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CHAPTER 1. ABSTRACT

We exhibit two applications of Schwarz lemmas in several complex vari-
ables. The first application extends Fornass and Stout’s theorem on mono-
tone unions of balls to monotone unions of ellipsoids. The second applica-
tion extends Yang’s theorem on bidiscs to the generalized bidisc defined
by the author in his previous work. These applications reveal a connection
between the geometry of domains and their curvatures. The proof contains
a careful study of biholomorphisms, a detailed analysis on convergences,
and a modified argument of Yang.
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CHAPTER 2. INTRODUCTION

The most striking and influential result in complex analysis of one variable is the
Riemann mapping theorem. It asserts that all proper simply connected open subsets in C
are biholomorphic onto the unit disc. Thus, it was hoped that a similar theorem could be

proved in C" for higher dimensions n > 1. In 1960, Poincaré showed the bidisc D2 =

{(z,w):|z| <1 and [w| < 1} is not biholomorphic to the ball B2 ={(z,w):[z|2 +|w]> <11.
This negated the expectation and motivated a new study on biholomorphism in several
complex variables.

On the other hand, Fornass and Stout [1977] showed that a Kobayashi hyperbolic
manifold M is biholomorphic onto the unit ball B, provided that M admits a

monotone union of B”. Theirtheorem gives a version of the Riemann mapping theorem
in high dimensions under some circumstances. In this paper, we follow this fashion and
exhibit a theorem about monotone unions of ellipsoids

E,={(z,w)eC®: |z\2 + a)|2n < 1}. More precisely, we obtain the following theorem.
Theorem 1. Let M be a two-dimensional Hermitian manifold with a real bisec-

tional curvature bounded from above by a negative -K, and assume M is a monotone
union of ellipsoids E, for some n €Z*. Then M is either biholomorphic onto E, or

onto the unit ball B2.

This theorem generalizes Fornass and Stout’s theorem on monotone unions of balls to
monotone unions of ellipsoids in dimension 2. Weremark that Fornaess

and Stout’s original proof is hard to be adapted into our theorem. Among other
difficulties, the situation that biholomorphisms converge to a constant map is hard to be
excluded. This difficulty is easy to be resolved in Fornass and Stout’s theorem because of
symmetries of balls. However, the shape of ellipsoids is more irregular than balls. Hence,
in order to resolve this difficulty we make local estimates around accumulation points and
use the estimates to reconstruct biholomorphisms. This new technique is exhibited in
Section 2.

The readers are reminded that this theorem does not belong to a classical topic on
automorphism groups. For the classical topics on automorphism groups, readers are referred
to [Bedford and Pinchuk 1991; 1998; Greene and Krantz 1991; 1993;

Wong 1977].

The other application of Schwarz lemmas in this article is about curvature bounds. In the
1970s, Yang [1976] showed that on polydiscs, there do not exist complete Kéhler metrics
with bounded holomorphic bisectional curvatures. Yang’s discovery was recently
generalized to product manifolds by Seshadri and Zheng [2008] and Seo [2012]. On the
other hand, the author introduced a new type of domains called the generalized bidiscs in
[Liu 2017]. It is known that some generalized bidiscs are biholomorphic to bounded
domains in C2. The generalized bidiscs are defined to be D x H™ = {(z,w) : zeD and
wee®H* . Here D denotes the unit disc, H" denotes the upper half plane, 8 denotes a
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continuous real function depending onz, and ¢““ H* denotes the upper half plane rotated by

the angle @ (z). The generalized bidiscs are, in general, not product manifolds. However,
in this paper, we show they share similar geometric properties with bidiscs. That is, some
generalized bidiscs do not admit complete Kéhler metrics with bounded negative
holomorphic bisectional curvatures. More precisely, we show:

Theorem 2. Letk €(0,7) and 6(z)€[0,k) forall z € D. Then there do not exist two

numbers d > ¢ > 0 and a complete Kdihler metric on Dx H" such that the
holomorphic bisectional curvature is between —d and —c.

These results about curvature bounds are discussed in Section 3.
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CHAPTER 3. PRELIMINARY AND FUNDAMENTAL FACT

LetneZ". Itis classical to define ellipsoids £, —c C* by
=l(zw): 2+ <1}
Let M be amanifold with dimension m. In this paper, we say M is amonotone union
of ellipsoids E, via f; if
(1) there exists a sequence of open subsets M; — M so that M; = M;4;,

(2) each M; is biholomorphic, by f, onto the ellipsoids E,, and
() M= [Jm,

Remark 1.1. We sometimes omit “via f;”” and only say “M is a monotone union of
ellipsoids E,”.

