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38 Structural Characterizations of Copper Incorporated Manganese Oxide OMS-

39 2 Material and Its Efficiencies on Toluene Oxidation

40 Abstract

41 This work aimed to study the excellent properties of the high-valent copper doped into the 

42 framework structure of K-OMS-2 catalyst (Cu-K-OMS-2). The physicochemical properties of    

43 Cu-K-OMS-2 material were examined using X-ray Diffractometer (XRD), N2 adsorption-

44 desorption, X-ray photoelectron spectroscopy (XPS), X-ray absorption near edge structure 

45 (XANES) and extended X-ray absorption fine structure (EXAFS) techniques. The copper dopant 

46 can improve the physicochemical properties of K-OMS-2 catalyst including the specific surface 

47 area, Oads/Olatt ratio and Cu3+/Cu2+ ratio, resulting in enhanced catalytic activity. The Cu3+ species 

48 were observed in the Cu-K-OMS-2 structure. In addition, the oxidation state of copper on the Cu-

49 K-OMS-2 surface revealed both Cu3+ and Cu2+ species, which affected toluene removal. The 

50 existence of the Cu3+/Cu2+ ratio led to enhance toluene removal at low reaction temperature. 

51 Moreover, the Cu K-edge EXAFS spectrum demonstrated that the Cu ions existed in the same site 

52 as the Mn ions in the K-OMS-2 framework structure. Consequently, we can propose that Cu3+ 

53 existed in the Cu-K-OMS-2 framework structure by Mn3+ substitution in the MnO6 octahedral site, 

54 which influenced the high toluene oxidation at low reaction temperature. In addition, the high-

55 valent copper doped into K-OMS-2 catalyst showed high stability for VOCs oxidation. The 

56 activation energy of toluene oxidation over Cu-K-OMS-2 catalyst was computed as shown about 

57 91.18 kJ mol-1.

58

59 Keywords: Trivalent copper; Divalent copper; Toluene oxidation; Oxidation state; OMS-2; Cu-K-

60 OMS-2

61
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62 Introduction

63 The catalytic oxidation technology with cryptomelane (K-OMS-2) has been widely used for the 

64 removal of volatile organic compounds (VOCs) in the gaseous phase (Fu et al., 2017; Hou et al., 

65 2013b; Said et al., 2016; Santos et al., 2011, 2010; Sihaib et al., 2017; Wang and Li, 2010). The 

66 high catalytic performance of K-OMS-2 is related to its unique structural properties such as open 

67 tunnel structure, mixed-valent manganese oxide, mobile and lattice oxygen species, high specific 

68 surface area, hydrophobicity and easy release of lattice oxygen (DeGuzman et al., 1994; Hou et 

69 al., 2018, 2013a; Luo et al., 2008, 2000; Shen et al., 2011; Suib, 2008). The excellent properties 

70 correlate with the particle morphology and synthesis route (Schurz et al., 2009). The nest-like K-

71 OMS-2 catalyst, synthesized via the hydrothermal method, exhibits a high catalytic activity due to 

72 the high concentration of oxygen species and good mobility of oxygen species (Deng et al., 2014). 

73 Hou et al. reported that the presence of Mn3+ in the OMS-2 samples could imply oxygen vacancy 

74 defects, which affect the catalytic oxidation ability of OMS-2 (Hou et al., 2013a). In addition, 

75 rising the oxygen vacancy defect concentrations considerably enhances the lattice oxygen 

76 reactivity and increasing VOCs removal, for example, benzene (Hou et al., 2013a; Yodsa-nga et 

77 al., 2015), toluene (Fu et al., 2017), carbon monoxide (Chen et al., 2008), peroxymonosulfate 

78 (Fang et al., 2017) and ozone (Jia et al., 2016; Wang et al., 2015). Moreover, the K-OMS-2 catalyst 

79 with high Oads/Olatt mole ratio influences the enhancement of the VOCs’ oxidation (Jia et al., 2016; 

80 L. Liu et al., 2017; H. Sun et al., 2017). However, the K-OMS-2 material displays complete VOCs 

81 oxidation at high reaction temperature (more than 250ºC) (Gandhe et al., 2007; Genuino et al., 

82 2012; Liu et al., 2017; Sun et al., 2011; Sun et al., 2015). Thus, the material’s efficiency is 

83 necessarily improved owing to the deactivation of K-OMS-2 catalyst at low reaction temperature, 

84 whereas complete oxidation at high reaction temperature.
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85 To modify K-OMS-2 structural properties and catalytic performance, the K-OMS-2 

86 material has been modified by doping with several metal cations into the tunnels and/or the 

87 framework. Alkali metals are usually incorporated into the tunnel sites of K-OMS-2, such as Li+, 

88 Na+, K+, Rb+ and Cs+ (Carabineiro et al., 2016; Liu et al., 2003; Santos et al., 2012, 2009; Wu et 

89 al., 2011). These metal ions can replace K+ or occupy empty sites or replace H3O+ in tunnel sites 

90 (Santos et al., 2012). Hou et al. reported that the substitution of tunnel K+ ions leads to an increase 

91 in the formation energy of an oxygen vacancy, resulting in decreased oxygen vacancy 

92 concentration, as a reason why low catalytic activity occurred (Hou et al., 2014). Depending on 

93 the results of our literature review, doping metal ions into the framework structure might enhance 

94 the K-OMS-2 performance. Transition metal ions have been used to dope the framework of K-

