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Fundamentals of Hermitian and
Kahlerian Geometry

1. Almost Complex Structure

Let V be a vector space over the field R of real numbers. Assume that
V admits a linear map J : V — V satisfying J? = Jo J = —I (where T
represents the identity map). It is an exercise to show that dim V' must be
even in order for such a .J to exist.

Such a J is called an almost complex structure on V' and the vector
space V equipped with J is called an almost complex vector space.

Now, consider! the complexification VC.=C®V. The complex vector

space VCis of complex dimension 2m. J extends to a complex linear map,
with J2 = —1.

The linear map .J has only 2 eigenvalues . Consider the respective
eigenspaces:

Vi={ve Ve | Ju=idv} and V":={ve Ve | Jv = —iv}.

Obviously, V' @ V" = VT, and dimg V' = m = dime V”. It is easy to

verify that

Vi={u—iJu|lueV} and V'={u+iJu|ueV}

2. Tangent Space and Bundle

Let M be a complex manifold of dimension m. Then it is also a smooth
manifold. Let p € M and let T, M be its tangent space, which is a vector
space of dimension 2m. Let TM denote the tangent bundle given by TM =
Upenr TpM, as usual in the manifold theory.



Since M is a complex manifold, it comes with the natural almost com-
plex structure J, which we are going to describe now. We shall do it in
terms of coordinates. Take a coordinate system (zy,...,2z,) : U — C™
from a coordinate neighborhood U about p € M. Write z, = ) + iy for
each k. Notice that the vectors

o) o 0| 0
61’1 P: ayl P: B 61’m Pj 6?;"-;,11
span the real tangent space T, M. Define J, : T,M — T,M by

d 15, 0 0
i (3mh,) = 2 (7)) =3,

for each k = 1,2,...,m and extend it linearly over R. Then p € M Jp €
(T,M)* @ T,M is a smooth map. Hence this correspondence shows that .J
is a smooth section of the bundle T*M & T M. This is an almost complex
structure of M.

p

Now, we shall complexify T, M, and consequently T'M. We do this by
extending coefficients. Namely, we let

Cr,M =Ce®T,M and CTM:=CeTM.

In local coordinates, the complexification simply means allowing complex
values for coefficients for the real tangent vectors and tangent vector fields.

Extend J to the complex tangent spaces and bundles (C-]inearly, fol-
lowing the formalism introduced above. Then consider the respective
eigenspaces of J,. They are

T,M={u—iJu|lueT,M} and T/M ={u+iJu|ueT,M}.

Traditional notation in local complex coordinates is worth mentioning at
this juncture. They appear quite naturally now:

0 _1(0 L (9\\_1(o o
Oz 2 \ Oz Oxy, -2 \ Oz Yk

and



32;,;_2 ai’k ﬁyk ’

where the factor % is introduced for reasons one will soon see.

Notice that the Cauchy-Riemann equations for a mapping f: M — N
between two complex manifolds M and N are equivalent to the equation
Jy odf = df o Jys, where Jy,,.Jy are the almost complex structures con-
structed for M, N respectively.

One sees also that there is a natural R-linear isomorphism (identifica-
tion) between T, M and T, M defined by

vE TI;M' — ReveT,M.

Notice, however, that TJ;JM is a complex vector space of complex dimension
m, whereas T, M is a real 2m dimensional space with no prescribed complex
vector space structure.

Altogether, we have introduced four tangent spaces T, M, @Tpﬂ«f , TI;J'LI
and T; M. They appear naturally for a complex manifold M, and of course
they give rise to respective bundles.

3. Cotangent Space and Bundle

For the cotangent spaces and bundles, we shall simply build upon what
we developed with the tangent spaces and bundles. The set of all C-linear
functionals on CT,M will be the space we work in. With the basis

0 d d d

0z, 0z, 0z, 0z,

we shall take its dual basis. One can quickly check that the dual basis
consist of complex co-vectors at p given by

dzy = dzy + idyy, dzy = dzj — idyy,

for k =1,...,m. (This is the reason for %

we customarily want dz;(d/0z;) = 1 and so forth.) Likewise one sees that

in the previous section because



T,°M := (T, M)* is the vector space over C generated by dz1|p, . .., dzm|p,
and that T)"' M := (T)'M)* by dz1lp, ..., dZm],.

