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1 Introduction

Capital expenditure (CAPEX) of a mining project includes the investments

required in fixed assets to bring the project into production. In open-pit mining

projects, mining capital expenditure can have a significant impact on the prof-

itability of the investment. Underestimation of CAPEXmay cause a delay of the

project in construction as well as in the production phase and over estimation of

it can decrease the overall value of the project and may cause a delay or aban-

donment of the project [1]. In traditional cost estimation for a mining project,

mining capital expenditure estimation relies on the cost of similar mining oper-

ations with adjustment to specific site conditions [2].

Over the years, the capital cost of mining projects has been estimated with a

significant deviation from the actual capital cost value and these deviations

mostly occurred as an underestimation. Furthermore, previous studies demon-

strated that high financial risks occurred for mining companies with inaccurate

CAPEX estimation, and they indicated that the true ground of CAPEX is
exceeded from 10% to 35% compared to the estimated values [3–6].

Applications of Artificial Intelligence in Mining and Geotechnical Engineering

https://doi.org/10.1016/B978-0-443-18764-3.00015-1

Copyright © 2024 Elsevier Inc. All rights reserved. 131



132 Applications of artificial intelligence in mining and geotechnical engineering
To overcome this problem, artificial intelligence (AI) techniques have been

introduced and applied to estimate capital cost estimation, as well as other prob-

lems in real life [7–12]. For estimating CAPEX, Nourali and Osanloo [1,2]

applied two machine learning algorithms, including a support vector machine

(SVM) and classification and regression trees (CART). Their findings revealed

that AI techniques are potential methods for forecasting CAPEX with a reliable

range of errors. Based on the artificial neural network approach (ANN), Guo

et al. [13] demonstrated that ANN was an excellent choice for forecasting

CAPEX with high accuracy. Inheriting the study of Guo et al. [13], Zhang

et al. [14] developed a deep learning ANN (abbreviated as DNN) and optimized

it by the ant colony optimization (ACO), named ACO-DNN, for forecasting

mining capital expenditure. Finally, they interpreted that the ACO-DNN can

improve the accuracy of the traditional ANN model in terms of CAPEX fore-

cast. Zheng et al. [15] also estimated CAPEX through the production factors

using a cascade forward neural network and salp swarm optimization algorithm

with an accuracy of 98%.

A review of previous works shows that AI techniques have strong applica-

bility in the prediction of mining capital expenditure with promising results. In

this book chapter, the radial basis function neural network model (RBFNN)

and four metaheuristic algorithms (i.e., genetic algorithm—GA; particle

swarm optimization—PSO; moth-flame optimization—MFO; Harris Hawks

optimization—HHO) were developed and applied to estimate CAPEX of a

mining project, named as GA-RBFNN, PSO-RBFNN, MFO-RBFNN, and
HHO-RBFNN.
2 Methodology

2.1 Radial basis function neural network (RBFNN)

RBFNN is an enhanced version of the MLP (multilayer perceptron neural net-

work) that was introduced by Broomhead and Lowe [16]. It consists of three

layers: input, hidden, and output layers. UnlikeMLP, the RBFNN uses unsuper-

vised methods to train the network under the linear weights. Firstly, RBFNN

uses the K-means clustering algorithm to select the weights randomly [17].

Then, matrix multiplication or gradient descent algorithms are used to calculate

the weights between the hidden and output layers [18,19]. Remarkably, it does

not use any activation functions during training the network like MLP, and

unsupervised processes are used to model the nonlinear relationships of the

datasets. The general architecture of RBFNN for predicting CAPEX is illus-

trated in Fig. 1.

In Fig. 1, the input vectors contain the input variables, including annual mine

production (MineAP), million tons; stripping ratio (SR); annual production of

the mill (MillAP), thousand tons; reserve mean grade % Cu EQU (RMG) and
the mine life (LOM).



FIG. 1 General architecture of RBFNN for estimating CAPEX.
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2.2 Metaheuristic algorithms

Brief principle of GA algorithm

In this chapter, four metaheuristic algorithms were applied to optimize the

RBFNN model for estimating CAPEX, including GA, PSO, MFO, and HHO.

GA is one of the metaheuristic algorithms which is often used to solve optimi-

zation problems. The GA was first presented by Holland [20] and is considered

one of the earliest population-based stochastic algorithms. In GA, each solution

candidate is represented by a chromosome and each parameter is represented by

a gene. The process begins with a random initial population, generated within

the lower and upper limits of the parameters. A fitness function is then used to

evaluate each individual in the initial population, with a numerical value

assigned to indicate its fitness. The best solutions, with higher fitness values,

are selected through a selection mechanism for further genetic operations such

as crossover and mutation. These operations lead to the renewal of the popula-

tion and the GA is expected to converge toward the best solution. For more

details on GA, please refer to the following reference materials [20–23]. The

pseudo-code of the GA algorithm is presented in Fig. 2.