95 OMS-2, for example, W6+, Mo6+, V5+, Cr4+, Fe3+, Ru3+, Cu2+, Zn2+, Co2+, Pt2+, Pd2+, Ni2+ and Ag+ 

96 (Adjimi et al., 2017; Calvert et al., 2008; Ching et al., 2016; Hernández et al., 2012, 2010; 

97 Jothiramalingam et al., 2006a; Li et al., 2015; Ma et al., 2017; Özacar et al., 2013; Roozeboom et 

98 al., 1981; Shaikjee and Coville, 2011; Sun et al., 2013). Among those dopants, copper ion shows 

99 as a suitable metal ion for modification of K-OMS-2, since it can be prepared by a simple synthesis 

100 and it gives an effective oxidation catalyst. The presence of copper ions in K-OMS-2 catalyst 

101 improves the catalytic properties associated with the average oxidation state, specific surface area, 

102 reducibility, mixed-valent manganese species, oxygen mobility, defect-oxide species and stability 

103 (Chen et al., 2001; Hernández et al., 2012, 2010; Liu et al., 2010; Yang et al., 2014; Yun et al., 

104 2017). In addition, the electronegativity property of metal dopants plays an important role in K-

105 OMS-2 performance. Sun et al. (Sun et al., 2013) reported that the metal electronegativity (Cu > 

106 Co > Fe > Cr) is related to the order of catalytic activity using transition-metal-ion doped OMS-2 

107 catalysts. Because the higher electronegativity leads to a weakness of the Mn–O bond in the Mn–

Page 5 of 45

URL: http://mc.manuscriptcentral.com/  Email: wngill@sfo.com

Chemical Engineering Communications

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review Only

108 O–M bridge, and the greater mobility and reactivity of the active oxygen species. According to the 

109 theory, there are many oxidation states of copper, including Cu+, Cu2+, Cu3+ and Cu4+, which show 

110 different electronegativities (Li and Xue, 2006). The copper ions with an increase in the oxidation 

111 state possibly increase the electronegativity as follows: Cu+ < Cu2+ < Cu3+ < Cu4+. Consequently, 

112 Cu4+ could show the highest efficiency and higher than Cu3+, Cu2+ and Cu+. Commonly, the Cu2+ 

113 was successfully doped on K-OMS-2 material by several methods, such as reflux (Liu et al., 2010), 

114 ball milling (Hernandez et al., 2012), incipient wetness impregnation (Davo-Quinonero et al., 

115 2016), solid-state (Hernandez et al., 2012) and hydrothermal methods (Jothiramalingam et al., 

116 2006b; Ramstad and Mikkelsen, 2004). The Cu2+ ions were incorporated in the tunnel structure of 

117 K-OMS-2 materials (Jothiramalingam et al., 2006b; Yang et al., 2014), which might destroy the 

118 framework structure to become a layer structure resulted in low catalytic activity for VOCs 

119 removal (Yang et al., 2014).

120 Recently, we can dope a trivalent copper (Cu3+) into the K-OMS-2 catalyst through the in 

121 situ hydrothermal methods (Kaewbuddee et al., 2019a). The effect of hydrothermal conditions on 

122 Cu-K-OMS-2 synthesis including aging temperature, aging time and amount of copper dopant 

123 were studied by using the Box-Behnken design (BBD) method. The Cu-K-OMS-2 samples were 

124 tested with thermal toluene oxidation. The results indicated that the hydrothermal conditions affect 

125 the physical and chemical properties and the performance of the Cu-K-OMS-2 catalyst. In 

126 addition, the optimal conditions for the Cu-K-OMS-2 synthesis are determined as 120ºC of aging 

127 temperature, 6 h of aging time and 6% mole of Cu on K-OMS-2, which exhibited a complete 

128 toluene oxidation at low reaction temperature. According to the review, the incorporation of copper 

129 in the K-OMS-2 tunnel structure showed a disadvantage in its performance. Therefore, the location 

130 of copper ions in K-OMS-2 structure affects the thermal oxidation of VOCs. Continuously, the 
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131 Cu-K-OMS-2 catalyst, prepared by in situ hydrothermal method at optimal condition, was used to 

132 study the excellent properties on toluene oxidation. The local structure of copper in K-OMS-2 

133 material was investigated. The stability of Cu-K-OMS-2 catalyst was considered as well. 

134 Moreover, the kinetic parameters of toluene oxidation by using Cu-K-OMS-2 were examined. The 

135 physicochemical properties of Cu-K-OMS-2 were explained using X-ray diffractometer (XRD), 

136 N2 adsorption-desorption calculated the specific surface area by Brunauer–Emmett–Teller (BET), 

137 X-ray photoelectron spectroscopy (XPS), X-ray absorption near edge structure (XANES) and 

138 extended X-ray absorption fine structure (EXAFS) techniques.

139

140 Materials and methods

141 Chemicals

142 All the chemicals used for this study are of analytical grade. Manganese(II) acetate 

143 tetrahydrate (Mn(CH3COO)2·4H2O) with greater than 99% purity, potassium permanganate 

144 (KMnO4) with 99% purity and glacial acetic acid (CH3COOH) were purchased from ACROS 

145 Organics, UNIVAR and QRëC, respectively, and 1000-ppm Cu AAS standard solution from 

146 Applichem.

147

148 In situ copper-doped K-OMS-2 (Cu-K-OMS-2) synthesis

149 Cu-K-OMS-2 was synthesized through a hydrothermal method which was applied following 

150 Kaewbuddee et al. research (Kaewbuddee et al., 2019a). First, the mole ratio of 0.75 

151 KMnO4/Mn(CH3COO)2 was used to prepare the catalyst. The KMnO4 and Mn(CH3COO)2 were 

152 dissolved separately in 40 mL deionized water under continuous stirring until becoming a perfectly 

