

Structural Characterizations of Copper Incorporated Manganese Oxide OMS-2 Material and Its Efficiencies on Toluene Oxidation

Journal:	Chemical Engineering Communications
Manuscript ID	GCEC-2020-0191
Manuscript Type:	Research Paper
Date Submitted by the Author:	24-Apr-2020
Complete List of Authors:	Kaewbuddee, Chatkamol; Khon Kaen University, Department of Chemical Engineering, Faculty of Engineering Chirawatkul, Prae; Synchrotron Light Research Institute Kamonsuangkasem, Krongthong; Synchrotron Light Research Institute Chanlek, Narong; Synchrotron Light Research Institute Wantala, Kitirote; Khon Kaen University, Department of Chemical Engineering, Faculty of Engineering
Keywords:	Trivalent copper, Divalent copper, Toluene oxidation, Oxidation state, OMS-2, Cu-K-OMS-2
	·

2 3 4	1	Structural Characterizations of Copper Incorporated Manganese Oxide OMS-
5 6 7 8	2	2 Material and Its Efficiencies on Toluene Oxidation
9 10 11	3	C. Kaewbuddee ^{a,b} , P. Chirawatkul ^c , K. Kamonsuangkasem ^c , N. Chanlek ^c and K. Wantala ^{a,b,d*}
12 13	4	
14 15 16	5	^a Department of Chemical Engineering, Faculty of Engineering, Khon Kaen University,
17 18	6	Khon Kaen 40002, Thailand
19 20	7	^b Chemical Kinetics and Applied Catalysis Laboratory (CKCL), Faculty of Engineering,
21 22	8	Khon Kaen University, Khon Kaen 40002, Thailand
23 24 25	9	^c Synchrotron Light Research Institute (Public Organization), 111 University Avenue,
26 27	10	Muang District, Nakhon Ratchasima, 30000, Thailand
28 29	11	^d Research Center for Environmental and Hazardous Substance Management (EHSM),
30 31	12	Faculty of Engineering, Khon Kaen University, Khon Kaen 40002, Thailand
32 33 34	13	*Corresponding author: kitirote@kku.ac.th
 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 	14	
59 60		URL: http://mc.manuscriptcentral.com/ Email: wngill@sfo.com

3 4	15	Detailed contact information
5 6	16	Chatkamol Kaewbuddee
7 8	17	Department of Chemical Engineering, Faculty of Engineering, Khon Kaen University,
9 10	18	Khon Kaen 40002, Thailand
11 12 13	19	Email: k_chatkamol@kkumail.com
14 15	20	
16 17	21	Prae Chirawatkul
18 19	22	Synchrotron Light Research Institute (Public Organization), Nakhon Ratchasima 30000, Thailand
20 21	23	Email: prae@slri.or.th
22 23 24	24	
24 25 26	25	Krongthong Kamonsuangkasem
20 27 28	26	Synchrotron Light Research Institute (Public Organization), Nakhon Ratchasima 30000, Thailand
29 30	27	Email: krongthong@slri.or.th
31 32	28	
33 34	29	Narong Chanlek
35 36	30	Synchrotron Light Research Institute (Public Organization), Nakhon Ratchasima 30000, Thailand
37 38	31	Email: narong@slri.or.th
39 40	32	
41 42	33	Kitirote Wantala *Corresponding author
43 44	34	Department of Chemical Engineering, Faculty of Engineering, Khon Kaen University,
45 46	35	Khon Kaen 40002, Thailand
47 48 40	36	Email: kitirote@kku.ac.th
49 50 51 52 53 54 55	37	Tel.: +66-43-009700 Ext. 45705; Fax: +664 3462 240
56 57 58		

38 Structural Characterizations of Copper Incorporated Manganese Oxide OMS-

2 Material and Its Efficiencies on Toluene Oxidation

40 Abstract

This work aimed to study the excellent properties of the high-valent copper doped into the framework structure of K-OMS-2 catalyst (Cu-K-OMS-2). The physicochemical properties of Cu-K-OMS-2 material were examined using X-ray Diffractometer (XRD), N2 adsorption-desorption, X-ray photoelectron spectroscopy (XPS), X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) techniques. The copper dopant can improve the physicochemical properties of K-OMS-2 catalyst including the specific surface area, O_{ads}/O_{latt} ratio and Cu³⁺/Cu²⁺ ratio, resulting in enhanced catalytic activity. The Cu³⁺ species were observed in the Cu-K-OMS-2 structure. In addition, the oxidation state of copper on the Cu-K-OMS-2 surface revealed both Cu³⁺ and Cu²⁺ species, which affected toluene removal. The existence of the Cu³⁺/Cu²⁺ ratio led to enhance toluene removal at low reaction temperature. Moreover, the Cu K-edge EXAFS spectrum demonstrated that the Cu ions existed in the same site as the Mn ions in the K-OMS-2 framework structure. Consequently, we can propose that Cu^{3+} existed in the Cu-K-OMS-2 framework structure by Mn³⁺ substitution in the MnO₆ octahedral site, which influenced the high toluene oxidation at low reaction temperature. In addition, the high-valent copper doped into K-OMS-2 catalyst showed high stability for VOCs oxidation. The activation energy of toluene oxidation over Cu-K-OMS-2 catalyst was computed as shown about 91.18 kJ mol⁻¹.

