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1 Introduction

The extraction of ore from a mine and its transportation to the processing plant

consists of unit operations such as drilling, blasting, loading, and transportation.

The productivity and profitability of a mine can vary significantly depending on

the design and operation of the production process. Therefore, it is important to

design, operate, and manage production processes composed of unit operations

efficiently [1–4]. In particular, it is very important to design and operate a

mine’s haulage system efficiently because the cost of transporting ore and waste

accounts for more than half of the total production cost [2].

To date, many researchers have conducted studies to optimize the variables

of the haulage system or to predict ore production, which is one of the major

performance indicators. Researchers have implemented a variety of determin-

istic and stochastic simulation models to solve the problem of determining the
equipment required for a haulage system and the capacity of a vehicle. Different
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estimation methods, such as expert systems, fuzzy set theory, genetic algo-

rithms (GAs), multi-criteria decision-making, computer-based simulation tech-

niques, and various mathematical decisions, are used to simulate and optimize

mine haulage systems [5–10]. In addition, studies on discrete event simulations

to solve the haulage problem related to mines have been actively conducted

[11–18]. Furthermore, studies are being conducted to predict or optimize vari-

ables and performance indicators for mine haulage systems through machine

learning using big data collected from mines. Soofastaei et al. [19] utilized

an artificial neural network (ANN) and a GA to optimize the parameters related

to the fuel consumption of trucks used in haulage systems. Park et al. [20] devel-

oped a machine learning model that can predict truck travel time employing

underground mine data collected using the Internet of Things (IoT) and diag-

nosed and evaluated the condition of the transport route. Baek and Choi [21]

developed a deep neural network (DNN)-based model to analyze truck haulage

and operational conditions and predict ore production. In addition, Choi et al.

[22] evaluated the validity of various machine-learning algorithms for predict-

ing ore production in open-pit mines.

Machine learning has been widely applied in mining and geoengineering;

however, the development of machine learning models able to evaluate and pre-

dict ore production efficiently is insufficient. Therefore, in this study, we devel-

oped a multi-layer perceptron (MLP) neural network model that combines

metaheuristic algorithms and can estimate ore production using data collected

from mines. To this end, data on the haulage system of a limestone mine in

Korea were collected. In addition, gray wolf optimization (GWO), particle

swarm optimization (PSO), and the GA were considered as metaheuristic algo-

rithms for optimizing the MLP, and thus GWO-MLP, PSO-MLP, and GA-MLP

models were developed to predict the ore production of truck haulage systems

of open-pit mines. Furthermore, a standalone MLP model was developed for
comparison with the hybrid models.
2 Dataset used

A limestone mine operated by Hanil Cement Co., Ltd. in South Korea (coordi-

nates: 128° 190 5800 E; 37° 10 5900 N) was selected as the study area to estimate

the ore production of the truck-haulage system in open-pit mines. The mine pro-

duces approximately 8.1 million tons of limestone annually. Limestone ore is

produced by ten shovels, two loaders, and three dozers, and the produced ore

is transported to the shaft by 15 dump trucks (with loading capacities of 45,

60, and 84 tons). The mine has two ore-processing shafts. The ore dumped

on the shaft is immediately crushed and then transferred to a cement plant using
a belt conveyor.
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For data acquisition, an IoT-based mine management system operating in

the study area was used. The system utilizes four wireless access points (APs)

and Global Positioning System (GPS) tags installed in the mine to track the

location of equipment and mine workers and monitor the operational status

in real time. Therefore, the production manager can verify the operating status

of the mine in real time. Packet data are transmitted by the wireless APs to the

web server and consist of the tag recognition date, tag recognition time, IP

address identifying the wireless AP, and tag location date. In this study,

16,217 observations were collected from the aforementioned limestone mine

in South Korea to estimate the ore production (output-Y) of the truck-haulage

system in open-pit mines. The dataset contains 16 input variables: Relative

operation start time (X1), relative operation end time (X2), the interval

between operation start and end times (X3), number of dispatched 45-ton

trucks (X4), number of dispatched 60-ton trucks (X5), number of dispatched

84-ton trucks (X6), utilization of dumping zone A by the 45-ton trucks (X7),

utilization of dumping zone B by the 45-ton trucks (X8), utilization of

dumping zone A by the 60-ton trucks (X9), utilization of dumping zone B

by the 60-ton trucks (X10), utilization of dumping zone A by the 84-ton trucks

(X11), utilization of dumping zone B by the 84-ton trucks (X12), average stay

time of trucks at dumping zone A (X13), average stay time of trucks at

dumping zone B (X14), average travel time of trucks from dumping

zone A to loading points (X15), and average travel time of trucks from dump-

ing zone B to loading points (X16). Operations, stays, and travel times (min)

