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ABSTRACT 

Photocatalytic and magnetic stability of two-dimensional layered nanomaterials is improved by 

metal doping, which is a potential eco-friendly technique widely used in various industrial 

sectors. In this study, economical and convenient co-precipitation method was adopted to 

synthesize copper (Cu) doped in various concentrations (2.5, 5, 7.5 and 10%) into fixed amount 

of C3N4/MgO nanostructures for efficient photocatalytic and bactericidal activities. Improved 

crystallinity and increase in crystal size upon doping was confirmed with XRD analysis, which 

was corroborated with SAED results. FTIR spectroscopy revealed that MgO spectra consisted of 

stretching vibrations of Mg-O bond and other functional groups with minor changes in the 

vibrational modes upon doping. A HR-TEM fitted with Gatan® digital software indicated the 

formation of hexagonal phase in as-prepared sample and nanorods upon doping, with confirmed 

d-spacing values. The UV-Vis analysis revealed a slight redshift in absorption intensity leading 

to decreased band gap (Eg) for Cu-doped MgO/C3N4. Photoluminescence (PL) spectra were 

acquired to investigate the recombination of electron-hole pairs. To evaluate the elemental and 

surface composition with binding energy alterations of Cu-doped C3N4-MgO nanorods, XPS was 

employed. Thermal stability and behavior of synthesized samples was investigated by DSC 

thermoanalytical analysis. Photocatalytic performances of as-prepared samples were evaluated 

against methylene blue ciprofloxacin (MBCF) dye in acidic, neutral and basic medium. 

Furthermore, efficient antibacterial potential was evaluated against Escherichia Coli (E. coli) and 

Staphylococcus aureus (S. aureus) bacteria. 

Keywords: Co-precipitation, C3N4, nanorods; MgO; Antimicrobial; XPS; DSC-TGA 
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1. INTRODUCTION 

Nanotechnology has evolved into a fascinating discipline in the current period, with several 

applications in biology, health, energy, and materials science, among others [1–5]. 

Approximately, 5-10 billion dollars per year are being spent on clinical complications associated 

with infected implanted medical devices that prolong hospital stays and cause medical 

complications for patients [6]. Typical antibiotics used to treat nosocomial infections are not able 

to penetrate biofilms, which results in making bacteria and fungi more drug resistant and hard to 

eliminate. [7, 8]. Therefore, biomaterials are crucial to eliminate microbial infections and 

linkage, reducing antibiotics use and extenuating infections of medical devices [9].  

Many metal oxide nanoparticles (NPs) have been used for this purpose as they have shown 

considerable antimicrobial properties. Metal-oxide NPs are extremely fascinating due to their 

remarkable applications in the electronics fields, catalysis, sensing, and so forth [10–19]. 

Fabrication of metal oxide NPs with different morphologies is becoming prominent due to their 

significant properties [20, 21]. High surface-to-volume ratio of one-dimensional nanostructures 

including wires, fibers and rods make them highly attractive for various applications [22]. From 

among all metal oxides, MgO (magnesium oxide) is a potential oxide that can be prepared easily 

in versatile structural forms and different sizes [23]. MgO has found many applications in the 

field of photocatalysis, bio-compatibility and antibacterial activities. MgO NPs have been used 

as substantial material in bioremediation, additives in refractories, superconducting products, 

water treatments, paints and specially in medicines for the relief of heartburn, sore stomach, acid 

digestive disorders and for bone regeneration [24–26]. This is due to the wide energy band gap 

Eg, thermochemical stability and impressive surface reactivity of MgO NPs [27]. Various 

precursors have been utilized for MgO preparation using different methods co-precipitation, sol-
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gel, combustion, hydrothermal and spray pyrolysis [13, 28, 29]. Different crystal structures can 

be obtained from metal elements of different oxides which can be insulators, semiconductors and 

metallic, that are very useful in chemical reactivity [30]. In principle, behavior of metal 

containing molecules in different oxides depend on electrostatic force produced by charges and 

mixing of orbitals of molecules with conduction and valance bands (CB and VB respectively), 

and dipole of molecules [31].  