Keywords: Trivalent copper; Divalent copper; Toluene oxidation; Oxidation state; OMS-2; Cu-K-OMS-2

The catalytic oxidation technology with cryptomelane (K-OMS-2) has been widely used for the removal of volatile organic compounds (VOCs) in the gaseous phase (Fu et al., 2017; Hou et al., 2013b; Said et al., 2016; Santos et al., 2011, 2010; Sihaib et al., 2017; Wang and Li, 2010). The high catalytic performance of K-OMS-2 is related to its unique structural properties such as open tunnel structure, mixed-valent manganese oxide, mobile and lattice oxygen species, high specific surface area, hydrophobicity and easy release of lattice oxygen (DeGuzman et al., 1994; Hou et al., 2018, 2013a; Luo et al., 2008, 2000; Shen et al., 2011; Suib, 2008). The excellent properties correlate with the particle morphology and synthesis route (Schurz et al., 2009). The nest-like K-OMS-2 catalyst, synthesized via the hydrothermal method, exhibits a high catalytic activity due to the high concentration of oxygen species and good mobility of oxygen species (Deng et al., 2014). Hou et al. reported that the presence of Mn^{3+} in the OMS-2 samples could imply oxygen vacancy defects, which affect the catalytic oxidation ability of OMS-2 (Hou et al., 2013a). In addition, rising the oxygen vacancy defect concentrations considerably enhances the lattice oxygen reactivity and increasing VOCs removal, for example, benzene (Hou et al., 2013a; Yodsa-nga et al., 2015), toluene (Fu et al., 2017), carbon monoxide (Chen et al., 2008), peroxymonosulfate (Fang et al., 2017) and ozone (Jia et al., 2016; Wang et al., 2015). Moreover, the K-OMS-2 catalyst with high O_{ads}/O_{latt} mole ratio influences the enhancement of the VOCs' oxidation (Jia et al., 2016; L. Liu et al., 2017; H. Sun et al., 2017). However, the K-OMS-2 material displays complete VOCs oxidation at high reaction temperature (more than 250°C) (Gandhe et al., 2007; Genuino et al., 2012; Liu et al., 2017; Sun et al., 2011; Sun et al., 2015). Thus, the material's efficiency is necessarily improved owing to the deactivation of K-OMS-2 catalyst at low reaction temperature, whereas complete oxidation at high reaction temperature.

85	To modify K-OMS-2 structural properties and catalytic performance, the K-OMS-2
86	material has been modified by doping with several metal cations into the tunnels and/or the
87	framework. Alkali metals are usually incorporated into the tunnel sites of K-OMS-2, such as Li ⁺ ,
88	Na ⁺ , K ⁺ , Rb ⁺ and Cs ⁺ (Carabineiro et al., 2016; Liu et al., 2003; Santos et al., 2012, 2009; Wu et
89	al., 2011). These metal ions can replace K^+ or occupy empty sites or replace H_3O^+ in tunnel sites
90	(Santos et al., 2012). Hou et al. reported that the substitution of tunnel K ⁺ ions leads to an increase
91	in the formation energy of an oxygen vacancy, resulting in decreased oxygen vacancy
92	concentration, as a reason why low catalytic activity occurred (Hou et al., 2014). Depending on
93	the results of our literature review, doping metal ions into the framework structure might enhance
94	the K-OMS-2 performance. Transition metal ions have been used to dope the framework of K-
95	OMS-2, for example, W ⁶⁺ , Mo ⁶⁺ , V ⁵⁺ , Cr ⁴⁺ , Fe ³⁺ , Ru ³⁺ , Cu ²⁺ , Zn ²⁺ , Co ²⁺ , Pt ²⁺ , Pd ²⁺ , Ni ²⁺ and Ag ⁺
96	(Adjimi et al., 2017; Calvert et al., 2008; Ching et al., 2016; Hernández et al., 2012, 2010;
97	Jothiramalingam et al., 2006a; Li et al., 2015; Ma et al., 2017; Özacar et al., 2013; Roozeboom et
98	al., 1981; Shaikjee and Coville, 2011; Sun et al., 2013). Among those dopants, copper ion shows
99	as a suitable metal ion for modification of K-OMS-2, since it can be prepared by a simple synthesis
100	and it gives an effective oxidation catalyst. The presence of copper ions in K-OMS-2 catalyst
101	improves the catalytic properties associated with the average oxidation state, specific surface area,
102	reducibility, mixed-valent manganese species, oxygen mobility, defect-oxide species and stability
103	(Chen et al., 2001; Hernández et al., 2012, 2010; Liu et al., 2010; Yang et al., 2014; Yun et al.,
104	2017). In addition, the electronegativity property of metal dopants plays an important role in K-
105	OMS-2 performance. Sun et al. (Sun et al., 2013) reported that the metal electronegativity (Cu >
106	Co > Fe > Cr) is related to the order of catalytic activity using transition-metal-ion doped OMS-2
107	catalysts. Because the higher electronegativity leads to a weakness of the Mn–O bond in the Mn–