used as input variables are expressed in relative terms to adjust the scale of the

variables. For example, if an operation starts at 8:30AM and ends at 11AM,

the relative operation start and end times can be set to 0min and 150min,

respectively.

Downscaling techniques for big data are considered a powerful solution to

reduce the computational cost of machine learning problems, as the long-

running time of large-scale data is a drawback for engineers and developers

[23–26]. In this study, the ore production dataset consisting of 16,217 obser-

vations was reduced to 3000. It was reduced to a small dataset without losing

its properties. The dataset (3000 observations) was then divided into three sec-

tions. First, 80% of the dataset (2400 samples) was randomly selected to train

and validate the model, and the remaining 20% (600 samples) were used to

test the model. The 2400 samples were again divided in a 7:3 ratio and divided

into a training dataset (1680 samples) and a validation dataset (720 samples),

respectively. Finally, the practical engineering of the model was evaluated

using the testing dataset. Table 1 presents the statistics of the dataset

(scaled-down dataset) for the 16 input variables used to estimate the ore
production.
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3 Methodology

A multi-layer perceptron (MLP) was developed to estimate the ore production

of the truck-haulage system in open-pit mines. In addition, different metaheur-

istic algorithms, including GWO, PSO, and GA, were utilized to optimize the

model. First, a dataset of 3000 samples, consisting of 16 input variables, was

collected from a limestone mine in South Korea. The importance of the input

variables was then analyzed by applying the cubist algorithm (CA), and the

GWO-MLP, PSO-MLP, and GA-MLP models were developed using the
selected variables.
3.1 Selection of input variables using the cubist algorithm

The CA was used to analyze the importance of the input variables and select the

variables to develop a model. The CA is a rule-based algorithm and a comple-

ment of C5.0, which is mainly used for classification. It is based on different

approaches proposed by Quinlan [27–29]. Unlike other algorithms, the CA

has several properties [30]: (1) Different types of pruning, smoothing, and rule

creation processes; (2) optional boosting procedures; and (3) adjustable estima-

tion with the possibility of choosing nearby units for the training dataset [31].

The process of building a tree is similar to that of other decision algorithms.

However, the CA considers the weighted linear combination of two trees,

including an actual tree and its parents, and then performs pruning. The weights

for each tree are calculated based on the covariance of the tree residuals and the

variance of the difference between the residuals. Models with lower errors are

given more weight than other models. After determining the weight of each

model, the adjusted error rate is calculated by removing each rule from the rule

set. If the adjusted error rate increases when deleting a rule, the rule is omitted

from the set [32,33].

In this study, the importance of the 16 input variables for estimating ore pro-

duction was analyzed using the CA (Fig. 1). The results showed that the most

important input variables in the ore production prediction model were X3, X5,

and X2. In particular, the interval between the start and end times of the oper-

ation (X3) was found to be the most important factor. In general, it was con-

firmed that the importance of the input variables related to operation time,

number of dispatched trucks, travel time, and stay time was high. In contrast,

the importance of the input variables (X7–X12) related to the dumping zone

utilization rate was generally low. Notably, the importance of the input variable

X10 for the utilization rate of dumping zone B by 60-ton trucks was the lowest.

Therefore, the model was developed using 15 variables, excluding X10, as input

variables to estimate the ore production of the truck-haulage system in open-
pit mines.
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3.2 Multi-layer perceptron neural network

The artificial neural network (ANN) technology is well established as a pow-

erful mathematically based solution that is similar to the human brain and prom-

ises stable connections between inputs and outputs in practice [22,34].