153 mixed solution. Second, the KMnO4 solution was dropped slowly into the Mn(CH3COO)2 solution 
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154 and then the 6% mole of copper standard solution was added to the mixture under continuous 

155 stirring. Third, the pH of the mixed solution was adjusted to an acidic condition (pH lower than 

156 3.5) by concentrated glacial acetic acid and stirred continuously for an hour. After that, the final 

157 solution was transferred into an autoclave for the hydrothermal process at 120ºC for 6 h. Finally, 

158 the obtained black slurry was filtered and washed with deionized water until the filtrate was pH 

159 neutral. The obtained catalyst was dried overnight at 100ºC. The K-OMS-2 was prepared by the 

160 same technique with Cu-K-OMS-2 following the optimal condition reported by Yodsa-nga et al. 

161 (Yodsa-nga et al., 2015). 

162

163 Catalyst characterization

164 The crystalline phase of the samples was analyzed by XRD (PANalytical, EMPYREAN 

165 (Netherlands)) using Cu Kα radiation with wavelength λ = 0.1514 nm at 40 mA and 45 kV and 

166 Bruker D8 Advance using Cu Kα with wavelength λ = 0.1514 nm at 30 mA and 40 kV. The specific 

167 surface area was analyzed using a N2 adsorption–desorption analyzer (ASAP2460, Micromeritics, 

168 USA) and calculated using the BET equation. The oxidation states of manganese, copper and 

169 oxygen were determined by XPS and XANES techniques (BL5.3 and BL1.1W, respectively), 

170 Synchrotron Light Research Institute (Public Organization), Thailand. The neighboring atoms and 

171 absorber-neighbor distances were analyzed via the EXAFS technique (BL1.1W). The stand-alone 

172 XPS with a Kratos AXIS Ultra model was operated using monochromatic Al K h = 1486.71 

173 eV, 5 mA and 15 kV as an X-ray source.

174

175 Catalytic thermal oxidation of toluene
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176 The catalytic activities of Cu-K-OMS-2 and K-OMS-2 samples were tested in toluene degradation 

177 via packed bed reactor (PBR), the same apparatus as in our previous work, where 0.01 g of Cu-K-

178 OMS-2 or K-OMS-2 catalysts were placed in the center of the PBR. Toluene was maintained at –

179 3ºC, using the cold bath as an evaporator. Approximately 7,550 ppmV of toluene concentration, 

180 calculated following Doucet et al. (Doucet et al., 2006), was studied. The gaseous toluene 

181 oxidation was investigated with reaction temperature in the range of 140–300ºC and the weight 

182 hourly space velocity (WHSV) was used at 3.41 h–1 under atmospheric pressure. Then, the kinetic 

183 parameters were investigated by varying the amount of Cu-K-OMS-2 catalyst between 0.005-0.02 

184 g. Additionally, to study the catalytic stability and the deactivation of Cu-K-OMS-2 catalyst, the 

185 toluene concentration was set up to 13,500 ppmV (about 2 times), then passed through 0.15 g of 

186 catalyst in the PBR at 200ºC of reaction temperature. After the toluene oxidation, the spent 

187 catalysts were studied the characteristic, such as the phase structure or the binding energy of XPS 

188 compared with the fresh catalyst. The toluene concentration in the fluid was measured using gas 

189 chromatography with a thermal conductivity detector using Gaskuropack 54 as a column (GC-

190 TCD, Shimadzu, 8A series, Japan) which was investigated at least three times for each reaction-

191 temperature testing. The percentage removal of toluene (Y) was calculated using Equation (1).

192 Y = %,        (1)0

0

100fC C
C




193 where C0 and Cf are toluene concentrations before and after reaction in the PBR, respectively.

194

195 Results and discussion

196 Characterizations

197 The XRD patterns of the prepared catalysts are presented in Figure 1. According to the previous 

198 work, Yodsa-nga et al. found the optimum conditions of K-OMS-2 synthesis for VOCs removal 
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199 at 75ºC of aging temperature for 21 h of aging time (Yodsa-nga et al., 2015). Therefore, the K-

200 OMS-2 sample as an undoped reference catalyst, synthesized by following Yodsa-nga et al. 

201 (Yodsa-nga et al., 2015), presented characteristic peaks at 2θ values of 12.73, 18.21, 28.76, 37.51, 

202 41.89, 50.08, 60.17, 65.32 and 70º which correspond to the cryptomelane type (JCPDS 29-1020, 

203 KMn8O16) (Iyer et al., 2010; Kumar et al., 2009; Sithambaram et al., 2009). According to our 

204 results, the XRD patterns of Cu-K-OMS-2 catalyst clearly showed the cryptomelane (K-OMS-2) 

205 phase structure. Moreover, no additional peaks were observed, indicating that the Cu-K-OMS-2 

206 materials were a pure phase of K-OMS-2 and the copper oxide phase was not observed. The results 

207 implied that copper ions were well dispersed or incorporated into the K-OMS-2 structure and the 

208 copper amounts did not damage the Cu-K-OMS-2 crystalline phase as well. 