O–M bridge, and the greater mobility and reactivity of the active oxygen species. According to the theory, there are many oxidation states of copper, including Cu⁺, Cu²⁺, Cu³⁺ and Cu⁴⁺, which show different electronegativities (Li and Xue, 2006). The copper ions with an increase in the oxidation state possibly increase the electronegativity as follows: $Cu^+ < Cu^{2+} < Cu^{3+} < Cu^{4+}$. Consequently, Cu⁴⁺ could show the highest efficiency and higher than Cu³⁺, Cu²⁺ and Cu⁺. Commonly, the Cu²⁺ was successfully doped on K-OMS-2 material by several methods, such as reflux (Liu et al., 2010), ball milling (Hernandez et al., 2012), incipient wetness impregnation (Davo-Quinonero et al., 2016), solid-state (Hernandez et al., 2012) and hydrothermal methods (Jothiramalingam et al., 2006b; Ramstad and Mikkelsen, 2004). The Cu^{2+} ions were incorporated in the tunnel structure of K-OMS-2 materials (Jothiramalingam et al., 2006b; Yang et al., 2014), which might destroy the framework structure to become a layer structure resulted in low catalytic activity for VOCs removal (Yang et al., 2014).

Recently, we can dope a trivalent copper (Cu^{3+}) into the K-OMS-2 catalyst through the in situ hydrothermal methods (Kaewbuddee et al., 2019a). The effect of hydrothermal conditions on Cu-K-OMS-2 synthesis including aging temperature, aging time and amount of copper dopant were studied by using the Box-Behnken design (BBD) method. The Cu-K-OMS-2 samples were tested with thermal toluene oxidation. The results indicated that the hydrothermal conditions affect the physical and chemical properties and the performance of the Cu-K-OMS-2 catalyst. In addition, the optimal conditions for the Cu-K-OMS-2 synthesis are determined as 120°C of aging temperature, 6 h of aging time and 6% mole of Cu on K-OMS-2, which exhibited a complete toluene oxidation at low reaction temperature. According to the review, the incorporation of copper in the K-OMS-2 tunnel structure showed a disadvantage in its performance. Therefore, the location of copper ions in K-OMS-2 structure affects the thermal oxidation of VOCs. Continuously, the

Cu-K-OMS-2 catalyst, prepared by in situ hydrothermal method at optimal condition, was used to study the excellent properties on toluene oxidation. The local structure of copper in K-OMS-2 material was investigated. The stability of Cu-K-OMS-2 catalyst was considered as well. Moreover, the kinetic parameters of toluene oxidation by using Cu-K-OMS-2 were examined. The physicochemical properties of Cu-K-OMS-2 were explained using X-ray diffractometer (XRD), N₂ adsorption-desorption calculated the specific surface area by Brunauer–Emmett–Teller (BET), X-ray photoelectron spectroscopy (XPS), X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) techniques.

Materials and methods

Chemicals

All the chemicals used for this study are of analytical grade. Manganese(II) acetate tetrahydrate (Mn(CH₃COO)₂·4H₂O) with greater than 99% purity, potassium permanganate (KMnO₄) with 99% purity and glacial acetic acid (CH₃COOH) were purchased from ACROS Organics, UNIVAR and QRëC, respectively, and 1000-ppm Cu AAS standard solution from Applichem.

In situ copper-doped K-OMS-2 (Cu-K-OMS-2) synthesis

Cu-K-OMS-2 was synthesized through a hydrothermal method which was applied following Kaewbuddee et al. research (Kaewbuddee et al., 2019a). First, the mole ratio of 0.75 $KMnO_4/Mn(CH_3COO)_2$ was used to prepare the catalyst. The $KMnO_4$ and $Mn(CH_3COO)_2$ were dissolved separately in 40 mL deionized water under continuous stirring until becoming a perfectly mixed solution. Second, the KMnO₄ solution was dropped slowly into the Mn(CH₃COO)₂ solution

and then the 6% mole of copper standard solution was added to the mixture under continuous stirring. Third, the pH of the mixed solution was adjusted to an acidic condition (pH lower than 3.5) by concentrated glacial acetic acid and stirred continuously for an hour. After that, the final solution was transferred into an autoclave for the hydrothermal process at 120°C for 6 h. Finally, the obtained black slurry was filtered and washed with deionized water until the filtrate was pH neutral. The obtained catalyst was dried overnight at 100°C. The K-OMS-2 was prepared by the same technique with Cu-K-OMS-2 following the optimal condition reported by Yodsa-nga et al. (Yodsa-nga et al., 2015).

Catalyst characterization

The crystalline phase of the samples was analyzed by XRD (PANalytical, EMPYREAN (Netherlands)) using Cu K α radiation with wavelength $\lambda = 0.1514$ nm at 40 mA and 45 kV and Bruker D8 Advance using Cu K α with wavelength $\lambda = 0.1514$ nm at 30 mA and 40 kV. The specific surface area was analyzed using a N₂ adsorption–desorption analyzer (ASAP2460, Micromeritics, USA) and calculated using the BET equation. The oxidation states of manganese, copper and oxygen were determined by XPS and XANES techniques (BL5.3 and BL1.1W, respectively), Synchrotron Light Research Institute (Public Organization), Thailand. The neighboring atoms and absorber-neighbor distances were analyzed via the EXAFS technique (BL1.1W). The stand-alone XPS with a Kratos AXIS Ultra model was operated using monochromatic Al K α hv = 1486.71 eV, 5 mA and 15 kV as an X-ray source.