Due to physiochemical nature of metal-containing elements exhibiting some interesting 

properties such as large Eg, chemical inertness, thermal stability and high dielectric constant, 

MgO has become one of the most important materials in industry today [32, 33].  MgO as a bulk 

material have a very large Eg which reduces its application as a semiconductor [34]. Doping of 

metals in metal oxides tend to decrease Eg of materials normally making them conductors and 

advances its applications in electronics. Cu is a very interesting metal as it contains negatively 

charged electron in its complete orbital near positive charged nucleus. Application of Cu is very 

fascinating in antibacterial activity, as very low amount of Cu induces inactivation of bacteria in 

dark [35]. This enhanced antibacterial effect is mainly attributed to Cu ions, surface contact 

killing and Cu obtaining reactive oxygen species (ROS) in O2 presence. This bacterial 

inactivation by Cu has been recorded to take place in both anaerobic and aerobic conditions [36]. 

Graphitic carbon nitride (C3N4) is also an interesting compound for its application in 

photocatalysis and antimicrobial activities. In several carbon compounds, C3N4 surface offers 

electron rich qualities and multiple modified functionalities. Water decomposition by C3N4 is a 

milestone when it comes to its application in photocatalysis. This is ascribed to the fact that this 

novel material does not contain metal and metallic elements and causes unnecessary damage and 

environmental toxicity [37]. Aim of this study is to prepare Cu-doped C3N4/MgO nanostructures 
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with various Cu concentrations, via co-precipitation method and to check its antimicrobial and 

photocatalytic properties.  

2. EXPERIMENTAL DETAILS 

2.1 Materials 

Magnesium chloride (MgCl2.6H2O, 99-102%), copper chloride (CuCl2.2H2O, 99%) and urea 

(CH4N2O) were obtained from Sigma Aldrich, Germany. Carbon nitride (g-C3N4) was obtained 

via pyrolysis of urea (CH4N2O). Without further purification, all chemicals have been utilised.  

2.2 Synthesis of MgO and Cu-C3N4/MgO 

Controlled material (MgO) was prepared in laboratory. Briefly, MgCl2.6H2O (4g) was dissolved 

in 100 mL of deionized (DI) water and the mixture was allowed to react for 15 min under 

constant stirring. One molar solution was prepared in 100 ml of water with 4g of (MgCl2. 6H2O) 

and 100 mg of (C3N4) was added in solution (Fig. 1). Firstly, solution of (MgCl2. 6H2O) and 

(C3N4) was prepared and then different concentrations (2.5%, 5%, 7.5% and 10%) of 

(CuCl2.2H2O) were doped into solution of C3N4/MgO. Firstly, prepared solution was put on hot 

plate at 200o C for three hours under constant stirring. Following this, sample was sonicated for 

half an hour with ultrasonic rays followed by centrifugation at 7500 rpm for ten min. Lastly, 

samples were annealed at 450o C for two hours.  
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Figure. 1 (a)  Formation mechanism of  carbon nitride obtained from urea pyrolysis. (b) 

Schematic illustration of fabrication of Cu-C3N4/MgO samples. 
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3. RESULTS AND DISCUSSION  

 

 

Figure 2. (a) XRD spectra (b) FTIR spectra and SAED patterns of MgO (c), 7.5% Cu-

C3N4/MgO (d) and 10% Cu-C3N4/MgO (e). 

 

Structural and phase properties of prepared samples were examined through x-ray diffraction in 

2θo range 8o -80o as depicted in Fig. 2 (a). Peaks generated at 38.01o, 45.03o, 50.87o, 58.67o, 

66.17o and 76.53o indexed to (110), (111), (200), (222), (220), and (311) planes, respectively 

belonged to FCC cubic structure of MgO (JCPDS Card No. 87-0653). C3N4 peaks were not 

detected in doped samples due to their lower concentration relative to MgO. The impact of 
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dopants Cu and C3N4 were found in peaks shift toward higher 2θo values. Upon doping, peak 

broadening was observed which led to decrement in crystalline size and showed successful 

incorporation of dopants into the matrix [38]. Peaks (200), (220) and (311) contracted for doped 

samples might indicate distortion of typical FCC crystalline structure at least in some specific 

directions identifying rod-like structure of prepared samples. Additional peaks observed at 