Remark 1.2. Similarly, one can define a monotone union of  for an arbitrary domain

We also recall some terminologies on Kdhler manifolds. Let (M, J, h)be a Kéhler
manifold M of dimension m withaKéhlermetric #and acomplex structure J. The curvature
tensor R on (M, J, h) is givenby

a2 _ m _w _ -
P B WL,
T 0m0n 2 e 9z

in local coordinates (z1, ..., z,). The holomorphic bisectional curvature for X €
T,M at p € M is given by

Skt RiaXi X YiY

B(X,Y)=— — —,
(Eﬁf:] hifoXf)(Z?.?j=l hijin)
where
Xz;XjB_zj+§Xj8_Zj’ Yz;dez}+X=:Yf8zJ

We are going to remind readers with backgrounds on Schwarz lemmas and almost
maximal principles.



Theorem 1.3 (the Schwarz lemma of [ Yau 1978]). Let f : M — N be a holomorphic
mapping from a complete Kéhler manifold (M, g) with its Ricci curvature bounded
from below by a negative constant —k into a Hermitian manifold (N, h) with its

holomorphic bisectional curvature bounded from above by a negative constant —K.
Then

k
ffh < Eg

Theorem 1.4 (the almost maximal principles of [Yau 1978]; see also [Kim and
Lee 2011]). Let M be a complete Riemannian manifold M with the Ricci curvature
bounded from below. Then for any C* smooth function f : M — R that is bounded
from above, there exists a sequence {py} such that

lim |VT (pr)| =0, limsup AT (pi) <0, lim T(py) =supT.
k—00 k—00 k—o0 M
Recently Yang and Zheng [2016] defined a new notion of curvatures on Hermitian
manifolds called real bisectional curvature. We will briefly give the definition and
discuss a version of Schwarz lemma in terms of real bisectional curvature as follows.

Definition 1.5 [Yang and Zheng 2016]. Let (M", g) be a Hermitian manifold,
and denote by R the curvature tensor of the Chern connection. We say the real
bisectional curvature of M is bounded from above by a constant C if

Y Rinibijku < C (),

ikl

for all nontrivial, nonnegative, Hermitian n x n matrices &.

Observe Theorem 4.5 in [Yang and Zheng 2016], and use the identity Av =2[]v
for Kihler manifolds (here A is the regular Laplacian, [ is the complex Laplacian,
and v is an arbitrary smooth function). One can easily obtain the following Schwarz
lemma as a corollary of Theorem 4.5 in [Yang and Zheng 2016].

Theorem 1.6 (the Schwarz lemma of [Yang and Zheng 2016]). Let f : M — N
be a holomorphic mapping from a complete Kdhler manifold (M, g) with its Ricci
curvature bounded from below by a negative constant —k into a Hermitian manifold
(N, h) with its real bisectional curvature bounded from above by a negative constant
—K. If v is the maximal rank of the map f, then

*h<k_u‘
f =¥



CHAPTER 4. MONOTONE UNIONS OF ELLIPSOIDS

We discuss monotone unions of ellipsoids E, := {(z, w) : |z]* + |w|*" < 1} in C?
in this section.

Let M be an m-dimensional complex manifold which is a monotone union of €2
via f;. Take an arbitrary point ¢ € M, and let j — o0; then { f; (q)}j’i] has a limit
point, possibly after passing to a subsequence, because of the boundedness of €2.
Then the location of limit point of { f; (q)}oc has two possibilities. The limit point
of { f; (q)} ° | can be either an interior point of €2 or a boundary point at 9<2.

The followmg lemma settles the case that the limit of f;(g) is an interior point
of 2. From now on, we will not distinguish between the convergence of sequences
and the convergence after passing to subsequences.

Lemma 2.1. Let M be a m-dimensional Hermitian manifold with a real bisectional
curvature bounded from above by a negative number —K. Assume M is a monotone
union of Q@ C C" via f; where Q is a bounded domain in C™ with a complete Kihler
metric of which the Ricci curvature is bounded from below by a negative number —k.
We also assume there exists an interior point g € M so that f;(q) — p € 2. Then
M is biholomorphic onto S2.