- - 175 Catalytic thermal oxidation of toluene

The catalytic activities of Cu-K-OMS-2 and K-OMS-2 samples were tested in toluene degradation via packed bed reactor (PBR), the same apparatus as in our previous work, where 0.01 g of Cu-K-OMS-2 or K-OMS-2 catalysts were placed in the center of the PBR. Toluene was maintained at -3°C, using the cold bath as an evaporator. Approximately 7,550 ppmV of toluene concentration, calculated following Doucet et al. (Doucet et al., 2006), was studied. The gaseous toluene oxidation was investigated with reaction temperature in the range of 140–300°C and the weight hourly space velocity (WHSV) was used at 3.41 h⁻¹ under atmospheric pressure. Then, the kinetic parameters were investigated by varying the amount of Cu-K-OMS-2 catalyst between 0.005-0.02 g. Additionally, to study the catalytic stability and the deactivation of Cu-K-OMS-2 catalyst, the toluene concentration was set up to 13,500 ppmV (about 2 times), then passed through 0.15 g of catalyst in the PBR at 200°C of reaction temperature. After the toluene oxidation, the spent catalysts were studied the characteristic, such as the phase structure or the binding energy of XPS compared with the fresh catalyst. The toluene concentration in the fluid was measured using gas chromatography with a thermal conductivity detector using Gaskuropack 54 as a column (GC-TCD, Shimadzu, 8A series, Japan) which was investigated at least three times for each reaction-temperature testing. The percentage removal of toluene (Y) was calculated using Equation (1).

$$=\frac{C_0 - C_f}{C_0} \times 100\%,$$
 (1)

where
$$C_0$$
 and C_f are toluene concentrations before and after reaction in the PBR, respectively

Y

Results and discussion

196 Characterizations

197 The XRD patterns of the prepared catalysts are presented in Figure 1. According to the previous198 work, Yodsa-nga et al. found the optimum conditions of K-OMS-2 synthesis for VOCs removal

2	
כ ⊿	
4	
6	
7	
, 8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
20 20	
29	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49 50	
5U 51	
51 52	
52 52	
52	
55	
56	
57	
58	
59	
60	

at 75°C of aging temperature for 21 h of aging time (Yodsa-nga et al., 2015). Therefore, the K-199 OMS-2 sample as an undoped reference catalyst, synthesized by following Yodsa-nga et al. 200 (Yodsa-nga et al., 2015), presented characteristic peaks at 2θ values of 12.73, 18.21, 28.76, 37.51, 201 41.89, 50.08, 60.17, 65.32 and 70° which correspond to the cryptomelane type (JCPDS 29-1020, 202 KMn₈O₁₆) (Iver et al., 2010; Kumar et al., 2009; Sithambaram et al., 2009). According to our 203 204 results, the XRD patterns of Cu-K-OMS-2 catalyst clearly showed the cryptomelane (K-OMS-2) phase structure. Moreover, no additional peaks were observed, indicating that the Cu-K-OMS-2 205 materials were a pure phase of K-OMS-2 and the copper oxide phase was not observed. The results 206 207 implied that copper ions were well dispersed or incorporated into the K-OMS-2 structure and the copper amounts did not damage the Cu-K-OMS-2 crystalline phase as well. 208 209 [Figure 1 near here] 210 211 [Table 1 near here] 212 213 The specific surface areas of prepared samples were measured using a N₂ adsorption-214 desorption analyzer and calculated by the BET equation, as shown in Table 1. The results found 215 that the copper dopant influenced the specific surface area of the K-OMS-2 catalyst. Obviously, 216 217 the specific surface areas of Cu-K-OMS-2 samples are higher than undoped K-OMS-2 prepared 218 at optimal condition reported by Yodsa-nga et al. (Yodsa-nga et al., 2015). Therefore, the K-OMS-2 materials were doped with the copper dopant, in which the specific surface area was higher than 219 220 without doping. The higher specific surface areas of Cu-K-OMS-2 materials could have promoted 221 the catalytic activity. Likewise, Kaewbuddee et al. research, they reported that the K-OMS-2