33.03o, 51.09o and 56.87 in spectra depicted the presence of hydroxyl group Mg(OH)2 [39]. Fig 

2(c-e) shows SAED (Selected Area Electron Diffraction) patterns for MgO,7.5% and 10% Cu-

doped C3N4-MgO indexed with planes (110), (111), (200), (220), (222) and (311) of MgO that 

were compatible with XRD results. To analyze chemical composition and the presence of 

various functional groups in samples, FTIR spectroscopy was performed (Fig. 2b). The broad 

band range (3040–3550 cm-1) indicated  MgO nanostructures formation while broad band in 620- 

873 cm-1 range was ascribed to vibrations of Mg-O bond [25, 40]. The distinct bands observed at 

880 and 1410 cm-1 represent vibrations of surface hydroxyl group (1). Sharp peak at 3695 cm-1 is 

accredited to stretching of O–H bond. 
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Figure 3: (a) MgO (b) 7.5% and (c) 10% Cu-C3N4/MgO illustrated HRTEM images and lattice 

fringes of MgO, 7.5% Cu-C3N4/MgO and 10% Cu-C3N4/MgO are represented in (d), (e) and (f), 

respectively. 

HRTEM was employed to study the morphology and surface topology of prepared samples. 

Image of 100 nm size for MgO exhibited cubic structure formation due to the aggregation of 

several thousand NPs (Fig. 3a). 7.5% and 10% Cu-doped C3N4/MgO depicted dense and 

interconnected nanorods such that no clear boundary existed between them, see (Fig. 3b) and 

(Fig. 3c) respectively. Lattice fringes were separated by distance of 0.25 nm, 0.21 nm and 0.20 
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nm for MgO, 7.5% Cu-C3N4/MgO and 10% Cu- C3N4/MgO, respectively (Fig. 3(c-e)). HRTEM 

and d-spacing of 2.5 and 5% samples are shown in Fig. S1. 

 

 

Figure 4: (a) Band gap (b) UV-Vis Spectra (c) PL spectra of prepared samples. 

 

The optical absorption spectra of MgO- and Cu-doped C3N4/MgO were recorded to investigate 

typical properties in UV-Vis region (Fig. 4a). MgO showed absorption in the region 230-310 nm 

and redshift was observed upon increasing concentration of Cu in C3N4/MgO composites. This 

absorption is significantly greater than bulk MgO because of bulk excitonic transitions. This is 

due to the electrostatic potential of O2  in MgO which slowly decreases with coordination and the 

whole process requires lesser energy [41]. Quantum confinement upon impurity incorporation is 
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dependent on host crystal size, as crystal size decreases confinement degree and its effect 

increases [38]. The optical Eg of obtained samples were calculated from the Tauc’s relation as 

represented in Fig. 4b. Eg for MgO was calculated to be 5.5 eV and it decreased down to 4.7 eV 

for Cu-doped C3N4/MgO. This decrease in Eg is ascribed to smaller crystallite size and  

agglomeration of particles to form nanorods upon doping [32]. 

When light falls on the surface of a material, generation of electron-hole pairs and their 

recombination lead to PL phenomenon. PL spectra for prepared samples are shown in Fig. 4c. 

Emission spectra depicted one dominant peak at 370 nm, with excitation wavelength 280 nm 

irradiated onto the samples. MgO being an insulator (Eg~ 5.7 eV) showed luminescence in the 

above-mentioned range, which is extensively ascribed to surface defects and vacancy sites 

excitations [42]. Photo-excitation of electrons into CB of attached oxygen atoms at step-edge 

defects of MgO causes luminescence [43]. Spectra recorded for Cu-doped C3N4/MgO composite 

showed significant decrease in PL intensity which may be attributed to increased amount of 

surface and structural defects generated after incorporation of Cu atoms in the matrix. This 

dramatic increase in defects act as trap sites for electrons, rendering their motion toward holes 

thus reducing recombination rate of excitons.  

