Reviewing on blow-out in tunnelling and analyzing for a case in Hochiminh Metro Line 1

Vũ Minh Ngạn

Department of Infrastructure Engineering

Nội dung

- 1. Introduction
- 2. Blow-out in tunnelling
- 3. Blow-out analysis models
- 4. Validations with experiments
- 5. Validations with case studies
- 6. Blow-out in HCM MRT Line 1
- 7. Conclusion

Introduction

Deep, moderate and shallow tunnels

Deep tunnels

- High cost of construction
- High cost of operation

Shallow tunnels

- Reduction of construction cost;
- Low operational cost;
- Shorter travelling time;
- Minimal impact on foundation and existing buildings

(a) Scheme of the Second Heinenoord Tunnel and the blow-out position

Blow-out models

Calculation model of Balthaus for the safety against blow-out (Balthaus, 1991)

Safety indexes against the blow out :

$$\eta = \frac{G}{S} > \eta_1 = \frac{\gamma C \left(B' + C \cot\left(45^o + \varphi/2\right)\right)}{B' s(z_t)} > \eta_2 = \frac{\gamma C}{s(z_t)}$$

Blow-out models

Blow-out model including friction at boundaries (Broere, 2001)

Blow-out models

Model model including the supporting pressure changes (VU et al., 2015)

(a) upper part

(b) lower part

Linear support pressure with vertical support pressure gradient δp

$$s_{t,max} = \left(\frac{C}{D} + \frac{1}{2}\right)^2 2DK_y \gamma' tan\varphi + \left(\frac{C}{D} + \frac{1}{2}\right) (\gamma D + 2c) - \frac{\pi}{8} \gamma D$$
$$s_{b,max} = \left(\frac{C}{D} + \frac{1}{2}\right)^2 2DK_y \gamma' tan\varphi + \left(\frac{C}{D} + \frac{1}{2}\right) (\gamma D + 2c) + \gamma_T \pi d - \frac{\pi}{8} \gamma D$$

Validation with experiments

(a) Side view

(b) Sketch of the module made to simulate the grouting process

Sketch of centrifuge tests in Bezuijen and Brassinga (2006)

Validation with experiments

(a) with the 1^{st} centrifuge test

(b) with the 2^{nd} centrifuge test

(c) with the 3^{rd} centrifuge test

Validation with case studies

(a) Scheme of the Second Heinenoord Tunnel and the blow-out position

Blow-out at the Second Heneinoord Tunnel (Bezuijen and Brassinga, 2006)

(b) Face support pressure measurement at the tunnel centre during blow-out

A comparison of maximum support pressures calculated from new blow-out models, Broere's model, Balthaus's model and in the Second Heinenoord Tunnel case

An Phu (6,5 km) Than Dien (5,6 km) Bin Thai (11.1 km) Correct for the second second