FIG. 2 Pseudo-code of the GA algorithm.
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Brief principle of PSO algorithm

The PSO algorithm mimics the behavior of birds searching for food, and views

the solution space of a problem as a foraging ground, which was proposed by

Kennedy [24]. In PSO, the solution to the optimization problem is represented

by the position of particles in the search space. The algorithm focuses on areas
with high-fitness particles by assigning a larger search space probability to these
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areas, while a lower search space probability is assigned to particles with low

fitness. The algorithm starts by randomly initializing a group of particles to

form an initial population, which is distributed in a d-dimensional space where

d is the number of parameters being optimized. The size of the particle swarm

affects both the search space and computational complexity, with larger part-

icle swarm offering a more comprehensive search space but increased compu-

tational complexity, while smaller particle swarm offers a reduced

computational complexity but a limited search space. Generally, a particle

swarm size of between 10 and 50 is ideal for most problems, but for complex

problems such as multi-dimensional global optimization or multi-objective

optimization, a particle swarm size of 100–200 or more might be necessary

for better results [25]. The PSO algorithm involves two important concepts:

“exploration,” which refers to the process of particles constantly searching

for new solutions, and “development,” which refers to the process of particles

finding local optimal solutions near a feasible solution. For more details on

PSO, please refer to the following reference materials [26–29]. The pseudo-
code of the PSO algorithm is shown in Fig. 3.

FIG. 3 Pseudo-code of the PSO algorithm.
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Brief principle of MFO algorithm

The MFO is also a metaheuristic algorithm that simulates the navigation behav-

ior of moths, which fly with a constant angle relative to the moon at night and

use an intelligent technique to cover long distances. It is proposed by Mirjalili

[30] since 2015 for solving optimization problems. However, they become

trapped in a destructive spiral pattern when they encounter artificial lights.

This behavior is modeled mathematically with the positions of the moths repre-

senting the model parameters and the optimal position being considered the

“flame.” The MFO algorithm involves a random population, a movement func-

tion that explains the moth’s exploration of the search space, and model param-

eters that determine the end of the optimization process. For more details on

MFO, please refer to the following reference materials [30–32]. The pseudo-
code of the MFO algorithm is shown in Fig. 4.

FIG. 4 Pseudo-code of the MFO algorithm.
Brief principle of the HHO algorithm

The HHO is a newly developed algorithm by Heidari et al. [33] since 2019 for

solving optimization problems, based on the concept of swarm intelligence. It

was first introduced by Heidari and colleagues. The algorithm is named after the

hunting behavior of Harris Hawks, where different strategies are used to tire the

rabbit before capturing it. The mathematical model of this process consists of

three phases: exploration, transfer, and exploitation. In the exploration phase,
the position of the hawks is determined before the rabbit is found. The transition
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from exploration to the exploitation phase models the loss of energy by the rab-

bit during escape, while the exploitation phase outlines the escape of the rabbit

and the hawk’s pursuit strategies. For more details on HHO, please refer to the

following reference materials [33–35]. The pseudo-code of the HHO algorithm
is presented in Fig. 5.
2.3 Proposing the metaheuristics-based RBFNN models
for estimating CAPEX

In this chapter, the RBFNN model will be used to estimate CAPEX under the

optimization of four metaheuristic algorithms (MHA), including GA, PSO,

MFO, and HHO.

To do this, an initial RBFNN structure and parameters of the algorithms will

be designed first. Then, the MHA will be applied to generate sets of weights

randomly and the optimization processes then will be activated to select the best

one. For metaheuristic algorithms, each population will act as a potential solu-

tion, and a fitness function, such as RMSE, MSE, MAPE, or MAE, can be used

to evaluate the fitness of solution. In addition, most of the optimization mech-

anisms of metaheuristic algorithms are based on the sharing and updating posi-

tions to gain better performance during optimization progress. Therefore, a

FIG. 5 Pseudo-code of the HHO algorithm.
maximum number of iterations is necessary to ensure the convergence of the
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algorithms. The optimized weights are then added to the designed RBFNN

structure and calculate the error of the model in estimating CAPEX. Finally,

the best prediction model will be selected with the lowest error. The framework
of the MHA-RBFNN models for estimating CAPEX is shown in Fig. 6.
2.4 Performance metrics for evaluation

For assessment of the models’ efficiency, three metrics, including RMSE,

R2, and mean absolute percentage error (MAPE) were used as described in

Eqs. (1)–(3).