1 2		
2 3 4	222	catalyst with a high specific surface area showed the highest toluene removal (Kaewbuddee et al.,
5 6	223	2019b).
7 8	224	
9 10 11	225	[Figure 2 near here]
12 13	226	
14 15	227	The copper and manganese species in K-OMS-2 material were investigated by the XANES
16 17	228	technique, as presented in Figure 2. The oxidation state of manganese in K-OMS-2 structure was
19 20	229	analyzed using the XANES technique with Mn K-edge energy, as shown in Figure 2(a). The Mn
21 22	230	K-edge features of manganese standards and prepared Cu-K-OMS-2 materials were explored. The
23 24	231	pre-edge features of Cu-K-OMS-2 material and MnO ₂ standard were quite the same shape. But,
25 26 27	232	the Cu-K-OMS-2 presented lower intensity of pre-edge than the MnO ₂ standard. However, the
28 29	233	shoulder peak of Cu-K-OMS-2 materials displayed features similar to the Mn ₂ O ₃ standard. In
30 31	234	addition, the Mn K-edge absorption energy (E ₀) of Cu-K-OMS-2 materials was determined at
32 33 34	235	~6,551 eV, which was higher than E_0 of the Mn_2O_3 standard (6,548 eV), but lower than E_0 of the
34 35 36 37 38 39 40	236	MnO ₂ (6,552) standard. These results indicated that the oxidation states of manganese in Cu-K-
	237	OMS-2 structure were the mixed-valence states of Mn_2O_3 (3+) and MnO_2 (4+). The Mn^{3+}/Mn^{4+}
	238	ratios of Cu-K-OMS-2 and K-OMS-2 samples were estimated by linear combination fitting (LCF)
41 42 43	239	of XANES spectra with MnO ₂ and Mn ₂ O ₃ reference materials using Athena software. The LCF
44 45	240	results presented that the Mn ³⁺ /Mn ⁴⁺ ratio of the Cu-K-OMS-2 sample (0.08) was slightly lower
46 47	241	than the K-OMS-2 sample (0.10), as shown in Table 1. This phenomenon might be caused by the
48 49 50	242	replacing of Cu ions in Cu-K-OMS-2 structure. According to Wu et al. work, they found that the
51 52	243	amounts of Mn ions in Co-K-OMS-2 and Cu-K-OMS-2 were lower than in the K-OMS-2 material,
53 54 55	244	which indicated that the Mn ions were replaced by Co or Cu ions in the framework of K-OMS-2
56 57 58		

60

URL: http://mc.manuscriptcentral.com/ Email: wngill@sfo.com

structure (Wu et al., 2018). The oxidation states of copper in the K-OMS-2 structure were confirmed by the XANES spectra with Cu K-edge energy. The XANES features of copper standards are shown in Figure 2(b). There obviously showed different position edges and shapes. The pre-edge energy of Cu₂O and CuO appeared at 8,977.31 and 8,978.64 eV, respectively, corresponding to the literature (Adak et al., 2017; Munoz-Rojas et al., 2007). To visibly compare the position edges and shapes, copper standards were plotted along with Cu-K-OMS-2 materials, as shown in Figure 2(b). According to our results, the pre-edge energy of Cu-K-OMS-2 catalyst was shifted to 8,980.54 eV, which is correlated with the pre-edge energy of Cu³⁺ species (Chandarak et al., 2011; Munoz-Rojas et al., 2007; Sinha et al., 2015; Tomson et al., 2015). The pre-edge energy of Cu-K-OMS-2 material is higher than the Cu₂O and CuO standards. The results showed that the XANES feature of Cu-K-OMS-2 sample does not match with Cu₂O and CuO standards. The Cu-K-OMS-2 material does not present the shoulder peak, unlike with Cu₂O and CuO standards. In addition, the white line peak of the prepared sample is more intense than both standards, this phenomenon relates to the oxidation state (Gomes et al., 2013). The greater the peak intensity, the wider the white line of the copper absorption edge, demonstrating the higher oxidation state (Chen et al., 2006; Tsai et al., 2004). Therefore, the copper species in K-OMS-2 structure was not Cu⁺ and Cu²⁺ species, it should be higher than Cu²⁺ species. Likewise, Elias et al. found that the edge position for $Cu_{0.1}Ce_{0.9}O_{2-x}$ sample is higher than CuO standard about 3.2 eV, which indicates a formal valence higher than 2^+ (a mixture of 2^+ and 3^+). Then, they confirmed that the weak pre-edge feature of $Cu_{0.1}Ce_{0.9}O_{2-x}$ sample specifies the Cu^{3+} type (Elias et al., 2014). Moreover, Deng et al. reported that the NaCuO₂ K-edge shifts by \sim 2.2 eV, relative to CuO standard. The shift in edge energy demonstrates an increase in the average valence of copper, which can be indicated to the formation of Cu^{3+} (Deng et al., 2016). According to these results, we