 

Differential scanning calorimetry (DSC) was utilized to measure the flow of heat into or out of 

the samples (MgO, 5% Cu-C3N4/MgO and 10% Cu-C3N4/MgO) as a function of temperature and 

heat flow. The DSC curves exhibited a distinctive endothermic peak at 144 °C for pure MgO and 

this peak started to shift forward upon Cu and C3N4 doping into the matrix, as presented in Fig.5. 

For 5% Cu-C3N4/MgO, data showed an endothermic peak at 154 °C and for 10% Cu-C3N4/MgO 

the endothermic peak is at 185 °C. This shift of endothermic temperature region towards higher 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



12 
 

temperature range might be attributed to the increasing concentration of Cu in C3N4/MgO 

sample, as Cu exhibits an endothermic peak at a higher temperature region (300-450 °C) [44]. 

These distinctive peaks indicate the purity and thermal stability of the prepared samples [45–47].  

 

Figure 5. DSC spectra of MgO, 5% Cu-C3N4/MgO and 10% Cu-C3N4/MgO. 
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Figure 6: XPS spectra of Cu-doped C3N4/MgO samples. 

The elemental composition, surface composition, and binding energy alterations of Cu-doped 

C3N4-MgO nanorods were determined using XPS. The survey, O 1s, N 1s, and Cu 2p high 

resolution spectra are shown in Fig. 6(a–e). The XPS survey spectrum displays the predicted 

strong signals of C, N, O, and Cu, as seen in Fig. 6 (a). The C1s peaks of the doped nanorods 

may be resolved into three peaks at 284.8, 286.4, and 288.4 eV, referring to the functional groups 

C-C/C=C, C-O, and C=O, accordingly as depicted in Fig. 6b [48]. Moreover, the N1s signal 

band in Fig. 6 (c) may be attributed to the N=C and C-N groups due to its binding energy of 
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around 398.5 and 399.8 eV [49]. Notably, Fig. 6 d defined the Cu 2p pattern of doped CuO with 

heights at 933.3 and 953.3 eV binding energies, which correspond to the Cu 2p3/2 and Cu 2p1/2 

spin orbits, accordingly, confirming the samples' divalent oxidation state. The last two peaks, at 

942.2 and 962 eV, relate to the satellite heights of Cu 2p3/2 and Cu 2p1/2, which emerged 

principally owing to the partially filled 3d9 orbital in divalent oxidation state [50]. A high-

resolution analysis of the Mg 2p core level spectrum reveals two distinct electronic states (2p1/2, 

2p3/2) with binding energies of 48.95 eV and 49.29 eV, respectively. The location of the 2p3/2, 

2p1/2 peaks and the difference in their binding energies indicate the presence of Mg ions in the + 

2 oxidation state as shown in Fig. 6 (e) [51].    

 

Table 1:  Bactericidal action of MgO and Cu-doped C3N4/MgO 

 

0.5mg/50μl 1.0mg/50μl 

Pathogen 1 2 3 4 5 1 2 3 4 5 

S. aureus 1.55 2.65 3.45 3.95 4.05 2.05 4.4 5.35 6.45 7.05 

E. coli 1.45 2.6 3.3 3.65 3.95 1.8 3.15 3.4 3.85 5.15 

1 MgO 

2 2.5% Cu-C3N4/MgO 

3 5 % Cu-C3N4/MgO 

4 7.5% Cu-C3N4/MgO 

5 10% Cu-C3N4/MgO 

 

Fig. S2 shows the photo-degradation of methylene blue ciprofloxacin (MBCF) dye over MgO 

and Cu-C3N4/MgO nanorods as catalyst. The dye degradation in photocatalytic procedure is 
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caused by generation of electron-hole (e--h+) pairs in VB and CB. Produced h+ in VB reacts with 

surrounding water molecules to form OH• radicals and e- in the CB is captured by the oxygen to 

generate anionic superoxide radical (O2-•) as illustrated in Fig. 7 and explained in following 

equations  [52]:  

 

Figure 7. Illustrates photocatalytic mechanism of Cu-C3N4/MgO samples. 