It may be a good practice for the sake of symbolic calculus, to verify
the notational reasonability such as

af = af
dfzza_% %j +Z«‘izjdzj

j=1

for any smooth function f : M — C. Likewise one may define and develop
the concept of complex differential forms of bi-degree (p, ¢) and their tensor
products. However we shall not provide any further details.

4. Connection and Curvature
We now introduce the connections and curvatures briefly.

4.1. Riemannian connection and curvature
Let X (M) denote the set of smooth vector fields on M.

Definition 4.1. A linear connection on the tangent bundle T'M over the
manifold M is a map V : X(M) x X(M) — X(M) : (X,Y) — VxY
satisfying:

(1) Vaxi+£5Y = iV, Y + foVx,Y for any fi, fo € C*°(M) and
any X1, X, Y € X(M).

(2) Vx(aYy + bYs) = aVxY) + bVxYs for any a,b € R and any
X, Y1,Y, € X(M).

(3) Vx(fY)= fVxY + (Xf)Y, for any f € C>°(M) and any X,Y €
X(M).

Linear connections are also called affine connections. For a differentiable
manifold, there are infinitely many such connections. On the other hand,
each such connection provides a method of differentiating a smooth vector
field by another. Thus the linear connection is in fact a “differentiation”.



Of course it is natural to look for a connection that can explain the
particular geometry one aims to study. In our case that is the complex
geometry, which concerns quantities such as the (almost) complex structure
J and the Hermitian metric just introduced.

If we discount the complex structure concentrate on the metric struc-
ture (and consequently our manifold is just Riemannian), the natural and
well-known connection is the Levi-Civita connection (i.e., the Riemannian

covariant differentiation). Since the (real) Hermitian metric is Riemannian,
we shall start with the Levi-Civita connection.

Definition 4.2. Let (M, h) be a Riemannian manifold. (The Hermitian
metric h is also a real Riemannian metric.) Then the Levi-Civita connection
on (M,h) is a linear connection V satisfying the following two additional
conditions:

(4) 7(X,)Y):=VxY - VyX - [X,Y] =0
(5) (VR)(X,Y, Z) :== X (h(Y,Z)) = h(VxY,Z) = h(Y,VxZ) = 0,

where the notation [X,Y] stands for the Lie bracket of two vector fields
X,Y.

It is well-known that the Levi-Civita connection exists and is unique (cf.
[Greene 1987], [Kobayashi and Nomizu 1969], e.g.). The quantity 7 is called
the torsion tensor, and thus the (4) is called the torsion-free condition. (5)
is commonly referred to as the condition that the metric is parallel. Of
course this Levi-Civita connection is the key concept toward Riemannian
geometry. It determines the geodesics, parallelism and the curvature.

4.2. Riemann curvature tensor and sectional curvature

Now we are ready to introduce the Riemannian curvature(s). In case the
manifold is real two dimensional, the curvature is a function. However
in higher dimensional case, the curvature is a multi-linear form on vector
fields.



Let (M, J,h,V) be a complex manifold with a Hermitian metric h and
its Levi-Civita connection V. We start with the (Riemannian) sectional
curvature. Let X,Y, Z, W € X(M). Then we define the following notation:

R(X,Y)Z =VxVyZ - VyVxZ - VixyZ

R(X.Y,Z,W) = h(R(X.Y)Z,W).

Note that the last is a real-valued function, 4-linear on C*°(M). It is “point-
wise” meaning that the value R(X,Y, Z, W)|p of RIX,)Y,ZW)atpe M
depends only on the point-values at p of the vector fields X,Y, Z and W.

Since this full curvature tensor is hard to use in general, one often
considers the concept called the Riemannian sectional curvature. To define

this, consider X,Y € X(M) that are linearly independent at p € M over
IR. Then the value
R(X,Y, X,Y)
[XAY[Z

Ky(X.Y) =

is the sectional curvature at p along the 2-dimensional plane in 7, M gen-
erated by X, and Y, where | X AY||? = h(X, X)h(Y,Y) — h(X,Y)? Tt is
not hard to check that this value of the sectional curvature depends only
on the 2-dimensional plane (i.e., section) spanned by X, and Y, but not
on the choice of the basis vectors X, and Y,. In case the manifold is a
real 2-dimensional surface in R?® equipped with the induced metric, that is
its first fundamental form, then this sectional curvature coincides with the
Gauss curvature.