209

210 [Figure 1 near here]

211

212 [Table 1 near here]

213

214 The specific surface areas of prepared samples were measured using a N2 adsorption–

215 desorption analyzer and calculated by the BET equation, as shown in Table 1. The results found 

216 that the copper dopant influenced the specific surface area of the K-OMS-2 catalyst. Obviously, 

217 the specific surface areas of Cu-K-OMS-2 samples are higher than undoped K-OMS-2 prepared 

218 at optimal condition reported by Yodsa-nga et al. (Yodsa-nga et al., 2015). Therefore, the K-OMS-

219 2 materials were doped with the copper dopant, in which the specific surface area was higher than 

220 without doping. The higher specific surface areas of Cu-K-OMS-2 materials could have promoted 

221 the catalytic activity. Likewise, Kaewbuddee et al. research, they reported that the K-OMS-2 
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222 catalyst with a high specific surface area showed the highest toluene removal (Kaewbuddee et al., 

223 2019b). 

224

225 [Figure 2 near here]

226

227 The copper and manganese species in K-OMS-2 material were investigated by the XANES 

228 technique, as presented in Figure 2. The oxidation state of manganese in K-OMS-2 structure was 

229 analyzed using the XANES technique with Mn K-edge energy, as shown in Figure 2(a). The Mn 

230 K-edge features of manganese standards and prepared Cu-K-OMS-2 materials were explored. The 

231 pre-edge features of Cu-K-OMS-2 material and MnO2 standard were quite the same shape. But, 

232 the Cu-K-OMS-2 presented lower intensity of pre-edge than the MnO2 standard. However, the 

233 shoulder peak of Cu-K-OMS-2 materials displayed features similar to the Mn2O3 standard. In 

234 addition, the Mn K-edge absorption energy (E0) of Cu-K-OMS-2 materials was determined at 

235 ~6,551 eV, which was higher than E0 of the Mn2O3 standard (6,548 eV), but lower than E0 of the 

236 MnO2 (6,552) standard. These results indicated that the oxidation states of manganese in Cu-K-

237 OMS-2 structure were the mixed-valence states of Mn2O3 (3+) and MnO2 (4+). The Mn3+/Mn4+ 

238 ratios of Cu-K-OMS-2 and K-OMS-2 samples were estimated by linear combination fitting (LCF) 

239 of XANES spectra with MnO2 and Mn2O3 reference materials using Athena software. The LCF 

240 results presented that the Mn3+/Mn4+ ratio of the Cu-K-OMS-2 sample (0.08) was slightly lower 

241 than the K-OMS-2 sample (0.10), as shown in Table 1. This phenomenon might be caused by the 

242 replacing of Cu ions in Cu-K-OMS-2 structure. According to Wu et al. work, they found that the 

243 amounts of Mn ions in Co-K-OMS-2 and Cu-K-OMS-2 were lower than in the K-OMS-2 material, 

244 which indicated that the Mn ions were replaced by Co or Cu ions in the framework of K-OMS-2 
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245 structure (Wu et al., 2018). The oxidation states of copper in the K-OMS-2 structure were 

246 confirmed by the XANES spectra with Cu K-edge energy. The XANES features of copper 

247 standards are shown in Figure 2(b). There obviously showed different position edges and shapes. 

248 The pre-edge energy of Cu2O and CuO appeared at 8,977.31 and 8,978.64 eV, respectively, 

249 corresponding to the literature (Adak et al., 2017; Munoz-Rojas et al., 2007). To visibly compare 

250 the position edges and shapes, copper standards were plotted along with Cu-K-OMS-2 materials, 

251 as shown in Figure 2(b). According to our results, the pre-edge energy of Cu-K-OMS-2 catalyst 

252 was shifted to 8,980.54 eV, which is correlated with the pre-edge energy of Cu3+ species 

253 (Chandarak et al., 2011; Munoz-Rojas et al., 2007; Sinha et al., 2015; Tomson et al., 2015). The 

254 pre-edge energy of Cu-K-OMS-2 material is higher than the Cu2O and CuO standards. The results 

255 showed that the XANES feature of Cu-K-OMS-2 sample does not match with Cu2O and CuO 

256 standards. The Cu-K-OMS-2 material does not present the shoulder peak, unlike with Cu2O and 

257 CuO standards. In addition, the white line peak of the prepared sample is more intense than both 

258 standards, this phenomenon relates to the oxidation state (Gomes et al., 2013). The greater the peak 

259 intensity, the wider the white line of the copper absorption edge, demonstrating the higher 

260 oxidation state (Chen et al., 2006; Tsai et al., 2004). Therefore, the copper species in K-OMS-2 

261 structure was not Cu+ and Cu2+ species, it should be higher than Cu2+ species. Likewise, Elias et 

262 al. found that the edge position for Cu0.1Ce0.9O2-x sample is higher than CuO standard about 3.2 

263 eV, which indicates a formal valence higher than 2+ (a mixture of 2+ and 3+). Then, they 

264 confirmed that the weak pre-edge feature of Cu0.1Ce0.9O2-x sample specifies the Cu3+ type (Elias et 

265 al., 2014). Moreover, Deng et al. reported that the NaCuO2 K-edge shifts by ~2.2 eV, relative to 

266 CuO standard. The shift in edge energy demonstrates an increase in the average valence of copper, 

267 which can be indicated to the formation of Cu3+ (Deng et al., 2016). According to these results, we 
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268 can propose that the pre-edge position (8,980.54 eV) and the unique XANES features of Cu-K-

269 OMS-2 materials indicated the trivalent copper (Cu3+).

270  [Figure 3 near here]

271

272 Figure 3(a) shows the XPS results. The Cu-K-OMS-2 materials were analyzed for surface 

273 oxidation using the XPS technique with Cu 2p spectra with binding energy at 925–970 eV. The 

274 Cu 2p XPS spectra can be used to confirm the oxidation state of copper on the Cu-K-OMS-2 

275 surface. Normally, the Cu 2p energy level of copper is composed of main characteristic doublet 