 

Sample + hʋ → Sample (e- + h+) ------ (1) 

H2O + h+→ •OH + H+ -------------------(2)   

The generated •OH radical are remarkably strong oxidizing agents. Molecules adsorbed or near 

to the surface of the catalyst are non-selectively attacked by •OH radical species which result in 

degradation or mineralization based on structure and stability level. The electrons in the VB 

interacts with oxygen molecules to generate O2
-• species as shown in equation 3,  

O2 + e-  → O2
-• --------------------------- (3) 
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This produced superoxide gets protonated and form a hydroperoxyl radical (HO2•) and further 

dissociates into highly reactive hydroxyl radicals (OH•) as presented in below equations, 

O2
-• + H+ → HOO• ---------------------- (4) 

2HOO• → H2O2 + O2 ------------------- (5) 

•OH + dye → degraded products ----- (6) 

The Eg of MgO is 7.8 eV normally, but for MgO nanostructures this is decreased to 5.5 eV which 

makes it a potential material for photo-catalysis [53, 54].  

Percentage degradation of individual material is calculated using equation 7 as shown in Fig. 8 

[40]:                       

% 𝐷𝑒𝑔𝑟𝑎𝑑𝑎𝑡𝑖𝑜𝑛 = (
(𝐶𝑜−𝐶𝑡)

𝐶𝑜
) ∗ 100 ------ (7) 

Here Co and Ct are the initial and final concentration of dye after exposure to UV-Vis light. 
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Figure 8: Representing the photocatalytic degradation percentage of samples in acidic, basic and 

neutral solution of MBCF dye. 

The degradation % is minimum for the samples when dye is placed in the dark. Fig. 8 indicated 

that MBCF dye degradation percentage is maximum (53.89%, 42.99% and 39.66%) for 2.5% 

Cu-C3N4/MgO in neutral, basic and acidic solutions of MBCF dye, respectively. The decrease in 

degradation on further increasing the doping concentration shows that these nanostructures are 

the best performing catalyst with 2.5% doping of Cu in C3N4/MgO. As described earlier in XRD 

section, crystallite size decreased with increasing amount of dopants.  Addition of Cu (2.5 %) 

into C3N4/MgO showed maximum degradation performance as confirmed by PL results. The 2.5 

% sample showed minimum recombination rate which might be owed to the increased amount of 
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defects produced in the lattice after doping [34, 55]. Moreover, the smaller crystallite size 

reduces the recombination rate and more particles (electrons and holes) are transferred to the 

surface of catalysts. Cu-doping in C3N4/MgO may be due to the balance of trapping carriers 

causing the longer lifetime of surface charge carriers which results in enhancing PCA [25, 56]. 

The role of C3N4 in fixed amount is very crucial for dye degradation as well. C3N4-doped into 

MgO tend to increase the absorption ability of the sample with an increase in pH and then it 

starts decreasing [57].  

The degradation percentage for the neutral solution of MBCF was maximum, which ascribed to 

the balancing of hydroxyl groups and holes at the surface. The lower percentage degradation for 

acidic solution may be due to the fact that dye decomposition takes place at catalyst surface and 

hydroxyl ions deficiency to react with holes to produce hydroxyl radicals [25]. For basic 

solution, the degradation percentage of dye decreases, which may be due to the decrease of 

positive charge at photo-catalyst surface because OH- ions are absorbed into it [58–60]. A 

comparison between Cu-C3N4/MgO and other famous photocatalysts is provided in the Table 2.  

Table 2:  Presents the comparison between several famous photocatalysts for the degradation of 

MB and some other dyes.  

Materials Dyes Degradation 

(%) 

Time (min) References 

TiO2 MB 86 120  [61] 

V-TiO2 MB 45 1 [62] 

Fe3O4/TiO2/Ag MB 90 100  [63] 

Fe3O4@ZnO MBCF 86  240 [64] 
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g-C3N4 RhB 20  100  [65] 

g-C3N4 in NaOH 

 

Aqueous Cr+ 29.4 120 [66] 

Cu-C3N4/MgO MBCF 53 80 Present study 

 

The photo-degradation kinetics by determining the slopes on ln (
Ct

Co
) curves were drawn versus 

time (Fig. 9) . The rate constants (k) of all samples were determined by pseudo 1st order kinetic 

equation, ln (
𝐶𝑜

𝐶𝑡
) = 𝑘𝑡 

. 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



20 
 

 

Figure 9: ln(Co/Ct) vs time graph of prepared samples at (a) acidic, (b) basic and (c) neutral 

nature. 