	File(F)	View(V) He	lp(H) Cont	act(Q)	CELEDE CECTORSHIMIZ	URMAEAAVEN)			(HELDER MANNE)
	354 Mode C	Ring Boring hange	Boring Mode Excav Mode Sgmnt REALTIME	Actual Stroke (mm) Net Stroke(mm) Excav Start Condition Excav Finish Condition	792 Excav Start Time 142 Excav Fin Time Grs Ex Time (min Net Ex Time (min	08:37 Date 00:00 Time) 8 CH(m) n) 8 TD(m)	18/04/23 ALARM 08:45 TBM PL 08:45 SHAPT 1155:481 SHAPT 444.519	C Comm. Error PLC Comm. Error	vbotte Alarm 999êr Comm Error
	-100 Her	ad Horizontal Left	5 100					Edit Data)
ation the second se	Tail L 6	20 20 20 20 20 20 20 20 20 20	t s	THRUST STROKE (mm) 789 793 793 793 793 1-R DIFFERENCE 787 L-R DIFFERENCE PRESSURE FORCE WORKING Grout FLOW	JACK SPEED(mm/min) 19 18 18 18 (mm) 0 (mm) 2 (MPa) 24.0 (kN) 18542 EXT esure ALL A (umin) 58 (m2) 0.410	Cl SPEED TORQUE TORQUE LOCATION COPY CHD S ROTATION ROTATION WORKING Earth Press 0.16 0.20 Copy ChD S ROTATION ROTATION COPY CHD S ROTATION ROTATION ROTATION ROTATION ROTATION COPY CHD S ROTATION ROTATION ROTATION COPY CHD S ROTATION ROTATION ROTATION ROTATION COPY CHD S ROTATION ROTATION ROTATION COPY CHD S ROTATION ROTATION COPY CHD S ROTATION RO	UTTER (rpm) 0.9 (%) 32 (kNm) 1383.5 (deg) 192.0 (ROKE(mm -20 (CCW) 35026 (CW) 29635 (CW) 29635 (CW) 29635 CW Ure(MPa) 0.19 0.19 CH4 (%LL CO (ppm) H2S (ppm H2S (ppm)	SCREW MUCK SREED TORQUE PRESSURE ROTATION GATE OPEN WORKING Excav Flowmeter MUCC SCREW MUCK SCREW MUCK ant TBM Back b) 21.0 1 1 1 1 1 1 1 1 1 1 1 1 1	w (rpm) 10.8 (kNm) 3.8 (MPa) 3.6 (rev) 184610 (%) 30 FWD 30 FWD 30 ration Soll 4.742 VOL (m3) 4.43 up Car SHAFT 21.0 0 0 0 0 0 0 0 0 0 0 0 0
zontal Devi	Scale: 5			#1 PRESSURE #2 PRESSURE	(MPa 0.00 (MPa 0.21	0.00	0.12	PITCHING PITCHING ROLLING DIRECTION	(deg) 0.05 (deg) 0.05 (deg) 0.00 (deg) 222.70
Hori				Additive	No.1 N	10.2		P0 P1	PE
\odot	20 m ahead Hea	d Dev(mm):L 4		FLOW	(MPa U.ST	0.36 P		ON ON	ON
	Tail	Middle	Head	VOI	(m3) 0.508	0.511 Hopper	EP (kPa)	184	ON
iation	D 19 Scale: 5	D 1	U 17	VOL		Oil Press	P Press(MPa)	1.9 99.5	2.6 3.2
Dev				High Viscosity	Clay 0	0.0	Working	ON O	N ON
rtica	Constant and			FLOW	(MPa	0.21 Water In	ject P Rotate	45.6	0
ALC: NOT THE OWNER OF				PALOSOAL	0.001	0.000	Volume (L)	5344	5.172

Geo conditions

CGE-RPT-00073-C report

То

0.23

-1.77

-13.2

-17.4

Level

From 2.58

0.23

-1.77

-13.2

Description

Fill layer

Alluvium Clay Layer 2

Alluvium Sand Layer 2

Alluvium Silty Fine

Sand Layer 1

Layer

1

2

3

4

Weight

unit γ

 (kN/m^3)

19

16.5

20.5

20.5

Friction

angle φ

(deg.)

25

24

30

33

Cohe-

sion c

(kPa)

10

0

0

0

AL HOC MO . OL	Lavor	Description	Level		Weight unit g	Cohe-sion c	Friction angle j	Coefficient of Lateral K
A CHE	Layer	Description	From	То	(kN/m³)	(kPa)	(deg.)	
MĐC 1	1	Fill layer	2.58	0.23	19	10	25	0.6-0.5
	2	Alluvium Clay Layer 2	0.23	-1.77	16.5	0	24	0.6-0.5
A ES	3	Alluvium Silty Fine Sand Layer 1	-1.77	-13.2	20.5	0	30	0.6-0.5
SATY OF MINING AT	4	Alluvium Sand Layer 2	-13.2	-17.4	20.5	0	33	0.5

Calculation

Hình 6. Mô hình phân tích hiện tượng đẩy trồi tại Dự án Hochiminh Metro Line 1 (a) Phần trên (b) Phần dưới

Result:

Conclusions

- Blow-out condition is an essential stability calculation in tunnelling design, especially when shallow tunnelling in soft soils in order to prevent damage on the tunnelling process and existing buildings.

- Blow-out models have been reviewed and compared.

- Validation with the blow-out case study of Hochiminh Metro Line 1 shows a good agreement with the blow-out pressures derived from the linear support pressure blow-out models proposed by Vu et al. (2015).

- The solutions used in the real project of Hochiminh Metro Line 1 show that a careful preparation for risk in tunnelling is very important to have a success tunnelling project.

Thank you very much!