Proof. Since 2 is bounded, f; is a normal family of biho]omorphisms. Let f;
converge to a holomorphic map F. Considering the inverses { f }Jr 1> We want

to show they are locally bounded in a small geodesic ball B, centered p € Q2 with
radius € > 0. Let dj; be the Hermitian metric of M and dq be the Kihler metric
of 2. Indeed, by Theorem 1.6,

(f;)*du < Cdg

for each j > 0, where C =km /K. Let N > 0 be so that f;(q) € B, forall j > N.
Considering arbitrarily w € B, we have

(1) du(q, [ (w)) < Cda(fj(q), w) < 2Ce,

for j > N. This means f - is locally bounded (hence a normal sequence) in B),.
We denote the limit of { f } . by G. One can see that F o G(w) = w in B
because { f j}o‘:’ L 18 unlformly convergent on compact subsets of M and { f
is uniformly convergent on compact subsets of B),.

More generally, { f }°° | 18 locally bounded on £2. Indeed we consider two
interior points w’, w” € M and use Theorem 1.6 for f; agam

Jr =1

2) du(f; @), f7 ")) < Cdo(w', w").



From this, we can see that f; o G is well defined everywhere in 2. Hence, F o G is
well defined on 2. Since F o G(w) = w for w € B, and F o G is a holomorphic
map, by the identity theorem, we obtain that F o G(w) = w for all w € Q2. This
implies F' is surjective.

Since fj(gq) — p € Q as j — oo, it follows that det J f;(g) # 0 by Cartan’s
theorem. We claim the limit of (det Jf;)(z) is nowhere vanishing for arbitrary
z € M, where J denotes the Jacobian. The reason is as follows. By the Cauchy
estimates, the fact that { f J,-};.’Ozl is normal implies that {det J f ,-}j.":’:l is also normal.
But {det J f f}?il is nowhere zero for each j > 0 because f; is a biholomorphism
and then by Hurwitz’s theorem, det J F' is a zero function or nowhere zero. And the
claim follows by the fact that det J f(¢) /> 0. Now det Jf;(z) /> O forall z € M,
and hence, det J F(z) 1s nonzero everywhere. This also implies F (M) is open by
the open mapping theorem.

We are going to show F is 1-1. For this, we consider two interior points 7', z” € M
and use Theorem 1.6 for f j_l for each j > 0 again:

3) du(Z',7") < Cda(f;(2), fj@"))-

Since det J f(z) does not approach zero for all z € M, f(z) does not approach the
boundary d<2 for fixed z € M. In particular, f;(z’) and f;(z”) do not approach the
boundary 92 where the Kéhler metric dg blows up. From this, F(z') = F(Z”) im-
plies do(f; ('), fj(z")) — 0. By (3), we obtain that z’ =z". Consequently, F is 1-1.

Hence, M is biholomorphic onto €2 via bijective F. [

By a similar argument, we can verify the following corollary. Instead of looking
at only the exhaustive subsets of M in the previous lemma, the following corollary
considers both exhaustive subsets of M and €2.

Corollary 2.2. Let M be an m-dimensional Hermitian manifold with a real bi-
sectional curvature bounded from above by a negative number —K. Assume
M = U; M; where M; C Mjy and f; is a biholomorphism from M onto
Q; C Q C C". Suppose Q is a bounded domain in C" and Q; is a complete
Kdihler manifold with the Ricci curvatures bounded from below by a same negative

number —k (independent with j). We also assume there exists a point g € M so that
det Jf;(g) /> O. Then F is 1-1, and hence, M is taut.

For the sake of completeness, we also include a short outline of the proof.
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Outline of proof. Since €2 is bounded, £2; C €2 is bounded too for each j > 0. Hence,
{ff}?il is still normal. By det J f;(q) # 0, we can see det J f;(z) /> 0 everywhere
for z € M, where {det J f; (z)};?czl is normal because of the Cauchy estimates. This
means, for any z € M, f;(z) does not approach 9€2. So by Theorem 1.6, we find
the limit F of f; is 1-1. Moreover, this means M is taut. L]

Lemma 2.1 and Corollary 2.2 tell us that if there exists one point g such that
fi(qg) = p € €, then for any point z € M, we have f;(z) approaching an interior
point of £2. Furthermore, the limit of f; forms a biholomorphism. However, this is
not the only case. Indeed, sometimes f;(g) can approach a boundary point of €2,
and this brings trouble for getting the biholomorphism. For example, the image of
F =1im;_ .~ f; might be just a constant map into a boundary point under some
circumstances. The constant map of course cannot be a biholomorphism. What'’s
behind this phenomenon is that under this situation det J f(¢) — 0 as j — oo. Thus,
we need to compose each f; with a biholomorphic map ¢; so that the resulting map
det J¢; o f; has a nonzero limit. To find the appropriate ¢; we need to estimate
the speed of decay for det J f;(q). It appears the speed of decay can be arbitrary,
but indeed, the decay is constrained by the location of fj(g) due to an application
of the Schwarz lemma as follows. The following proposition is one of our main
techniques.