2				
3 4	268	can propose that the pre-edge position (8,980.54 eV) and the unique XANES features of Cu-K-		
5 6	269	OMS-2 materials indicated the trivalent copper (Cu^{3+}).		
/ 8 0	270	[Figure 3 near here]		
) 10 11	271			
12 13	272	Figure 3(a) shows the XPS results. The Cu-K-OMS-2 materials were analyzed for surface		
14 15 16	273	oxidation using the XPS technique with Cu 2p spectra with binding energy at 925-970 eV. The		
16 17 18	274	Cu 2p XPS spectra can be used to confirm the oxidation state of copper on the Cu-K-OMS-2		
19 20	275	surface. Normally, the Cu 2p energy level of copper is composed of main characteristic doublet		
21 22	276	peaks corresponding to Cu $2p_{3/2}$ and Cu $2p_{1/2}$ peaks along with the shake-up satellite structures at		
23 24 25	277	~8 eV and ~10 eV binding energies higher than the main Cu 2p peak. The binding energies at ~931		
25 26 27	278	eV and ~951 eV corresponding to Cu $2p_{3/2}$ and Cu $2p_{1/2}$ peaks, respectively, indicate the Cu ⁺		
28 29	279	species. In addition, the Cu ²⁺ species appear at ~933 eV and ~953 eV, associated with Cu $2p_{3/2}$ and		
30 31 22	280	Cu 2p _{1/2} energy levels, respectively (Akgul et al., 2014; Kataoka et al., 2011; H. Liu et al., 2017;		
32 33 34	281	Natarajan et al., 2018; Rebhan et al., 2015; Sharma et al., 2018). Generally, the XPS spectra of		
35 36	282	Cu ³⁺ oxides are composed of the main peak and satellite feature at 2p3d ¹⁰ L ² (~934 eV) and 2p3d ⁹ L		
37 38	283	final state (~945 eV), respectively (Kataoka et al., 2011). According to our results (Figure 3(a)),		
39 40 41	284	the Cu 2p energy level displayed that the Cu $2p_{3/2}$ spectra overlap with the Cu $2p_{1/2}$ peak position.		
42 43	285	Remarkably, the Cu $2p_{3/2}$ spectra of Cu-K-OMS-2 materials consisted of two main peaks at 933		
44 45	286	eV and 936 eV, and a satellite peak located at around 945–946 eV. Clearly, the binding energy of		
46 47 48	287	Cu $2p_{3/2}$ spectra were deconvoluted with two components corresponding to the Cu ²⁺ and Cu ³⁺ at		
48 49 50	288	933 eV and 936 eV, respectively. Similarly, Kim et al. found the mixed states of Cu^{2+} and Cu^{3+} in		
51 52	289	Cu-substituted LaSrMnO samples (Kim et al., 2008). However, we could not propose that the		
53 54 55 56	290	satellite peak of Cu $2p_{3/2}$ spectra refer to the Cu ³⁺ state because the background of Cu 2p spectra		

overlap with Mn LMM (945 eV) region (Chen et al., 2018). Therefore, the Cu^{3+}/Cu^{2+} ratio was computed by based on the fitting results of Cu $2p_{3/2}$ spectra, as shown in Table 1. Consequently, we can suggest that the mixed-valence of Cu^{2+} and Cu^{3+} species existed on the Cu-K-OMS-2 surface.

The Mn 2p spectra of Cu-K-OMS-2 samples were fitted, as shown in Figure 3(b). The Mn 2p energy level of manganese consisted of two characteristic doublet peaks corresponding to Mn 2p_{3/2} and Mn 2p_{1/2} energy. The doublet peaks of Mn 2p spectra at binding energies ~642 eV and ~654 eV were assigned to Mn^{3+} species; besides, the binding energies at ~644 eV and ~656 eV were assigned to Mn^{4+} species (Biesinger et al., 2011; McManus et al., 2016; F. Pan et al., 2016; Wu et al., 2018, 2017). Therefore, the manganese species on the Cu-K-OMS-2 surface were mixed-valent Mn^{3+} and Mn^{4+} species.

The kinds of oxygen species were fitted, as displayed in Figure 3(c). The O 1s spectra of Cu-K-OMS-2 samples were composed of three characteristic peaks corresponding to lattice oxygen (O_{latt}), surface adsorbed oxygen (O_{ads}) and adsorbed molecular water species (O_{wat}). The binding energy peak, located at ~530 eV, was identified to O_{latt} (O_2^{2-}), which is an oxygen species bonded to metal cations in a coordinately saturated environment (Genuino et al., 2013; R. Pan et al., 2016; L. Sun et al., 2011). The binding energy peak at ~531 eV was associated with O_{ads} (O₂-, O⁻), OH⁻ groups on the surface and oxygen vacancies, which is an oxygen species bonded to metal cations in a coordinately unsaturated environment (Genuino et al., 2013; R. Pan et al., 2016; L. Sun et al., 2011). The binding energy peak, located at ~533 eV, was ascribed to adsorbed molecular water (Genuino et al., 2013; R. Pan et al., 2016; L. Sun et al., 2011). Moreover, the O_{ads}/O_{latt} ratio was estimated from the XPS spectra fitting, as shown in Table 1. The O_{ads}/O_{latt} ratio

- 3 4	313
5 6	314
7 8	315
9 10 11	316
11 12 13	317
13 14 15	318
16 17	319
18 19	220
20 21	320
22 23	321
24 25	322
26 27	323
28 29	324
30 31	325
32 33	326
34 35	520
36 37	327
38 39	328
40 41	329
42 43	330
44 45	331
46 47	332
48 49	222
50 51	555
52 53	334
54 55	335
56 57	
58	
59 60	

of Cu-K-OMS-2 catalyst (0.62) was higher than the K-OMS-2 material. Therefore, the copper doped on K-OMS-2 can enhance the O_{ads}/O_{latt} ratio, which promoted the catalytic activity.