Therefore, ANNs are designed to solve most problems, in practice, rather than

humans [35–39]. The ANN was first introduced by McCulloch and Pitts [40],

and ANN-based models have been widely used in many investigations. To

develop ANNs, the structure of the ANN and the training algorithm must be

considered. The ANN structures consist of three types of layers: Input, hidden,

and output layers [41]. The input and output layers consist of a single layer.

However, the hidden layer consists of one or more layers [42]. The MLP neural

network consisting of one or more layers is a well-established form of ANN

commonly used by researchers.

There are various training algorithms for training ANN models, but feed-

forward and back-propagation are the most widely used. For MLP neural net-

works, a similar algorithm is used to train the network. The general operating

principle of an MLP neural network is as follows. First, information is received

from the external environment through input neurons. Second, the data are

encoded and passed to hidden neurons, where calculations occur. Weights

are the parameters used to describe the relationship between neurons and are

the result of this process. Finally, the result of the hidden-layer calculation is

sent to the output neuron. In this section, a hybrid model based on an MLP neu-

ral network is used to estimate ore production.

3.3 Metaheuristic algorithm for optimizing the multi-layer
perceptron

Ametaheuristic algorithmwas used to optimize theMLP neural network to esti-

FIG. 1 Analysis of the importance of variables using the cubist algorithm.
mate the ore production of the truck-haulage system of open-pit mines.
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Metaheuristics are a set of intelligent strategies for improving the efficiency of

heuristic procedures [43]. Laporte and Osman [44] defined metaheuristics as an

iterative generation process that intelligently combines different concepts to

explore and exploit a search space and then guides a subordinate heuristic.

In addition, they defined learning strategies as those used to structure informa-

tion to find near-optimal solutions efficiently. In this work, the MLP neural net-

work was optimized using nature-inspired algorithms, such as GWO, PSO, and

GA. The GWO, PSO, and GA algorithms provide the biases and weights of the

MLP and receive the RMSE and R2 values for the training data. The variables of

theMLP, such as weights and biases, represent a series of values for training and

are sent to the GWO, PSO, and GA optimization algorithms.

Gray wolf optimization (GWO)

GWO is a powerful metaheuristic algorithm proposed by Mirjalili et al. [45] and

has strengths in terms of solution accuracy, minimum computational effort, and

aversion to premature convergence [46]. GWO was inspired by the gray wolf, a

member of the Canidae family, which leads the predators at the top of the food

chain. Gray wolves are characterized by living in packs of 5–12 individuals.

The leader of a pack of wolves is in charge of the pack and is referred to as the

alpha. Beta reinforces the alpha’s guidelines throughout the pack and delivers

feedback to the alpha wolf. The lower level in the hierarchy of gray wolves is

called the omega and they serve as the scapegoat. In addition, if awolf is not alpha,

beta, or omega, it is referred to as a delta.Deltawolves are scouts, sentinels, elders,

hunters, and caretakers. The behavior of the GWO for hunting the prey can be

formulated mathematically. The position of the alpha wolf is assumed to be the

best answer in the proposed GWO algorithm, and the positions of beta and delta

are the second-and third-best answers, respectively. Omega represents the remain-

ing answers to the problem. In theGWOalgorithm, hunting is instructed by alpha,

beta, and delta, and omega follows them. Details of the formulation of prey-

hunting behavior in gray wolf packs can be found in Nimma et al. [46].

Particle swarm optimization (PSO)

PSO is an algorithm developed by Kennedy and Eberhart [47] based on swarm

behavior, such as that of fish and birds in nature. xi and vi, which indicate the posi-
tion and velocity of the particle, can be updated using the following formulas:

vt+1i ¼ vti + αε1 g∗� xti
� �

+ βe2 x⁎i � xti
� �

, (1)

xt+1i ¼ xti + vt+1i , (2)
where ε1 and ε2 represent two random vectors, and each entry has a value

between 0 and 1. The parameters α and β are the learning parameters or accel-

eration constants. A new position is generated by mutations of the pattern-

search type, and selection is performed implicitly through the current global
best solution g∗ and the individual best xi∗ found thus far. However, as shown
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in accelerated PSO, the current global best is very important for selection, but

the role of the individual best is not clear. Therefore, PSO mainly consists of

mutation and selection, and there is no crossover. This means that PSO can have

high mobility in particles with a high degree of exploration. However, the use of

g∗ is seen as highly optional. Although it helps to speed up convergence, it can
lead to premature convergence, even if it is not the right optimal solution to the
problem of interest.
Genetic algorithm (GA)