Proposition 2.3. Let M be an m-dimensional Hermitian manifold with a real
bisectional curvature bounded from above by a negative number —K. Assume M is
a monotone union of 2 C C™" via f; where Q is a bounded domain in C™ with a
complete Bergman metric of which the Ricci curvature is bounded from below by a
negative number —k. We also assume there exists a point g € M so that f;(q) —
p € 02 where p is strongly pseudoconvex. Then |Jfi(q)|/5(f; (q)) ™+ V/2 > for
some 1 > 0, where ¢ is the Euclidean distance function of €2, i.e., 6 (z) = dist(z, 9€2).

Proof. Applying Theorem 1.6 for fj_l, we have (f J,»_l)*gM < Cgq for some
C > 0 where g, is the metric on M and gg, is the Bergman metric of €2. In local
coordinates, we have for any tangent vector X, € 7,82 at 0 € 2

(7D Xo) Gu(f; (o) (f7 )Xo < CX,Ga(0)X,,

where we denote the conjugate transpose by ' and matrices of gy, and gq by Gy
and G g, respectively. For each j > 0, we let o = f;(g) and have

(f7 e X 5,0 Cu(F i@ DeX 0 = CX ) Ga £ (@)X o)
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Without loss of generality, we pick up the coordinates on M at g so that G, is the

identity matrix at ¢. Hence, (Jf; ' (fi(¢)))'/f; ' (fi(@)) < CGa(fj(g)) and by
the Minkowski determinant theorem, we also have

4) (et J £ (fi(@)I* < Cldet Ga(f(@))l.

But G g 1s a metric around a strongly pseudoconvex point p, so by [Fefferman 1974,
it is equivalent to the 39 (log ) up to nonzero constant. Moreover, by computing
the second-order Taylor expansion of § at p, we also have

co

ldet Gq(o)| < 50y

for some ¢y > 0, when o is close to p. Again, putting o = f;(g), we have

&)
5 det G : <

for sufficiently big j > 0. Since det Jf}-_l (fi(g))-detJfj(q) = 1, we have, by (4)
and (5), that |det Jf),-(q)I/fS(fj(q))(”“r”/2 > 1/4/coC for sufficient j > 0. We let
n =1/4/coC, and thus get the desired result. [

Another technique in this section was motivated by a simple observation in one
variable.

Lemma 2.4. Suppose there is a family of Mobius transforms on the unit disc
Vi(z) =(z+a;)/(1+a;z) where oj € Rand o; — 1. Fixing s € (0, 1), we define
the disc contained in D:

YD :={z€eC:|z—b|<1—-b}

where s = 1 —b. Then w;](@s) — D as j — o< in the sense of convergence in
increasing subsets.

Proof. We compute the preimage wj_l (9%;). By calculation, we see that

z+a;
l-l—&jz

—bl<1-b

is equivalent to the inequality

(a; —b)(1 —ab) — (1 —b)%a;|?

1—a;b2 — (1—b)2la; 2
|l—l:?|2—|cufj—l?|2 |(¢::rj—b)(l—e\!j.l;')—(l—b)zuﬂ2
<
|1 —a;b[* — (1 —=b)?|a;|? (|1 —a;b|* — (1 =b)*|a;|*)?

This 1s a disc centered at
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Lemma 2.5. Suppose there is a family of automorphisms

z4+a; /1- |aj|2w)

1—|-EIJ,'Z’ l—l—C_IjZ

w,»(z,w)=(

of the unit ball B?, where aj € Rand aj — 1. Fixing s € (0, 1), we define a ball
contained in B?:

By := {(z, w) € C:|(z, w) — (b, 0)| < 1 — b},

where s =1 —b. Then w;l(%_g) — B"™ as j — oo in the sense of convergence in
increasing subsets.

Proof. We want to compute the preimage gbj_l (9B;). For this, we need to calculate
the (z, w) € C?, such that |I[fj_1(Z, w) — (b,0)| < 1 —b. By calculation, this is
equivalent to the inequality

(aj —b)(1 —ajb) — (1 —b)%a; 2+{ J1—la;j? . :
|1 —a;b|*> —(1—b)?|a;|? VI1—a;b|* — (1 —b)?|a;|?
5 (1—b)*— |aj —b|? I(aj —b)(1 —ajb) — (1 — b)?a;|?
|1 —a;b|* — (1—b)*a;|? (|1 —a;bl* — (1 —b)*a;|*)?

