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Introduction

The document’s first section details the problem of classification for linearly sep-

arable data and introduces the concept of margin and the essence of SVM - margin

maximization. The methodology of the SVM is then extended to data which is not fully

linearly separable.

This soft margin SVM introduces the idea of slack variables and the trade-off between

maximizing the margin and minimizing the number of misclassified variables in the

second section.

The third section develops the concept of SVM further so that the technique can be

used for regression.

The fourth section explains the other salient feature of SVM - the Kernel Trick. It

explains how incorporation of this mathematical sleight of hand allows SVM to classify

and regress nonlinear data.
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Chương 1

Linearly Separable Binary

Classification

1.1. Theory

We have L training points, where each input xi has D attributes (i.e. is of dimen-

sionality D) and is in one of two classes y+ i = −1 or +1, i.e our training data is of the

form:

{xi, yi} where i = 1 . . . L, yi ∈ {−1, 1}, x ∈ RD.

Here we assume the data is linearly separable, meaning that we can draw a line on a

graph of x1 vs x2 separating the two classes when D = 2 and a hyperplane on graphs of

x1, x2 . . .xD for when D > 2.

This hyperplane can be described by w · x+ b = 0 where:

• w is normal to the hyperplane.

• b
‖w‖ is the perpendicular distance from the hyperplane to the origin.

Support Vectors are the examples closest to the separating hyperplane and the aim of

Support Vector Machines (SVM) is to orientate this hyperplane in such a way as to

be as far as possible from the closest members of both classes. Referring to Figure 1.1,

implementing a SVM boils down to selecting the variables w and b so that our training
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Hình 1.1: Hyperplane through two linearly separable classes

data can be described by:

xi ·w + b ≥ +1 for yi = +1 (1.1)

xi ·w + b ≤ −1 for yi = −1. (1.2)

These equations can be combined into:

yi(xi ·w + b)− 1 ≥ 0 ∀i. (1.3)

If we now just consider the points that lie closest to the separating hyperplane, i.e. the

Support Vectors (shown in circles in the diagram), then the two planes H1 and H2 that

these points lie on can be described by:

xi ·w + b = +1 for H1 (1.4)

xi ·w + b = −1 for H2. (1.5)

Referring to Figure 1.1, we define d1 as being the distance fromH1 to the hyperplane and

d2 from H2 to it. The hyperplane’s equidistance from H1 and H2 means that d1 = d2−a
quantity known as the SVM’s margin. In order to orientate the hyperplane to be as far

from the Support Vectors as possible, we need to maximize this margin.

Simple vector geometry shows that the margin is equal to 1
‖w‖ and maximizing it

subject to the constraint in (1.3) is equivalent to finding:

min 1
‖w‖ such that yi(xi ·w + b)− 1 ≥ 0 ∀i.

Minimizing ‖w‖ is equivalent to minimizing 1
2
‖w‖2 and the use of this term makes it

possible to perform Quadratic Programming (QP) optimization later on. We therefore
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need to find:

min
1

2
‖w‖2 s.t. yi(xi ·w + b)− 1 ≥ 0 ∀i. (1.6)

In order to cater for the constraints in this minimization, we need to allocate them

Lagrange multipliers α, where αi ≥ 0 ∀i:

LP ≡
1

2
‖w‖2 − α[yi(xi ·w + b)− 1 ∀i] (1.7)

≡ 1

2
‖w‖2 −

L∑
i=1

αi[yi(xi ·w + b)− 1] (1.8)

≡ 1

2
‖w‖2 −

L∑
i=1

αiyi(xi ·w + b) +
L∑
i=1

αi. (1.9)

We wish to find the w and b which minimizes, and the α which maximizes (1.9) (whilst

keeping αi ≥ 0 ∀i). We can do this by differentiating LP with respect to w and b and

setting the derivatives to zero:

∂LP
∂w

= 0⇒ w =
L∑
i=1

αiyixi (1.10)

∂LP
∂b

= 0⇒
L∑
i=1

αiyi = 0. (1.11)

Substituting (1.10) and (1.11) into (1.9) gives a new formulation which, being dependent

on α, we need to maximize:

LD ≡
L∑
i=1

αi −
1

2

∑
i,j

αiαjyiyjxi · xj s.t. αi ≥ 0 ∀i,
L∑
i=1

αiyi = 0 (1.12)

≡
L∑
i=1

αi −
1

2

∑
i,j

αiHijαj where Hij ≡ yiyjxi · xj (1.13)

≡
L∑
i=1

αi −
1

2
αTHα s.t. αi ≥ 0 ∀i,

L∑
i=1

αiyi = 0. (1.14)

This new formulation LD is referred to as the Dual form of the Primary LP . It is worth

noting that the Dual form requires only the dot product of each input vector xi to be

calculated, this is important for the Kernel Trick described in the fourth section.