276 peaks corresponding to Cu 2p3/2 and Cu 2p1/2 peaks along with the shake-up satellite structures at 

277 ~8 eV and ~10 eV binding energies higher than the main Cu 2p peak. The binding energies at ~931 

278 eV and ~951 eV corresponding to Cu 2p3/2 and Cu 2p1/2 peaks, respectively, indicate the Cu+ 

279 species. In addition, the Cu2+ species appear at ~933 eV and ~953 eV, associated with Cu 2p3/2 and 

280 Cu 2p1/2 energy levels, respectively (Akgul et al., 2014; Kataoka et al., 2011; H. Liu et al., 2017; 

281 Natarajan et al., 2018; Rebhan et al., 2015; Sharma et al., 2018). Generally, the XPS spectra of 

282 Cu3+ oxides are composed of the main peak and satellite feature at 2p3d10L2 (~934 eV) and 2p3d9L 

283 final state (~945 eV), respectively (Kataoka et al., 2011). According to our results (Figure 3(a)), 

284 the Cu 2p energy level displayed that the Cu 2p3/2 spectra overlap with the Cu 2p1/2 peak position. 

285 Remarkably, the Cu 2p3/2 spectra of Cu-K-OMS-2 materials consisted of two main peaks at 933 

286 eV and 936 eV, and a satellite peak located at around 945–946 eV. Clearly, the binding energy of 

287 Cu 2p3/2 spectra were deconvoluted with two components corresponding to the Cu2+ and Cu3+ at 

288 933 eV and 936 eV, respectively. Similarly, Kim et al. found the mixed states of Cu2+ and Cu3+ in 

289 Cu-substituted LaSrMnO samples (Kim et al., 2008). However, we could not propose that the 

290 satellite peak of Cu 2p3/2 spectra refer to the Cu3+ state because the background of Cu 2p spectra 
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291 overlap with Mn LMM (945 eV) region (Chen et al., 2018). Therefore, the Cu3+/Cu2+ ratio was 

292 computed by based on the fitting results of Cu 2p3/2 spectra, as shown in Table 1. Consequently, 

293 we can suggest that the mixed-valence of Cu2+ and Cu3+ species existed on the Cu-K-OMS-2 

294 surface.

295 The Mn 2p spectra of Cu-K-OMS-2 samples were fitted, as shown in Figure 3(b). The Mn 

296 2p energy level of manganese consisted of two characteristic doublet peaks corresponding to Mn 

297 2p3/2 and Mn 2p1/2 energy. The doublet peaks of Mn 2p spectra at binding energies ~642 eV and 

298 ~654 eV were assigned to Mn3+ species; besides, the binding energies at ~644 eV and ~656 eV 

299 were assigned to Mn4+ species (Biesinger et al., 2011; McManus et al., 2016; F. Pan et al., 2016; 

300 Wu et al., 2018, 2017). Therefore, the manganese species on the Cu-K-OMS-2 surface were 

301 mixed-valent Mn3+ and Mn4+ species.

302 The kinds of oxygen species were fitted, as displayed in Figure 3(c). The O 1s spectra of 

303 Cu-K-OMS-2 samples were composed of three characteristic peaks corresponding to lattice 

304 oxygen (Olatt), surface adsorbed oxygen (Oads) and adsorbed molecular water species (Owat). The 

305 binding energy peak, located at ~530 eV, was identified to Olatt (O2
2–), which is an oxygen species 

306 bonded to metal cations in a coordinately saturated environment (Genuino et al., 2013; R. Pan et 

307 al., 2016; L. Sun et al., 2011). The binding energy peak at ~531 eV was associated with Oads (O2
–

308 , O–), OH– groups on the surface and oxygen vacancies, which is an oxygen species bonded to 

309 metal cations in a coordinately unsaturated environment (Genuino et al., 2013; R. Pan et al., 2016; 

310 L. Sun et al., 2011). The binding energy peak, located at ~533 eV, was ascribed to adsorbed 

311 molecular water (Genuino et al., 2013; R. Pan et al., 2016; L. Sun et al., 2011). Moreover, the 

312 Oads/Olatt ratio was estimated from the XPS spectra fitting, as shown in Table 1. The Oads/Olatt ratio 
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313 of Cu-K-OMS-2 catalyst (0.62) was higher than the K-OMS-2 material. Therefore, the copper 

314 doped on K-OMS-2 can enhance the Oads/Olatt ratio, which promoted the catalytic activity.

315

316 [Figure 4 near here]

317

318 To identify the local atomic environment and demonstrate the substitution of Cu ion in K-

319 OMS-2 material, EXAFS analysis of Cu-K-OMS-2 catalyst with the Mn K-edge and Cu K-edge 

320 were performed. The analysis assumed that the Mn ions resided in the corner-sharing octahedral 

321 units of the cryptomelane Q structure using the Inorganic Crystal Structure Database (ICSD) 59159 

322 as a cryptomelane structural model (Demchenko et al., 2009; Stelmachowski et al., 2018). The 

323 cryptomelane model consisted of the first neighboring octahedral O ions, the other neighboring O 

324 and Mn ions using the interatomic distance up to 3.5 Å from the central Mn ion. Figure 4(a) shows 

325 the EXAFS refinement of the |R| (Fourier transform of k) for the Mn ions in the K-OMS-2 

326 structure. The spectrum was a good fit with the R-factor of 1.6% indicated that the cryptomelane 

327 Q structure model represented a good model (R-factor  2%) for the K-OMS-2 structure. In 

328 addition, the refinement of the Cu K-edge corresponding with the cryptomelane model, the Mn 