6) |z+

Again, as in the previous lemma, one can see the formula in (6) approaches
2|2+ |w|* < 1. O

Due to symmetries of balls, one can see the following lemma is also true.

Lemma 2.6. Suppose there is a family of automorphisms

v1-—la;|? w—l—aj)

1—|—6_ij < l-l—ajw

vz, w) =(

of the unit ball B> where aj € Rand aj — —1. Fixing s € (0, 1), we define a ball
contained in B:

Bs = ={(z,w) €eC:|(z, w) —(0,b)| < 1+ D}

where s = 1+ b. Then wj_l (B;) — B™ as j — o0 in the sense of convergence in
increasing subsets.

Proof of Theorem 1. Let g € M and f;j(q) — p as j — oo. There are two
possibilities for the location of ¢: g € E,, or g € 0E,,.

If p € E,, then by Lemma 2.1, M is biholomorphic to E,,. Now we analyze the
cases that p € 9E,,. Suppose that f;(g) = (a;, b;). We define
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- . ) Zm"l_ 2
Vi(z,w) = ( - fl" e Y9 —lfl"’l w),
l—ajz J1—ajz

Here v/ is a family of automorphisms of E, and 6; is defined so that ¥; o f;(p) =
(0, b"j) with b"j € R. Since (0, b}) € E,, by the boundedness we have that (0, b}) =
(0, by), where —1 < by, < 1. If b, € (-1, 1), then (0, b)) € E,. And then by
Lemma 2.1 for ¥j o fj, we know that M is biholomorphic to E,. If bf) =1or—1,
we discuss it as follows.

Without loss of generality, we now assume bj, = —1. This means it approaches a
strongly pseudoconvex point py = (0, —1). The ellipsoid E,, by translation, has a
defining function

n 1
pG.w) =[w—1P = Y1~ [zP = —2Rew+ |w* + ~Iz" +o(z).

Here, the point pg has been translated to (0, 0).

On the other hand, we define B, := {(z, w) € C* : |z|* + |w|* —2Rew < 0}.
It 1s not hard to see %B; 1s a ball centered at (0, 1) with radius 1. We also define
By :={(z, w) € C*: (1/n)|z|> + (1/n)|w|*> —2Re w < 0}. We can see that B; is
a ball centered at (0, n) with radius n. So B; C E,, C B, and they are tangent to
each other at (0, 0). We translate and rescale %B;, AB;, and E, so that B; = B2. This
setup is good for applying Lemma 2.6 to our situation. Due to the translation and
rescaling, ¥; o f;(p) becomes (0, (b’j + 1 —mn)/n) and py is once again relocated
at (0, —1). Since py is strongly pseudoconvex, by Proposition 2.3, we see there
exists n > 0 so that

[T (Wj o fi)@)] Znd(Wjo fi(g)**.
This implies that
(00 [@] 2 T (1= b)),

where the 7 is due to the rescaling %; into B>. We define a family of automorphisms

of B; = B2,
oo (LU, )y

! Z’ /
1+ Diw 1+ bw

and consequently, their inverses are

(2, ey
J

! Z’ i
l—bjw l—bjw
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Consider

I¢7 s 6 i T Wo f;(g)) = L esh™
7 (1-bw)® ’ J ! (1=, +1—=n)/n)3

We see that

det(J (¢; ' o ¥j 0 f))(q)) = det((J§; ) (Wj 0 fi(@))) det(J (¥ o f})(g)
(4 —i@)"
(1 -0 +1 —n)/n)3’

where the last term is bounded below by a positive number. This can be seen by a
calculation using 1’Hopital’s rule on x = b} — —1.

Thus, the limit F of qu_l o y¥j o f; has nontrivial image. Moreover, the image
of F is B? because by Lemma 2.6, qu_](%s) C (f);l (E,) and (,i)j_l(%s) grows up to
B, = B2.

Finally, we check the injectivity of F. The readers are reminded that the Bergman
metric on E, is invariant under (p;]. Suppose there are 7, 7/ € M so that

> 1
~n

lim ¢j—1 oyjo fi(Z) = lim ¢j—1 oyjo fi(@).
Jj—oo Jj—oo
We can find big N > 0 so that for all j > N,

¢ oo fi(d) edy' (En). &7 ovjo fi(") € gy (En).
Consequently, by Theorem 1.6, we have that
dM(Zfa ZH) = Cd¢§1(Eﬂ)(¢J_1 o WJ o fj (Zf)a ¢J_l o wj o f} (Z”))-
The assumption that lim;_, o qu_l oo f;(Z)=lim; sx (;bj._l oo f;(z) implies
7/ = 7. This proves the injectivity of F. O
Without much effort, one can show the following corollary.