The GA was first developed by Holland [48] and extended by Whitley [49] and

Houck et al. [50]. The GA is widely applied to optimize scientific and engineer-

ing problems, and many researchers have used GA optimization methods

[37,51–52]. The main advantage of the GA is that it has the potential to find

solutions by solving highly complex or nonlinear problems. A suitable function

must be processed and developed in the GA by optimizing many parameters,

such as the population size and genetic operator rates. In particular, these

parameters affect the convergence of the algorithm and the results of the net-

work. GA-based methods involve chromosomes of fixed lengths [34]. Chromo-

somes encode issues that are transformed into a linear binary string system

between 0 and 1, which is the main reason for generation. Chromosomes are

evaluated according to their random properties and are selected by particular

genetic operators from the remaining chromosomes to produce new generations

of chromosomes. Crossovers select a range of 0–1 between the mutation and

parents’ work. This process is repeated continuously until the best is generated
through measurements according to the network performance.
4 Results and discussions

This study combined the MLP neural network technology with three metaheur-

istic algorithms, namely, GWO, PSO, and GA, to predict the ore production of

truck haulage systems in open-pit mines. In addition, a standalone MLP model

was developed for comparison with three hybrid models. In this section, the

development and comparison results of the standalone MLP model and the

hybrid model are presented.

One of the most important parameters affecting the proposed metaheuristic

algorithms (GWO, PSO, and GA) is the number of swarms or population sizes.

This will assist in the use of the best-fit ensemble with a hybrid MLP-based

model. The optimization process considered different swarm sizes of 50–500
in increments of 50. A total of 1000 iterations were performed for the optimi-

zation calculations for each proposed prediction network. In addition, the main

objective function was set to the RMSE value, and the performance error was

measured for each iteration. Fig. 2 shows the training results of the hybrid model
using the training dataset. The GWO-MLP prediction method was optimized



FIG. 2 Training performance of the hybrid models for predicting ore production. (A) Convergence

of the GWO-MLP model. (B) Convergence of the PSO-MLP model.

(Continued)



FIG. 2, CONT’D (C) Convergence of the GA-MLP model.
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after approximately 500 iterations and exhibited the best performance (RMSE:

713.795) when the swarm size was 400. The PSO-MLP model was optimized

after approximately 800 iterations, and the best RMSE was found to be 890.124

when the swarm size was 350. However, for swarm sizes of 350, 400, 450, and

500, if the number of iterations is increased to more than 1000, the RSME is

likely to be lowered. Finally, the GA-MLP was optimized after approximately

800 iterations. The RMSE was the lowest (1102.081) when the swarm size was

250. Regarding the performance of the hybrid model on the training dataset,

GWO-MLP was the best, followed by PSO-MLP and GA-MLP. It should be

noted that the RMSE values in Fig. 2 are normalized in the range of 0–1, cor-
responding to the unscaled values, as mentioned above.

In this study, a dataset (2400 samples) and a testing dataset (600 samples)

were constructed for training and validation with 3000 scaled-down ore pro-

duction datasets at a 4:1 ratio. Fig. 3 shows a graphical visualization of the

training and validation losses during the training and validation phases of

the hybrid models. The GWO-MLP, PSO-MLP, and GA-MLP models all

show that both the training and validation losses decrease and stabilize at a
certain point.



FIG. 3 Comparison of the models in the training and validation phases. (A) GWO-MLP model.

(B) PSO-MLP model.

(Continued)
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It is evident from the results that the hybrid models based on metaheuristic

algorithms were developed appropriately with high performance. After develop-

ing the model, the performance of the model was evaluated using training, val-

idation, and testing datasets. Table 2 summarizes the performance of the ore

production estimation model for the training, validation, and testing datasets.