329 ion was replaced by Cu ion, as shown in Figure 4(b). The Cu K-edge EXAFS spectrum displayed 

330 a good fit with the data (R-factor = 0.1%), demonstrating that the Cu ions existed in the same site 

331 as the Mn ions. Moreover, the Cu ions substituted the Mn ions, in which they were doped into the 

332 K-OMS-2 framework structure. Likewise, Shen et al. reported that the Fe presented as Fe3+ in an 

333 octahedral environment similar to Mn in the MnO6 of K-OMS-2 (Shen et al., 2011). In addition, 

334 the structural disorder of all correlations was signified using the EXAFS Debye–Waller factors 

335 (σ2). The refined interatomic distances and σ2 factors are summarized in Table 2. According to the 
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336 Cu-substituted fitting, the interatomic distances and σ2 of the first O and Cu/Mn coordination were 

337 slightly higher than the conventional MnO6 site owing to a local distortion of the K-OMS-2 

338 framework structure when Mn ion was replaced by Cu ion. In addition to the XANES, XPS and 

339 EXAFS results, we can propose that the Cu ions were doped into the K-OMS-2 framework 

340 structure, in which Cu3+ species existed predominantly by replacing Mn ions in the octahedral site, 

341 as shown in Figure 5.

342

343 [Table 2 near here]

344

345 [Figure 5 near here]

346

347 According to King’ondu et al. (King’ondu et al., 2011), the dopant can be embedded into 

348 the octahedral framework by the substitution of MnO6 units of K-OMS-2, then cations must allow 

349 six-coordination and have a crystal radius almost the same size as that of Mn3+ (72 pm), Mn4+ (67 

350 pm). Moreover, the MnO6 units of K-OMS-2 can be substituted by CuO6 units, thus a crystal radius 

351 of copper in six-coordination must be almost the same size as Mn3+ or Mn4+. The crystal radii of 

352 Cu2+ and Cu3+ in six-coordination are 87 and 68 pm, respectively. The Cu ion in this work 

353 represented Cu3+ species in the K-OMS-2 structure, whereas Yang et al. (Yang et al., 2014) 

354 reported that CuO/Cu2+ incorporated into the K-OMS-2 framework. Moreover, Elias et al. reported 

355 that the Cu-O bond distance was found to be 1.93 Å (similarly with this work), which indicated a 

356 contribution of Cu3+(Elias et al., 2014). According to the literature, the MnO6 units were possibly 

357 substituted by Cu3+ more than Cu2+ to form CuO6 units because of the crystal radius size, the bond 

358 distance and the oxidation state. Therefore, to replace Mn ions in the octahedral site by copper, the 
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359 oxidation state of copper should be 3+. Then, we can suggest that the MnO6 units of Cu-K-OMS-

360 2 catalyst in this work were substituted by Cu3+ during the formation process of the octahedral site.

361 Catalytic performance and stability study

362

363 [Figure 6 near here]

364

365 The catalytic performances of Cu-K-OMS-2 and undoped K-OMS-2 samples were investigated 

366 by toluene oxidation in a PBR under the same condition, as presented in Figure 6. These results 

367 showed that the Cu-K-OMS-2 catalysts exhibited a higher toluene removal than the undoped K-

368 OMS-2 catalyst at 180ºC of reaction temperature. Additionally, complete oxidation took place at 

369 a reaction temperature of 190ºC and 200ºC for Cu-K-OMS-2 and K-OMS-2 catalysts, respectively. 

370 The pure phase structure of Cu-K-OMS-2 with high specific surface area and Oads/Olatt ratio led to 

371 show a high toluene removal. The high specific surface area correlated with high Oads/Olatt ratio 

372 resulted in high toluene removal, corresponding to Kaewbuddee et al. result (Kaewbuddee et al., 

373 2019b). Moreover, the Cu3+ species in Cu-K-OMS-2 framework structure could enhance the 

374 toluene removal due to the high electronegativity of Cu3+ species. The higher electronegativity 

375 leads to a weakness of the Mn–O bond in the Mn–O–M bridge, and the great mobility and 

376 reactivity of the active oxygen species resulted in high toluene removal. In addition, Kaewbuddee 

377 et al. confirmed that the high amount of copper dopant led to the enhancement of toluene removal. 

378 The Cu3+/Cu2+ ratio on Cu-K-OMS-2 catalyst increased with the rise in copper dopant, which 

379 promoted the toluene removal (Kaewbuddee et al., 2019a). Therefore, the Cu-K-OMS-2 catalysts 

380 in this work exhibited a low complete-reaction temperature of toluene oxidation compared with 

381 the manganese oxide-based catalyst of other recent researches (Genuino et al., 2012; 
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382 Tarjomannejad et al., 2016). According to these results, copper doped into the K-OMS-2 

383 framework structure can enhance the catalytic performance at a low reaction temperature. The 

384 scale-up of the experiment was set to study the catalytic stability and deactivation of the Cu-K-

385 OMS-2 catalyst for toluene oxidation via PBR with 0.15 g of catalyst. The toluene, about 13,500 

386 ppmV, was passed through the PBR at a complete reaction temperature of 200ºC for 8 h reaction 

387 time. The physicochemical properties of fresh and used catalyst were characterized by XRD and 

388 XPS techniques. Figure 1 confirms that the crystalline phase of used Cu-K-OMS-2 was not 

389 destroyed after the reaction finished. In addition, the binding energy of Cu, Mn and O elements of 

390 used Cu-K-OMS-2 was not shifted compared with fresh Cu-K-OMS-2 catalyst, as shown in Figure 

391 3. Therefore, the copper-doped K-OMS-2 catalyst presented a high stability for toluene oxidation 

392 at a reaction temperature of 200ºC.