4.3. Holomorphic sectional curvature

Now we re-instate the complex structure J back into consideration. Thus
our manifold is now Hermitian. At this stage we have to re-consider our
choice for the connection. Namely we have to consider which properties we
would like to have for our linear connection to satisfy. Decision must be
made among the following three properties:



(P1) (VR)(X,Y.Z) := X(h(Y, Z)) - h(VXY,Z) = h(Y,VxZ) = 0.
(P2) Torsion-free, i.e., 7(X,Y) :=VxY - Vy X — [X,Y] = 0.
(P3) (VI)(X,Y) :=Vx(J(Y)) - J(VxY)=0.

It is known that all three can be satisfied only if the metric h is special.
Such a metric is called Kdhlerian (or simply Kdhler). Several necessary and
sufficient conditions for the metric to be Kéahler are known as follows:

Proposition 4.1. For a complex manifold M with the complex Hermitian

metric h’', consider a complex local coordinate system (z1,...,z,), and let
o 0

h’;E = h’(a—zj,a—zj) and w = » h;zdz; A dzx. Then the following are

equivalent:

(i) h (or, equivalently, its complex form h') is Kahler, i.e., the Levi-
Civita connection V with respect to the metric h satisfies V.J = 0.
(ii) dw = 0.
. . , 0%¢
(iii) There exists a smooth function ¢ such that h'; = ———.
J 8ZJ‘8Z;C
Many well-known metrics are Kéahler: the Poincaré metric on the disc
and the Bergman metric of bounded domains in C™ are good examples.

On the other hand, general Hermitian metrics are not Kahler. In such a
case what connection should be taken? It is generally agreed that condition
(P3) VJ = 0 should be taken, but the “torsion-free” condition (P2) is
dropped, allowing the torsion tensor 7 in (P2) to be non-zero.

Regardless, when the manifold is Hermitian, one can make sense of
“holomorphic sections”—those 2-dimensional plane in 7, M spanned by X,
and JX,, for some non-zero X, € T, M and the (Riemann) sectional curva-
ture along this plane. Of course two vectors are linearly independent over
R as we see from h,(X,, JX,) = 0. Thus the holomorphic sectional curva-
ture in the direction of X at p is defined to be K,(X, JX). (In Kéhlerian
case, the holomorphic sectional curvature is indeed the Riemann sectional
curvature for a holomorphic section.)



Many well-known metrics are Kéahler: the Poincaré metric on the disc
and the Bergman metric of bounded domains in C" are good examples.

On the other hand, general Hermitian metrics are not Kédhler. In such a
case what connection should be taken? It is generally agreed that condition
(P3) VJ = 0 should be taken, but the “torsion-free” condition (P2) is
dropped, allowing the torsion tensor T in (P2) to be non-zero.

Regardless, when the manifold is Hermitian, one can make sense of
“holomorphic sections”—those 2-dimensional plane in T, M spanned by X,
and JX, for some non-zero X,, € T,,M and the (Riemann) sectional curva-
ture along this plane. Of course two vectors are linearly independent over
R as we see from h,(X,,, JX,) = 0. Thus the holomorphic sectional curva-
ture in the direction of X at p is defined to be K, (X, JX). (In K&hlerian
case, the holomorphic sectional curvature is indeed the Riemann sectional
curvature for a holomorphic section.)

5. Connection and Curvature in Moving Frames
5.1. Hermitian metric, frame and coframe

Even though we deal mostly with K&hlerian case (where the torsion tensor
7 vanishes), it is going to be useful for the future developments to introduce
the general Hermitian case.

Let T"M represent the holomorphic tangent bundle. Given an Hermi-
tian metric, it is possible to choose a smoothly varying orthonormal basis
(usually called a unitary frame)

€1y---5€m
in a local coordinate neighborhood. This can be done, for example, by
applying the Hermitian Gram-Schmidt process to the coordinate frame

—, -+ ,——. (Note that the unitary frame therefore is smooth, but not
621 azm

consisting of holomorphic vector fields in general.)

Then consider its dual, that is the (holomorphic) cotangent bundle
T1OM, whose sections are called the (smooth) (1,0)-forms. Take the basis
for sections of T4 M dual to the frame chosen above and denote it by



Or,. 0,

This particular basis is called a unitary coframe.
Then the Hermitian metric can be written by

d82 = i 9-@ ® g_.g.
i=1

5.2. Hermitian connection

We now introduce the connection we shall use, continuing the discussion of
the preceding section (with the same notation). We feel however that this
part of exposition can be quite terse—thus we give an example here which
illustrates how a connection can be interpreted in terms of a certain matrix
of 1-forms. The reader may skip this example if they are familiar with such
matters.