Disc diffusion technique was utilized to screen bactericidal sensitivity of prepared 

nanocomposites. Inhibition zones measured for prepared samples ranged from 1.45 mm to 7.05 

mm in diameter against G-negative and positive [Table. 3]. The maximum zone of inhibition 

observed for 10% Cu-C3N4/MgO against S. aureus and E. Coli were 7.05 mm and 4.15 mm, 

respectively. Other samples showed comparatively less bactericidal potential which is ascribed to 

low concentration (0.5 mg/50 µl) as only few NPs are available to cooperate with cell wall. 

Overall, bactericidal performance of prepared products is better against S. aureus at both high 

and low concentration. Previous studies have reported that bactericidal performance of MgO 
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nanocomposites depends upon the size.  This activity increases slowly by decreasing MgO 

particle size in the range ~ 45-70 nm [67]. This enhanced performance of C3N4/MgO with 

maximum doping of Cu (10%) may be due to incorporation of dopant into matrix which tends to 

decrease the Eg and crystallite size of the prepared sample. This improved performance can be 

ascribed to the interaction of microbe cell membranes (having negative charge) and Cu2+ and 

Mg+2 ions released by doping with Cu. Released positive ions penetrate the cell casing by 

reacting with sulfhydryl group inside it. Consequently, strains get damaged enough to lose the 

growth ability of cells (Fig. 10) [25].  

 

Table 3:  Bactericidal action of MgO and Cu-doped C3N4/MgO. 

 

Samples 

S. aureus E. coli 

Inhibition Zone (mm) Inhibition Zone (mm) 

0.5 mg/50 µl 1.0 mg/50 µl 0.5 mg/50 µl 1.0 mg/50 µl 

MgO 1.55 2.05 1.45 1.80 

C3N4 0 0 0 1.60 

2.5% Cu-C3N4/MgO 2.65 4.40 2.60 3.15 

5 % Cu-C3N4/MgO 3.45 5.35 3.30 3.40 

7.5% Cu-C3N4/MgO 3.95 6.45 3.65 3.85 

10% Cu-C3N4/MgO 4.05 7.05 3.95 4.15 
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Figure 10: Antimicrobial reaction mechanism of prepared sample. 

4. CONCLUSION 

Novel Cu-C3N4/MgO were prepared through co-precipitation method for dye degradation and 

antibacterial activities and several properties including structural, morphological and optical 

were investigated. MgO nanocomposites exhibited FCC cubic structure and transformed itself 

into nanorods upon Cu and C3N4 doping. Doping effects of Cu and C3N4 emerged in the form of 

peak broadening and minor shift to higher angles as shown by XRD results. In FTIR, broad band 

range of 3040–3550 cm-1 indicated the formation of MgO bond while 620- 873 cm-1 band was 

ascribed to MgO bond vibration. UV-Vis spectroscopy demonstrated that MgO showed 

absorption in region 230-310 nm accompanied by redshift resulting in noteworthy decrease in Eg 

upon doping of Cu and C3N4. PL spectra showed emission at 370 nm with a prominent decrease 

in intensity upon Cu and C3N4 doping. XPS confirmed strong signals of C, N, O, and Cu 

composition with binding energy modifications of Cu-doped C3N4-MgO nanorods. DSC analysis 
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exhibited that the endothermic regions are shifted from 144 °C towards high temperature range 

(185°C) upon doping. PCA results revealed that 2.5% Cu-C3N4/MgO showed most dye 

degradation in neutral, basic and acidic mediums. Antibacterial performance investigated by disc 

diffusion method indicated that maximum dopant 10% Cu-C3N4/MgO showed best performance 

against S. aureus and E. Coli at both high and low dose concentrations.   
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