Having moved from minimizing LP to maximizing LD, we need to find:

max
α

[
L∑
i=1

αi −
1

2
αTHα

]
s.t. αi ≥ 0 ∀i and

L∑
i=1

αiyi = 0. (1.15)

This is a convex quadratic optimization problem, and we run a QP solver which will

return α and from (1.10) will give us w. What remains is to calculate b.
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Any data point satisfying (1.11) which is a Support Vector xs will have the form:

ys(xs ·w + b) = 1.

Substituting in (1.10):

ys(
∑
m∈S

αmymxm · xs + b) = 1.

Where S denotes the set of indices of the Support Vectors. S is determined by finding

the indices i where αi > 0. Multiplying through by ys and then using y2s = 1 from (1.1)

and (1.2):

y2s(
∑
m∈S

αmymxm · xs + b) = ys

b = ys −
∑
m∈S

αmymxm · xs.

Instead of using an arbitrary Support Vector xs, it is better to take an average over all

of the Support Vectors in S:

b =
1

Ns

∑
s∈S

(ys −
∑
m∈S

αmymxm · xs). (1.16)

We now have the variables w and b that define our separating hyperplane’s optimal

orientation and hence our Support Vector Machine.

1.2. Application

In order to use an SVM to solve a linearly separable, binary classification problem

we need to:

• Create H, where Hij = yiyjxi · xj.

• Find α so that
L∑
i=1

αi −
1

2
αTHα

is maximized, subject to the constraints

αi ≥ 0 ∀i and
L∑
i=1

αiyi = 0.

This is done using a QP solver.
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• Calculate w =
L∑
i=1

αiyixi.

• Determine the set of Support Vectors S by finding the indices such that αi > 0.

• Calculate b = 1
Ns

∑
s∈S

(ys −
∑
m∈S

αmymxm · xs).

• Each new point x′ is classified by evaluating y′ = sgn(w · x′ + b).



Chương 2

Binary Classification for Data that

is not Fully Linearly Separable

2.1. Theory

In order to extend the SVM methodology to handle data that is not fully linearly

separable, we relax the constraints for (1.1) and (1.2) slightly to allow for misclassified

points. This is done by introducing a positive slack variable ξi, i = 1, . . . , L:

xi ·w + b ≥ +1− ξi for yi = +1 (2.1)

xi ·w + b ≤ −1 + ξi for yi = −1 (2.2)

ξi ≥ 0 ∀i. (2.3)

Which can be combined into:

yi(xi ·w + b)− 1 + ξi ≥ 0 where ξi ≥ 0 ∀i. (2.4)

In this soft margin SVM, data points on the incorrect side of the margin boundary

have a penalty that increases with the distance from it. As we are trying to reduce the

number of misclassifications, a sensible way to adapt our objective function (1.6) from

previously, is to find:

min
1

2
‖w‖2 + C

L∑
i=1

ξi s.t. yi(xi ·w + b)− 1 + ξi ≥ 0 ∀i. (2.5)

Where the parameter C controls the trade-off between the slack variable penalty and the

size of the margin. Reformulating as a Lagrangian, which as before we need to minimize
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Hình 2.1: Hyperplane through two non-linearly separable classes

with respect to w, b and ξi and maximize with respect to α (where αi ≥ 0, µi ≥ 0 ∀i):

LP ≡
1

2
‖w‖2 + C

L∑
i=1

ξi −
L∑
i=1

αi[yi(xi ·w + b)− 1 + ξi]−
L∑
i=1

µiξi. (2.6)

Differentiating with respect to w, b and ξi and setting the derivatives to zero:

∂LP
∂w

= 0⇒ w =
L∑
i=1

αiyixi (2.7)

∂LP
∂b

= 0⇒
L∑
i=1

αiyi = 0 (2.8)

∂LP
∂ξi

= 0⇒ C = αi + µi. (2.9)

Substituting these in, LD has the same form as (1.14) before. However (2.9) together

with µi ≥ 0 ∀i, implies that α ≥ C. We therefore need to find:

max
α

[
L∑
i=1

αi −
1

2
αTHα

]
s.t. 0 ≤ αi ≤ C ∀i and

L∑
i=1

αiyi = 0 (2.10)

b is then calculated in the same way as in (1.6) before, though in this in stance the

set of Support Vectors used to calculate b is determined by finding the indices i where

0 < αi < C.

2.1.1. Application

In order to use an SVM to solve a binary classification for data that is not fully

linearly separable we need to:
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• Create H, where Hij = yiyjxi · xj.

• Choose how significantly misclassifications should be treated, by selecting a suit-

able value for the parameter C.

• Find α so that
L∑
i=1

αi −
1

2
αTHα

is maximized, subject to the constraints

0 ≤ αi ≤ C and
L∑
i=1

αiyi = 0.