[Figure 4 near here]

To identify the local atomic environment and demonstrate the substitution of Cu ion in K-OMS-2 material, EXAFS analysis of Cu-K-OMS-2 catalyst with the Mn K-edge and Cu K-edge were performed. The analysis assumed that the Mn ions resided in the corner-sharing octahedral units of the cryptomelane Q structure using the Inorganic Crystal Structure Database (ICSD) 59159 as a cryptomelane structural model (Demchenko et al., 2009; Stelmachowski et al., 2018). The cryptomelane model consisted of the first neighboring octahedral O ions, the other neighboring O and Mn ions using the interatomic distance up to 3.5 Å from the central Mn ion. Figure 4(a) shows the EXAFS refinement of the $|\chi(R)|$ (Fourier transform of $\chi(k)$) for the Mn ions in the K-OMS-2 structure. The spectrum was a good fit with the R-factor of 1.6% indicated that the cryptomelane O structure model represented a good model (R-factor $\langle 2\% \rangle$) for the K-OMS-2 structure. In addition, the refinement of the Cu K-edge corresponding with the cryptomelane model, the Mn ion was replaced by Cu ion, as shown in Figure 4(b). The Cu K-edge EXAFS spectrum displayed a good fit with the data (R-factor = 0.1%), demonstrating that the Cu ions existed in the same site as the Mn ions. Moreover, the Cu ions substituted the Mn ions, in which they were doped into the K-OMS-2 framework structure. Likewise, Shen et al. reported that the Fe presented as Fe^{3+} in an octahedral environment similar to Mn in the MnO₆ of K-OMS-2 (Shen et al., 2011). In addition, the structural disorder of all correlations was signified using the EXAFS Debye-Waller factors (σ^2) . The refined interatomic distances and σ^2 factors are summarized in Table 2. According to the

Cu-substituted fitting, the interatomic distances and σ^2 of the first O and Cu/Mn coordination were slightly higher than the conventional MnO₆ site owing to a local distortion of the K-OMS-2 framework structure when Mn ion was replaced by Cu ion. In addition to the XANES, XPS and EXAFS results, we can propose that the Cu ions were doped into the K-OMS-2 framework structure, in which Cu³⁺ species existed predominantly by replacing Mn ions in the octahedral site, as shown in Figure 5.

[Table 2 near here]

[Figure 5 near here]

According to King'ondu et al. (King'ondu et al., 2011), the dopant can be embedded into the octahedral framework by the substitution of MnO₆ units of K-OMS-2, then cations must allow six-coordination and have a crystal radius almost the same size as that of Mn³⁺ (72 pm), Mn⁴⁺ (67 pm). Moreover, the MnO₆ units of K-OMS-2 can be substituted by CuO₆ units, thus a crystal radius of copper in six-coordination must be almost the same size as Mn^{3+} or Mn^{4+} . The crystal radii of Cu^{2+} and Cu^{3+} in six-coordination are 87 and 68 pm, respectively. The Cu ion in this work represented Cu³⁺ species in the K-OMS-2 structure, whereas Yang et al. (Yang et al., 2014) reported that CuO/Cu²⁺ incorporated into the K-OMS-2 framework. Moreover, Elias et al. reported that the Cu-O bond distance was found to be 1.93 Å (similarly with this work), which indicated a contribution of Cu³⁺(Elias et al., 2014). According to the literature, the MnO₆ units were possibly substituted by Cu³⁺ more than Cu²⁺ to form CuO₆ units because of the crystal radius size, the bond distance and the oxidation state. Therefore, to replace Mn ions in the octahedral site by copper, the

2	
З	
1	
4	
5	
6	
7	
, 0	
ð	
9	
10	
11	
10	
12	
13	
14	
15	
16	
10	
17	
18	
19	
20	
20	
21	
22	
23	
24	
27	
25	
26	
27	
28	
20	
29	
30	
31	
32	
22	
22	
34	
35	
36	
27	
57	
38	
39	
40	
<u></u>	
11	
42	
43	
44	
45	
10	
46	
47	
48	
49	
50	
50	
51	
52	
53	
E /	
54	
55	
56	
57	
E0	
28	
50	

60

oxidation state of copper should be 3+. Then, we can suggest that the MnO₆ units of Cu-K-OMS-359 2 catalyst in this work were substituted by Cu³⁺ during the formation process of the octahedral site. 360 Catalytic performance and stability study 361 362 [Figure 6 near here] 363 364 The catalytic performances of Cu-K-OMS-2 and undoped K-OMS-2 samples were investigated 365 by toluene oxidation in a PBR under the same condition, as presented in Figure 6. These results 366 367 showed that the Cu-K-OMS-2 catalysts exhibited a higher toluene removal than the undoped K-OMS-2 catalyst at 180°C of reaction temperature. Additionally, complete oxidation took place at 368 a reaction temperature of 190°C and 200°C for Cu-K-OMS-2 and K-OMS-2 catalysts, respectively. 369 The pure phase structure of Cu-K-OMS-2 with high specific surface area and O_{ads}/O_{latt} ratio led to 370 show a high toluene removal. The high specific surface area correlated with high O_{ads}/O_{latt} ratio 371 resulted in high toluene removal, corresponding to Kaewbuddee et al. result (Kaewbuddee et al., 372 2019b). Moreover, the Cu³⁺ species in Cu-K-OMS-2 framework structure could enhance the 373 toluene removal due to the high electronegativity of Cu^{3+} species. The higher electronegativity 374 leads to a weakness of the Mn-O bond in the Mn-O-M bridge, and the great mobility and 375 reactivity of the active oxygen species resulted in high toluene removal. In addition, Kaewbuddee 376 et al. confirmed that the high amount of copper dopant led to the enhancement of toluene removal. 377 The Cu³⁺/Cu²⁺ ratio on Cu-K-OMS-2 catalyst increased with the rise in copper dopant, which 378 promoted the toluene removal (Kaewbuddee et al., 2019a). Therefore, the Cu-K-OMS-2 catalysts 379 in this work exhibited a low complete-reaction temperature of toluene oxidation compared with 380 381 the manganese oxide-based catalyst of other recent researches (Genuino et al., 2012;