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

n

i¼1

yi � byið Þ2
n

v

u

u
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Xn
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X
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FIG. 6 Framework of the MHA-RBFNN models for estimating CAPEX.
where n is the total number of datasets; yi stands for the ith actual CAPEX; byi
denotes the ith predicted CAPEX; yCAPEX represents for the mean of
actual CAPEX.
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3 Data preparation

A dataset from 80 different surface mining operation have been collected and

used including annual mine production (MineAP), million tons; stripping ratio

(SR); annual production of the mill (MillAP), thousand tons; reserve mean

grade % Cu EQU (RMG) and the mine life (LOM) was used. Of those, 70%

of the whole dataset was randomly separated to train the mentioned models,

and the remaining 30% of the dataset was used for testing the performance once

the models were well developed with five-folds cross-validation and three

repeats. The five-folds cross-validation technique is simulated in Fig. 7. Note

that, the testing dataset was considered as unseen dataset and it has not been

used to train the models. In addition, the five-folds cross-validation technique

was also applied for the testing dataset to evaluate the predictive models more
objectively. The training and testing datasets are summarized in Tables 1 and 2.

Iteration #1

Training Validation

E = Mean of errors

Error 1

Error 2

Error 3

Error 4

Error 5

Iteration #2

Iteration #3

Iteration #4

Iteration #5

Validation

Validation

Validation

Validation

Fold 5Fold 1 Fold 2 Fold 3 Fold 4

FIG. 7 Simulation of how the dataset is separated by the five-folds cross-validation technique and

how to use it.

TABLE 1 Summarize the training dataset used for estimating CAPEX.

MineAP SR MillAP RMG LOM CAPEX

Min.: 4.00 Min.: 0.300 Min.: 40.0 Min.: 0.200 Min.: 0.00 Min.: 452

First Qu.:
21.50

First Qu.:
1.843

First Qu.:
372.8

First Qu.:
0.480

First Qu.:
19.75

First Qu.:
1370

Median:
37.00

Median:
3.268

Median:
588.0

Median:
0.940

Median:
30.00

Median:
2668

Mean:
34.79

Mean:
2.829

Mean:
585.9

Mean:
1.345

Mean:
29.02

Mean:
2632

Third Qu.:
48.00

Third Qu.:
3.579

Third Qu.:
795.8

Third Qu.:
2.075

Third Qu.:
40.25

Third Qu.:
3577

Max.:
64.00

Max.:
5.050

Max.:
1215.0

Max.:
3.375

Max.:
54.00

Max.: 6373



TABLE 2 Summarize of the testing dataset used for estimating CAPEX.

MineAP SR MillAP RMG LOM CAPEX

Min.: 6.00 Min.: 0.210 Min.: 51.0 Min.: 0.1950 Min.: 9.00 Min.: 406

First Qu.:
16.50

First Qu.:
1.215

First Qu.:
327.2

First Qu.:
0.2988

First Qu.:
17.75

First Qu.:
1043

Median:
24.00

Median:
2.155

Median:
422.5

Median:
0.7925

Median:
22.50

Median:
1818

Mean:
27.21

Mean:
2.087

Mean:
451.9

Mean:
0.9323

Mean:
23.75

Mean:
1910

Third Qu.:
36.00

Third Qu.:
2.999

Third Qu.:
584.2

Third Qu.:
1.0950

Third Qu.:
28.50

Third Qu.:
2381

Max.:
59.00

Max.:
3.716

Max.:
983.0

Max.:
3.1050

Max.:
40.00

Max.:
5369
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4 Results and discussions

Before developing the models, the training dataset was normalized using the

Min-Max scaling method aimed at transforming the features’ scale to the com-

mon range between 0 and 1. This helps to prevent features with large scales

from dominating the training process and improving the performance and sta-

bility of the models for estimating CAPEX. Furthermore, the algorithms’

parameters are important and they have a significant effect on the performance

of the hybrid models. Therefore, five-folds cross-validation technique was

applied during the training of the models to find the best parameters of the
models, and the results are shown in Table 3.

TABLE 3 Performance of the MHA-RBFNN models for estimating CAPEX

with five-folds cross-validation.

Model

Training phase Testing phase

RMSE R2 MAPE RMSE R2 MAPE

GA-RBFN 527.529 0.863 0.252 549.451 0.825 0.270

PSO-RBFN 454.669 0.898 0.223 544.993 0.823 0.267

MFO-RBFN 433.318 0.907 0.216 532.229 0.837 0.268

HHO-RBFN 497.538 0.878 0.246 544.639 0.825 0.273
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Finally, the best parameters of the GA-RBFNN, PSO-RBFNN, MFO-

RBFNN, and HHO-RBFNN models were selected as follows:

– GA-RBFNN model: crossover probability (pc)¼0.85; mutation probability

(pm)¼0.05; number of populations¼300; iterations¼500.