This is done using a QP solver.

• Calculate w =
L∑
i=1

αiyixi.

• Determine the set of Support Vectors S by finding the indices such that 0 < αi <

C.

• Calculate b = 1
Ns

∑
s∈S

(ys −
∑
m∈S

αmymxm · xs).

• Each new point x′ is classified by evaluating y′ = sgn(w · x′ + b).



Chương 3

Support Vector Machines for

Regression

3.1. Theory

Instead of attempting to classify new unseen variables x′ into one of two categories

y′ = ±1, we now wish to predict a real-valued output for y′ so that our training data is

of the form:

{xi, yi} where i = 1 . . . L, yi ∈ R, x ∈ RD

yi = w · xi + b. (3.1)

The regression SVM will use a more sophisticated penalty function than before, not

Hình 3.1: Regression with ε-insensitive tube
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allocating a penalty if the predicted value yi is less than a distance ε away from the

actual value ti, i.e. if |ti − yi| < ε. Referring to Figure 3.1, the region bound by yi ± ε
∀i is called an ε-insensitive tube. The other modification to the penalty function is that

output variables which are outside the tube are given one of two slack variable penalties

depending on whether they lie above (ξ+) or below (ξ−) the tube (where ξ+ > 0, ξ− > 0

∀i):

ti ≤ yi + ε+ ξ+ (3.2)

ti ≥ yi − ε− ξ− (3.3)

The error function for SVM regression can then be written as:

C
L∑
i=1

(ξ+i + ξ−i ) +
1

2
‖w‖2. (3.4)

This needs to be minimized subject to the constraints ξ+ > 0, ξ− > 0 ∀i and (3.2) and

(3.3). In order to do this we introduce Lagrange multipliers

α+
i ≥ 0, α−i ≥ 0, µ+

i ≥ 0, µ−i ≥ 0 ∀i :

Lp = C
L∑
i=1

(ξ+i + ξ−i ) +
1

2
‖w‖2 −

L∑
i=1

(µ+
i ξ

+
i + µ−i ξ

−
i )−

L∑
i=1

α+
i (ε+ ξ+i + yi − ti)

−
L∑
i=1

α−i (ε+ ξ−i − yi + ti). (3.5)

Substituting for yi, differentiating with respect to w, b, ξ+ and ξ− and setting the

derivatives to 0:

∂Lp
∂w

= 0⇒ w =
L∑
i=1

(α+
i − α−i )xi (3.6)

∂LP
∂b

= 0⇒
L∑
i=1

(α+
i − α−i ) = 0 (3.7)

∂LP
∂ξ+i

= 0⇒ C = α+
i + µ+

i (3.8)

∂LP
∂ξ−i

= 0⇒ C = α−i + µ−i . (3.9)

Substituting (3.6) and (3.7) in, we now need to maximize LD with respect to α+
i and

α−i (α+
i ≥ 0, α−i ≥ 0 ∀i) where:

LD =
L∑
i=1

(α+
i − α−i )ti − ε

L∑
i=1

(α+
i − α−i )−

1

2

∑
i,j

(α+
i − α−i )(α+

j − α−j )xi · xj. (3.10)
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Using µ+
i ≥ 0 and µ−i ≥ 0 together with (3.8) and (3.9) means that α+

i ≤ C and α−i ≤ C.

We therefore need to find:

max
α+,α−

[
L∑
i=1

(α+
i − α−i )ti − ε

L∑
i=1

(α+
i − α−i )−

1

2

∑
i,j

(α+
i − α−i )(α+

j − α−j )xi · xj

]
(3.11)

such that 0 ≤ α+
i ≤ C, 0 ≤ α−i ≤ C and

L∑
i=1

(α+
i − α−i ) = 0 ∀i.

Substituting (3.6) into (3.1), new predictions y′ can be found using:

y =
L∑
i=1

(α+
i − α−i )xi · x′ + b. (3.12)

A set S of Support Vectors xs can be created by finding the indices i where 0 < α < C

and ξ+i = 0 (or ξ−i = 0).

This gives us:

b = ts − ε−
L∑

m∈=S

(α+
m − α−m)xm · xs. (3.13)

As before it is better to average over all the indices i in S:

b =
1

Ns

∑
s∈S

[
ts − ε−

L∑
m∈=S

(α+
m − α−m)xm · xs

]
. (3.14)

3.2. Application

In order to use an SVM to solve a regression problem we need to:

• Choose how significantly misclassifications should be treated and how large the

insensitive loss region should be, by selecting suitable values for the parameters C

and ε.

• Find α+ and α− so that:

L∑
i=1

(α+
i − α−i )ti − ε

L∑
i=1

(α+
i − α−i )−

1

2

∑
i,j

(α+
i − α−i )(α+

j − α−j )xi · xj

is maximized, subject to the constraints

0 ≤ α+
i ≤ C, 0 ≤ αci ≤ C and

L∑
i=1

(α+
i − α−i ) = 0 ∀i.
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0 ≤ α+
i ≤ C

• Calculate w =
L∑
i=1

(α+
i − α−i )xi.