Example 4.1. Let (M,g) be a Riemannian manifold and let V be the
Levi-Civita connection. Take a local coordinate neighborhood and a local
coordinate system xz,...,2,,. Let

. 0
7 8£Ej '
for j = 1,...,m. Then it is customary to write

_ Z k
k

The functions Ffj are the (2nd) Christoffel symbols. The Leibniz rule which
the connection V satisfies is

Ve, (Yej) =e;(¥) -e; + 1 - erjek-
k

Now, considering the meaning of the differential forms and the sections of

bundles involved, one can now makes sense of the expression:
V:I'(TM) —-T(TM ®T*M)

given by



T .

V(X we) =3 (@) oe; £ vk, @e).

The relation between the connection form (a matrix, in fact, of 1-forms)
and the Levi-Civita connection V should be visible from this, at least. (Of
course this does not explain fully how all the other properties (such as tor-
sion (free) condition, metric compatibitity etc.) of connection matrix and
related concepts (such as curvature and others) are developed and com-
puted. For further information, cf., e.g., [Chern 1979] and [Chern 1968]).

We return to the Hermitian case and choose a suitable connection form
on the m-dimensional Hermitian manifold M. Cartan’s method says® that
the connection matrix can be chosen from the following equation

m
df; = ZGJ /\Gji + Ti.
j=1
Notice that neither #;; nor 7; are determined through this identity. Hence
there are (infinitely) many choices for the connection form 6;; and the tor-
sion form 7;. Rather, one needs to put extra assumptions in order to select
the suitable connection matrix (as well as the torsion). A good example,
which we use is the canonical Hermitian connection (i.e., the Chern con-
nection), which is the choice of €;; satisfying the conditions:

61'3; + g =0
and
1 m
T = 5 Z Tajkgj A ak.
i.k=1

Note that this last requires that the torsion is of type (2,0) only. (No (1,1)
part exists. And, of course, the whole 7 vanishes in the Kéhler case.)



5.3. Curvature

The curvature form is defined to be

@ij = dgij — Z Oir. A gkj-
k=1

One may check that the identity ©;; = —©;; holds for the curvature form.
Also,

@gj = Z Rijkﬂgk AQ_E-
k,f=1

o =

Namely, the curvature form ©;; are of type (1,1). Notice that the skew-
Hermitian symmetry for the curvature form above is equivalent to

Rijre = Rjiex.

In this notation, the holomorphic sectional curvature, the bisectional
curvature and the Ricci curvature are easy to define. They are, respectively,

e The holomorphic sectional curvature in the direction of vector field
M=) ey Nkek i
> i ke=1 Fijkenifnicie
m N :
(22321 M)
e The (holomorphic) bisectional curvature determined by & =
> e Sker and p =3 7 nrey is
2o ko1 Rijre&a€miiie
(>, fz‘&) (> im 1 miThi)

e The Ricci tensor is given by

s
R;; = E Rijkk,
k=1



and

Ric(§,n) = Z R;;&:7);.

ij=1

5.4. The Hessian and Laplacian

For a smooth function v : M — IR on the Riemannian manifold M, the
Hessian of u is the second covariant derivative that is defined® to be, in the
Riemannian covariant derivative notation,

Hess(u)(X,Y) = V*u(X,Y) := X(Yu) — (VxY)u

for every X, Y € X(M). The Laplacian Au of u is defined as the trace of
Hess(u).

For Hermitian manifold M of real dimension 2m, let e;,...,eq,, be a
real-orthonormal basis of T,M. Then

2m
Au(p) = Z Hess
i=1

p(u)(ei.,e!-).

For the same Hermitian manifold M, the complex Laplacian of u, is defined
using moving frame approach as follows: one writes

du = i ’U,z'gz' + i ﬁigi-
i=1 i=1

Taking one more exterior derivative (with connection forms) one can define
%—: uij by
du; — Z Ujgij = Z u;jf?j + uz-jfjj.
J J
Define the complex Laplacian of u by

AC u = E Ui
i

Remark 4.2. It is important to realize that the Laplacian of a function is
the trace of its second covariant differentiation. Notice therefore that the
Laplacian A. above relies upon the canonical Hermitian connection V.