– PSO-RBFNN model: local coefficient (c1)¼1.2; global coefficient (c2)¼
1.2; weight min factor (wmin)¼0.4; weight max factor (wmax)¼0.9; number

of populations¼300; iterations¼500.

– MFO-RBFNN and HHO-RBFNN models are non-parameters models and

only number of populations and iterations were considered when training

these models: number of populations¼300; iterations¼500.

After the best parameters of the training algorithms were selected, the models

were re-trained, and their performance in the training and testing phases is

shown in Fig. 8.

From the perspective of optimization in Fig. 8, it can be seen that the

MFO-RBFNN model was better optimized on the training dataset. However,

it is not the best one on the testing dataset as it performed on the training dataset.

The PSO-RBFNN model predicted CAPEX better than the MFO-RBFNN

model. The remaining models provided lower performances than those of

the MFO-RBFNN and PSO-RBFNN models on both the training and

testing dataset. A similar problem was found in these models and it is hard

to evaluate which model is better than the remaining one. Thus, the performance

metrics (introduced in Eqs. 1–3) were calculated based on the actual

and estimated CAPEX values, as listed in Table 4. Then, the training and

testing performances were evaluated through the bench mark ranking

method, as calculated in Table 5 to indicate which model is the best for estimat-

ing CAPEX.

Based on the obtained results in Tables 4 and 5, it is easy to see that the

MFO-RBFNNmodelprovided thehighest benchmark rankingon thedatasetswith

the total ranking of 20. Meanwhile, the PSO-RBFNN model provided slightly

lower ranking (i.e., total ranking¼18). Following are the HHO-RBFNN and

GA-RBFNNmodels with a total ranking of 14 and 7, respectively. Taking a closer

look at Table 4, we can see that the RMSE values of the MFO-RBFNN,

PSO-RBFNN, and HHO-RBFNN models are not too dissimilar; however, the

MAPE value of the MFO-RBFNN model is significantly lower than those of

the PSO-RBFNN, and HHO-RBFNN models. Furthermore, all metrics of the

MFO-RBFNN model on the training dataset are the best compared to the other

models. Therefore, we have sufficient evidence to conclude that the

MFO-RBFNNmodel is the best model with the highest level of reliability for pre-

dictingCAPEXin this study.Fig.9shows the relativeerror (RE),absoluteerrorand
linear relationship between the actual and predicted CAPEX values.



FIG. 8 Optimization progress of the MHA-RBFNNmodels for estimating CAPEX on the training

(A) and testing datasets (B).
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TABLE 4 Performance of the MHA-RBFNN models for estimating CAPEX

after re-trained with the best parameters.

Model

Training phase Testing phase

RMSE R2 MAPE RMSE R2 MAPE

PSO-RBFN 452.047 0.900 0.229 423.419 0.862 0.304

HHO-RBFN 508.091 0.874 0.228 443.165 0.849 0.303

MFO-RBFN 430.965 0.909 0.225 444.667 0.848 0.293

GA-RBFN 507.106 0.874 0.237 479.653 0.823 0.305

TABLE 5 Benchmark ranking of the developed models based on the metrics

calculated.
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5 Conclusions

Mining project requires significant capital investment and accurate estimation

of CAPEX significantly impacts the viability of the project. Under estimation of

CAPEXmay lead to a delay in the development as well as production phases of

the project as the real amount may not be freely available on the company’s

balance sheet. Overestimation of CAPEX can reduce the overall NPV of the

project which can make the project uneconomical. In most cases, there is a sig-

nificant variation between actual and estimated CAPEX values in mining pro-

jects and significant underestimation can be observed. One of the important

aspects to estimate reliable CAPEX values for a mining project is the data avail-

ability as well as the selection of correct factors. In this study, the dataset con-

tains 80 open-pit mining cases with the consideration of mine annual production
(MineAP), stripping ratio (SR); mill annual production (MillAP), reserve mean



FIG. 9 Performance of the MHA-RBFNN models for estimating CAPEX on the testing datasets:

(A) GA-RBFNN model; (B) HHO-RBFNN model;

(Continued)
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FIG. 9, CONT’D (C) MFO-RBFNN model; and (D) PSO-RBFNN model.
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grade % Cu EQU (AG), and the mine life (LOM) was collected and used in the

cost prediction models based on AI methods. The radial basis function neural

network model (RBFNN) and four metaheuristic algorithms were developed

and implemented to estimate CAPEX of a mining project. Application results
revealed that RBFNN can be a potential model for estimating the CAPEX of a
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mining project. Within this category, the PSO-RBFNNmodel demonstrated the

most accurate estimation, and it should be considered to use in estimating

mining CAPEX.

In future studies, more commodity specific data can be collected and differ-
ent machine learning methods can be utilized and compared.
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