ₂)] ₃ , X = F/OH	29–34	12–14.7	5900	2.38

MOFs applications

- Gas Adsorption
 - Hydrogen storage
 - CO2 capture
 - Gas separation
 - Water vapor capture and dehumidification
 - Desalination/ion separation
 - Drug delivery
- Semiconductors
- Catalysis

MOF applications – Catalysis

- The metal clusters of the MOF framework;
- Functionalized linker (e.g., acid or base function);
- Active species immobilized in the MOF framework (e.g., supported complexes, metals, metal oxide cluster or enzymes).