393

394 Kinetic study

395

396 [Figure 7 near here]

397

398 The kinetic parameters of toluene oxidation by using Cu-K-OMS-2 catalyst were studied under 

399 the reaction temperature in the range of 130–150ºC with the WHSV at 3.41 h–1 and 7,550 ppmV 

400 of initial toluene concentration. The initial reaction rates of toluene oxidation were computed by 

401 using the correlation of toluene conversion and space time at different reaction temperatures. Then, 

402 the relationships between the initial reaction rate of toluene oxidation versus reaction temperature 

403 and the natural log of initial reaction rate of toluene oxidation versus inverse reaction temperature 

404 were presented in Figure 7(a) and 7(b), respectively. The toluene reaction rate increases with 
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405 increasing in the reaction temperature. The activation energy (Ea) of toluene oxidation was  

406 determined by the combination of the power law models (Equation (2)) and the Arrhenius equation 

407 (Equation (3)), following the deep toluene oxidation reaction with oxygen. Based on our 

408 experiment, the initial toluene and O2 are constant concentrations. Likewise, pressure and inlet 

409 volumetric flow rate are constant as well.

410

411 The gas-phase reaction rate of toluene is shown in Equation (2).

412                    (2)―𝑟0 = 𝑘𝐴𝑃 ∝
𝑡𝑜𝑙𝑢𝑒𝑛𝑒,0𝑃𝛽

𝑜𝑥𝑦𝑔𝑒𝑛,0

413 Where, -r0 is the initial reaction rate of toluene, kA is a reaction rate constant, Ptoluene,0 and Poxygen,0 

414 are initial concentration of toluene and oxygen, respectively. 

415 The Arrhenius equation is displayed in Equation (3).

416                    (3)𝑘𝐴(𝑇) = 𝐴𝑒
― 𝐸𝑎 𝑅𝑇

417 Here, A is pre-exponential factor, Ea is the activation energy, R is gas constant and T is absolute 

418 temperature (K). Then, combined equation between the power law models and the Arrhenius 

419 equation is presented in Equation (4).

420                    (4)―𝑟0 = 𝐴𝑒
― 𝐸𝑎 𝑅𝑇

𝑃 ∝
𝑡𝑜𝑙𝑢𝑒𝑛𝑒,0𝑃𝛽

𝑜𝑥𝑦𝑔𝑒𝑛,0

421 Give;        (5)𝐴′ = 𝐴𝑃 ∝
𝑡𝑜𝑙𝑢𝑒𝑛𝑒,0𝑃𝛽

𝑜𝑥𝑦𝑔𝑒𝑛,0

422                    (6)―𝑟0 = 𝐴′𝑒
― 𝐸𝑎 𝑅𝑇

423 Where;  is the constant values as shown in Equation (5). Then,  substituted to Equation (6) and 𝐴′ 𝐴′

424 then this equation is taken to the natural logarithm. The final equation is revealed in Equation (7) 

425 to compute the activation energy (Ea).

426                    (7)ln 𝑟0 =  ―
𝐸𝑎

𝑅𝑇 ―  ln 𝐴′
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427

428 In order to estimate Ea, the natural logs of the initial reaction rate of toluene oxidation and 

429 ln(r0) were plotted along with the inverse reaction temperature, as presented in Figure 7(b). 

430 According to the linear relationship between ln(r0) and 1/T, the activation energy of the toluene 

431 oxidation with Cu-K-OMS-2 catalyst was determined to be 91.18 kJ mol-1. The Ea value of this 

432 work is lower than the activation energy of the deep toluene oxidation with oxygen system by 

433 using platinum on alumina catalyst, which has been reported to be 106 kJ mol-1 (Ordonez et al., 

434 2002). In addition, it is significantly lower than the activation energies of total oxidation of toluene 

435 with oxygen by using palladium and platinum supported on carbon nanofiber as a catalyst, which 

436 has been reported to be between 116161 kJ mol-1 (Morales-Torres et al., 2009). Although the 

437 inlet concentration of toluene was higher than other researches, the Cu-K-OMS-2 catalyst in this 

438 work presented the highest toluene removal at the low reaction temperature, according to Table 3. 

439 Hence, we can propose that the Cu-K-OMS-2 catalyst in this work can enhance the toluene 

440 oxidation at low reaction temperature, which exposed a high toluene removal compared with other 

441 researches.

442

443 [Table 3 near here]

444

445 Conclusions

446 High-valent copper was successfully doped into the K-OMS-2 framework structure by the in situ 

447 hydrothermal method. The Cu3+ species appeared in the K-OMS-2 structure, which was identified 

448 using the XANES technique. In addition, the Cu3+ species existed in the Cu-K-OMS-2 framework 

449 structure by the Mn3+ substitution in the MnO6 octahedral site, which influenced the high toluene 
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450 oxidation at the low reaction temperature. Moreover, the oxidation state of copper in Cu-K-OMS-2 

451 material exhibited both the Cu3+ and Cu2+ species on the catalyst surface. The copper dopant can 

452 improve the physicochemical properties of Cu-K-OMS-2 catalysts, which is associated with the 

453 catalytic performance. The Cu-K-OMS-2 materials exhibited higher toluene removal than 

454 undoped K-OMS-2 material at low reaction temperature because they showed a pure phase of the 

455 Cu-K-OMS-2 structure, high specific surface area and Oads/Olatt ratio. Additionally, the low 

456 activation energy of the toluene oxidation with Cu-K-OMS-2 catalyst was observed to be 91.18 kJ 

457 mol-1, resulted in the enhancement of toluene removal at low reaction temperature. The complete 

458 toluene oxidation took place at 190ºC of reaction temperature. Moreover, the Cu-K-OMS-2 

459 catalysts showed high stability for toluene oxidation at low reaction temperature.