Corollary 2.7. Let M be an m-dimensional Hermitian manifold with a real bisec-
tional curvature bounded from above by a negative number —K , and assume M

is a monotone union of balls with the same dimension. Then M is biholomorphic
onto B™.
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CHAPTER 5. AN APPLICATION TO THE GENERALIZED BIDISCS

In [Liu 2017], the author defined a generalized bidisc D xg H' := {(z, w) : z € D,
w € e'?@HT}. It has a noncompact automorphism group and shares some properties
with the bidisc. Indeed, when 6(z) is a zero function, ) xy H is biholomorphic to
a bidisc.

In this section, we prove that the generalized bidisc cannot have a complete
Kéhler metric with holomorphic bisectional curvature bounded by two negative
numbers. This is a result of Yang type. Recall that Yang’s theorem [1976] on
bidiscs has certain requirements on both variables of the bidisc, but in the proof, we
show that it is possible to relax the requirement for one of them. Of course similar
results for higher dimensions hold for the same reason. But we will not discuss

them here. Our proof is modified from [Seo 2012].

Proof of Theorem 2. We assume the conclusion is not true. Let us denote the
Poincaré metric of D by g and the complete Kihler metric on D x4 H' by A. For
each z, we define i, (w) = (z, ie'@D(1 4+ w)/(1 —w)) from D onto e’ @H. We
geti*h < (4/c)g by the Schwarz lemma of Yau [1978] because the Ricci curvature

of D is —4. Thus,

. 1+LU . i 1+w

2ieif @ hli(z’legl—w) hli(z'leel—w) 0
™ (o 7o) ' I

Tig(z)l—i-w) 4 4

The last inequality gives
a4
O ERPL Rl g LU
l—w c(1—|wl|?)? = (1l — |w|?)?
Since k < =, there exists € > (0 such that k + € < . Because of 0 < 6(z) < k, the
following is true: (z, e'**¢/2)) € D xy H*. We also have, for all z € D,

(8) %<k—|—§—9(z)<k—|—§<k—l—e<:r.

We fix wo = (! kT€/2=0@ _jj) /(¢! *+€/2-0@) 4 i) for all z € D, and by the inequality
(8), we can see |1 — |wg|| > n > 0 for some positive number 1 depending on e.

Also by the inequality (7), we have

o1+ w s S i ; 16
hzi (Z, I-erﬁ‘(d 0) = hzj(Z: 619(&)ef((k+6/2J—9(.;))) — hzi(z’ ef(k+€/2)) o
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Let F(2) := h,5(z, ¢! k+€/2)y 'We see F is a real bounded positive function on D.

We check its Laplacian with respect to Poincaré metric on [); we have (considering
the bound of R,5,1)

*F
AgF(z) = (1—1z[") 52 BZ(Z)

2
‘ -0hy5 0h ;
— 121242 o i(k+€/2) aB 28 o2
= (1 —z[") (Rzzn(z,e )+a§ﬁ—lh P )
> c(1 = |21 ?hys (2, € TPy (2, £ CHD)

— CF(Z)(I _ IZlZ)Zhli(Z, ei(k—l—E/Z))’
because Zi,ﬁ:l haﬁ(ahzg/az)(ahai/az) is nonnegative. Let 7 : D xg HT — D,

m(z, w) = z. We also have n*g < (d/4)h, which is (1 — |z|2)2h11(z, w) <4/d.
Hence, Ay F(z) > (c¢/d) F. Calculate

AgFR) IVeF@P _ 2 |VgF Q)P
F(z) F(x* — d F(z)?

Aglog F(z) =

By Theorem 1.4, a real function 7" bounded from above on a complete Riemannian
manifold M with Ricci curvature bounded below admits a sequence {pi}io, C M
such that

lim |VT (pr)| =0, limsup AT (py) <0, lim T(py) =supT.
k—o0 k—o00 M

k—o00

Although log F'(z) is a real function bounded from above on D, it can not have such
sequence {pi ), C D. This contradiction completes the proof. [
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CONCLUSION

A natural question is if we can relax the restriction for 6(z) in the theorem above.
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