Considering the performance values of the developed machine learning model,

it can be observed that GWO-MLP achieved the best performance in ore produc-

tion estimation with the lowest RMSE and highest R2. In contrast, the GA-MLP

model had the lowest performance in estimating ore production in open-pit mines.

Comparing the performance of the four models, their performance is arranged in

FIG. 3, CONT’D (C) GA-MLP model.
the following order: GWO-MLP, standalone MLP, PSO-MLP, and GA-MLP.

TABLE 2 Performance metrics of the models.

Model

Training Validation Testing

RMSE R2 RMSE R2 RMSE R2

GWO-MLP 713.795 0.877 744.425 0.851 657.921 0.893

PSO-MLP 890.124 0.809 873.559 0.795 882.876 0.807

GA-MLP 1102.081 0.707 1155.485 0.642 1055.324 0.724

MLP 735.624 0.870 740.473 0.853 767.496 0.854
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Fig. 4 shows the correlation between the actual and estimated ore production

in the training dataset. It can be observed that the performance of the PSO-MLP

and GA-MLP models is rather low when the ore production is 8000 tons or

more. In contrast, GWO-MLP and theMLP neural network are effective inmost

ore production levels, and their R2 values are also relatively high, at 0.877 and

0.870, respectively. According to the comparison of results in Fig. 4, the

GWO-MLP andMLP neural networkmodels are well-developed and have good

accuracy. In particular, the predicted value of ore production using the
GWO-MLP model was the closest to the measured value.
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FIG. 4 Correlation between actual and estimated ore production values on the training dataset.
Fig. 5 shows the correlation between the actual and estimated ore production

using the validation dataset. The results of the correlation analysis using the val-

idation dataset are similar to those of the training dataset. However, Fig. 5

shows that the R2 value of the MLP neural network is higher than that of
GWO-MLP, although the difference is small.
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FIG. 5 Correlation between actual and estimated ore production values on the validation dataset.
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In this study, a downscaling technique was used to reduce the original data-

set from 16,217 to 3000 observations. The performance of MLP neural net-

works combined with metaheuristic algorithms was sufficient for both the

training and validation datasets derived from the scaled-down dataset. How-

ever, a testing dataset was required to assess the representation of the

scaled-down dataset and to confirm the performance of the developed model.

In other words, it is necessary to verify the developed model through the test-

ing dataset and confirm that the scaled-down dataset can accurately represent

the properties of the original dataset. The testing data set consisted of 600

observations corresponding to 20% of 3000 observations. Fig. 6 shows the cor-

relation between the actual and estimated ore production in the testing dataset.

The GWO-MLP model exhibited the best performance on the testing dataset.

The GA-MLP model still showed the lowest performance, similar to that eval-

uated on the training and validation datasets. In addition, the rest of the models

showed similar performances to those obtained in the training and validation
datasets.
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FIG. 6 Correlation between actual and estimated ore production values on the testing dataset.
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5 Conclusion

In this study, machine learning was implemented to estimate ore production in

open-pit mines with high accuracy. The GWO-MLP, PSO-MLP, and GA-MLP

models were developed by combining algorithms based on the metaheuristics of

GWO, PSO, and GA with the MLP neural network. In addition, a standalone

MLP model was developed, and the results of a comparison of the predictive

performance of ore production in open-pit mines were presented. The scaled-

down dataset was again divided into 4:1 and consisted of a dataset for training

and validating the model (2400 samples) and a dataset for testing the model

(600 samples). In addition, 70% of the 2400 observations were used as training

datasets for model training, and the remaining 30% were used as validation

datasets for model validation. Subsequently, the developed model and proper-

ties of the scaled-down dataset were verified. Among the four models developed

to estimate ore production in open-pit mines, the GWO-MLP model exhibited
the highest estimation accuracy. Meanwhile, the GA-MLP model exhibited the
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lowest performance. The estimation performances of the models appeared in the

order of GWO-MLP,MLP, PSO-MLP, and GA-MLP, and it was confirmed that

the performance was the same for the training, validation, and testing datasets.

Therefore, not all metaheuristic algorithms are suitable for the optimization pro-

cess of MLP models; in particular, PSO-MLP and GA-MLP showed much
lower performance than the standalone MLP model.
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