460
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Figure captions

Figure 1. XRD pattern of copper-doped K-OMS-2 samples compared with undoped K-OMS-2 

catalyst.

Figure 2. The XANES feature of (a) the Mn K-edge spectra and (b) Cu K-edge spectra of Cu-K-

OMS-2 catalyst compared with the copper standards and manganese standards, respectively.

Figure 3. The XPS results of (a) Cu 2p, (b) Mn 2p and (c) O 1s spectra of the Cu-K-OMS-2 

materials. 

Figure 4. EXAFS analysis (a) Mn K-edge, (b) Cu K-edge of prepared Cu-K-OMS-2 catalyst 

These spectra were obtained by measurements and the cryptomelane Q structure model fitting as 

represented by the black and red lines, respectively.

Figure 5. The Cu-K-OMS-2 structure.

Figure 6. The catalytic activity of K-OMS-2 and Cu-K-OMS-2 catalysts.

Figure 7. (a) The initial reaction rate of toluene oxidation versus reaction temperature and (b) the 

natural log of initial reaction rate of toluene oxidation versus inverse reaction temperature.
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Figure 1. XRD pattern of copper-doped K-OMS-2 samples compared with undoped K-OMS-2 

catalyst.

Page 35 of 45

URL: http://mc.manuscriptcentral.com/  Email: wngill@sfo.com

Chemical Engineering Communications

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review Only

Figure 2. The XANES feature of (a) the Mn K-edge spectra and (b) Cu K-edge spectra of Cu-K-

OMS-2 catalyst compared with the copper standards and manganese standards, respectively.
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Figure 3. The XPS results of (a) Cu 2p, (b) Mn 2p and (c) O 1s spectra of the Cu-K-OMS-2 

materials. 
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Figure 4. EXAFS analysis (a) Mn K-edge, (b) Cu K-edge of prepared Cu-K-OMS-2 catalyst 

These spectra were obtained by measurements and the cryptomelane Q structure model fitting as 

represented by the black and red lines, respectively.
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Figure 5. The Cu-K-OMS-2 structure.
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Figure 6. The catalytic activity of K-OMS-2 and Cu-K-OMS-2 catalysts.
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Figure 7. (a) The initial reaction rate of toluene oxidation versus reaction temperature and (b) the 

natural log of initial reaction rate of toluene oxidation versus inverse reaction temperature.
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Table captions

Table 1. The physicochemical properties of Cu-K-OMS-2 materials compared with undoped K-

OMS-2 material.

Table 2. EXAFS fitting results of Mn and Cu atoms as a central atom in the MnO6 site.

Table 3. The comparisons of the activation energy and the catalytic performance on toluene 

removal.
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Table 1. The physicochemical properties of Cu-K-OMS-2 materials compared with undoped K-

OMS-2 material.

Catalysts
Specific surface 

area (m2/g)

Mn3+/Mn4+ 

ratio(a)

Cu3+/Cu2+ 

ratio(b)

Oads/Olatt 

Ratio(b)

K-OMS-2 51.31 0.10 - 0.24

Cu-K-OMS-2 60.74 0.08 2.83 0.62

(a)The Mn3+/Mn4+ ratio was calculated by using the LCF of XANES spectra.

(b)The Cu3+/Cu2+ ratio and Oads/Olatt ratio were calculated by using the XPS data.
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Table 2. EXAFS fitting results of Mn and Cu atoms as a central atom in the MnO6 site.

MnO6 site with Mn atom MnO6 site with Cu atom

Correlations Coor. no. Distance (Å) σ2 (Å2) Correlations Coor. no. Distance (Å) σ2 (Å2)

Mn–O1 6 1.888 ± 0.005 0.004 ± 0.001 Cu–O1 6 1.920 ± 0.014 0.008 ± 0.001

Mn–Mn1 4 2.869 ± 0.007 0.005 ± 0.001 Cu–Cu1 4 2.767 ± 0.027 0.013 ± 0.004

Mn–O2 3 3.212 ± 0.021 0.004 ± 0.003 Cu–O2 3 3.756 ± 0.032 0.001 ± 0.001

Mn–Mn2 4 3.430 ± 0.001 0.005 ± 0.001 Cu–Cu2 4 3.290 ± 0.021 0.001 ± 0.001

Mn–O3 3 3.242 ± 0.021 0.004 ± 0.003 Cu–O3 3 3.785 ± 0.032 0.001 ± 0.001
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Table 3. The comparisons of the activation energy and the catalytic performance on toluene 

removal.

Catalysts
Ea 

(kJ mol-1)

Inlet concentration 

(ppmV)

Reaction 

temperature (ºC)
References

Pt/-Al2O3 106 5000 T50 ~ 180 Ordonez et al., 2002

Pt/ACNF 128 1000 T95 ~ 190 Morales-Torres et al., 2009

Pt/-Al2O3 138 1000 T85 ~ 190 Morales-Torres et al., 2009

Pd/ACNF 161 1000 T50 ~ 190 Morales-Torres et al., 2009

Pd/-Al2O3 116 1000 T25 ~ 190 Morales-Torres et al., 2009

Cu-K-OMS-2 91 7,550 T100 = 190 This work
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