• Determine the set of Support Vectors S by finding the indices i where 0 < α < C

and ξi = 0.

• Calculate

b =
1

Ns

∑
s∈S

[
ti − ε−

L∑
m=1

(α+
i − α−i )xi · xm

]
.

• Each new point x′ is determined by evaluating

y′ =
L∑
i=1

(α+
i − α−i )xi · x′ + b.



Chương 4

Nonlinear Support Vector Machines

4.1. Theory

When applying our SVM to linearly separable data we have started by creating a

matrix H from the dot product of our input variables:

Hij = yiyjk(xj,xj) = xi · xj = xTi xj (4.1)

k(xi,xj) is an example of a family of functions called Kernel Functions (k(xi,xj) = xTi xj

being known as a Linear Kernel). The set of kernel functions is composed of variants

of (4.2) in that they are all based on calculating inner products of two vectors. This

means that if the functions can be recast into a higher dimensionality space by some

potentially non-linear feature mapping function x 7−→ φ(x), only inner products of the

mapped inputs in the feature space need be determined without us needing to explicitly

calculate φ.

The reason that this Kernel Trick is useful is that there are many classification/regression

problems that are not linearly separable/regressable in the space of the inputs x, which

might be in a higher dimensionality feature space given a suitable mapping x 7−→ φ(x).

Refering to Figure 4.1, if we define our kernel to be:

k(xi,xj) = e
−
(
‖xi−xj‖

2

2σ2

)
(4.2)

then a data set that is not linearly separable in the two dimensional data space x (as

in the left hand side of Figure 4.1) is separable in the nonlinear feature space (right

hand side of Figure 4.1) defined implicitly by this nonlinear kernel function - known as

a Radial Basis Kernel.

15
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Hình 4.1: Dichotomous data re-mapped using Radial Basis Kernel

Other popular kernels for classification and regression are the Polynomial Kernel

k(xi,xj) = (xi · xj + a)b

and the Sigmoidal Kernel

k(xi,xj) = tanh(axi · xj)− b

where a and b are parameters defining the kernel’s behaviour.

There are many kernel functions, including ones that act upon sets, strings and even

music. There are requirements for a function to be applicable as a kernel function that

lie beyond the scope of this very brief introduction to the area. The author therefore

recomends sticking with the three mentioned above to start with.

4.2. Application

In order to use an SVM to solve a classification or regression problem on data that

is not linearly separable, we need to first choose a kernel and relevant parameters which

you expect might map the non-linearly separable data into a feature space where it is

linearly separable. This is more of an art than an exact science and can be achieved

empirically - e.g. by trial and error. Sensible kernels to start with are the Radial Basis,

Polynomial and Sigmoidal kernels.

The first step, therefore, consists of choosing our kernel and hence the mapping

x 7−→ φ(x).
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For classification, we would then need to:

• Create H, where Hij = yiyjφ(xi) · φ(xj).

• Choose how significantly misclassifications should be treated, by selecting a suit-

able value for the parameter C.

• Find α so that
L∑
i=1

αi −
1

2
αTHα

is maximized, subject to the constraints

0 ≤ αi ≤ C ∀i and
L∑
i=1

αiyi = 0.

This is done using a QP solver.

• Calculate w =
L∑
i=1

αiyiφ(xi).

• Determine the set of Support Vectors S by finding the indices such that 0 < αi <

C.

• Each new point x′ is classified by evaluating y′ = sgn(w · φ(x′) + b).

For regression, we would then need to

• Choose how significantly misclassifications should be treated and how large the

insensitive loss region should be, by selecting suitable values for the parameters C

and ε.

• Find α+ and α− so that:

L∑
i=1

(α+
i − α−i )ti − ε

L∑
i=1

(α+
i − α−i )−

1

2

∑
i,j

(α+
i − α−i )(α+

j − α−j )φ(xi) · φ(xj)

is maximized, subject to the constraints

0 ≤ α+
i ≤ C, 0 ≤ α−i ≤ C and

L∑
i=1

(α+
i − α−i ) = 0 ∀i.

This is done using a QP solver.
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• Calculate w =
L∑
i=1

(α+
i − α−i )φ(xi).

• Determine the set of Support Vectors S by finding the indices i where 0 < α < C

and ξi = 0.

• Calculate

b =
1

Ns

∑
s∈S

[
ti − ε−

L∑
m=1

(α+
i − α−i )φ(xi) · φ(xm)

]
.

• Each new point x′ is determined by evaluating

y =
L∑
i=1

(α+
i − α−i )φ(xi) · φ(x′) + b.
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