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
3/	
25	
33	
30	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
40	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
57	
58	
59	

397

1

Tarjomannejad et al., 2016). According to these results, copper doped into the K-OMS-2 382 framework structure can enhance the catalytic performance at a low reaction temperature. The 383 scale-up of the experiment was set to study the catalytic stability and deactivation of the Cu-K-384 OMS-2 catalyst for toluene oxidation via PBR with 0.15 g of catalyst. The toluene, about 13,500 385 ppmV, was passed through the PBR at a complete reaction temperature of 200°C for 8 h reaction 386 387 time. The physicochemical properties of fresh and used catalyst were characterized by XRD and XPS techniques. Figure 1 confirms that the crystalline phase of used Cu-K-OMS-2 was not 388 destroyed after the reaction finished. In addition, the binding energy of Cu, Mn and O elements of 389 used Cu-K-OMS-2 was not shifted compared with fresh Cu-K-OMS-2 catalyst, as shown in Figure 390 3. Therefore, the copper-doped K-OMS-2 catalyst presented a high stability for toluene oxidation 391 at a reaction temperature of 200°C. 392 [Figure 7 near here] 393 *Kinetic study* 394 395 396

The kinetic parameters of toluene oxidation by using Cu-K-OMS-2 catalyst were studied under the reaction temperature in the range of 130–150°C with the WHSV at 3.41 h⁻¹ and 7,550 ppmV of initial toluene concentration. The initial reaction rates of toluene oxidation were computed by using the correlation of toluene conversion and space time at different reaction temperatures. Then, the relationships between the initial reaction rate of toluene oxidation versus reaction temperature and the natural log of initial reaction rate of toluene oxidation versus inverse reaction temperature were presented in Figure 7(a) and 7(b), respectively. The toluene reaction rate increases with

increasing in the reaction temperature. The activation energy (E_a) of toluene oxidation was determined by the combination of the power law models (Equation (2)) and the Arrhenius equation (Equation (3)), following the deep toluene oxidation reaction with oxygen. Based on our experiment, the initial toluene and O₂ are constant concentrations. Likewise, pressure and inlet volumetric flow rate are constant as well. The gas-phase reaction rate of toluene is shown in Equation (2). $-r_0 = k_A P_{toluene,0}^{\alpha} P_{oxvaen,0}^{\beta}$ (2)Where, $-r_0$ is the initial reaction rate of toluene, k_A is a reaction rate constant, $P_{toluene,0}$ and $P_{oxygen,0}$ are initial concentration of toluene and oxygen, respectively. The Arrhenius equation is displayed in Equation (3). $k_A(T) = Ae^{-E_a/RT}$ (3) Here, A is pre-exponential factor, E_a is the activation energy, R is gas constant and T is absolute temperature (K). Then, combined equation between the power law models and the Arrhenius equation is presented in Equation (4). $-r_{0} = Ae^{-E_{a}/RT} P_{toluene,0}^{\alpha} P_{oxygen,0}^{\beta}$ $A' = AP_{toluene,0}^{\alpha} P_{oxygen,0}^{\beta}$ (4) Give; (5) $-r_0 = A'e^{-E_{a/RT}}$ (6) Where; A' is the constant values as shown in Equation (5). Then, A' substituted to Equation (6) and then this equation is taken to the natural logarithm. The final equation is revealed in Equation (7) to compute the activation energy (E_a) . $\ln r_0 = -\frac{E_a}{RT} - \ln A'$ (7)

In order to estimate E_a, the natural logs of the initial reaction rate of toluene oxidation and

2	
2	
2	
4	
5	
6	
7	
, 0	
0	
9	
10	
11	
12	
12	
13	
14	
15	
16	
17	
10	
IŎ	
19	
20	
21	
22	
22	
23	
24	
25	
26	
27	
20	
20	
29	
30	
31	
32	
22	
22	
34	
35	
36	
37	
38	
20	
39	
40	
41	
42	
43	
11	
44	
45	
46	
47	
48	
⊿∩	
77	
50	
51	
52	
53	
51	
54	
55	
56	
57	

$ln(r_0)$ were plotted along with the inverse reaction temperature, as presented in Figure 7(b).
According to the linear relationship between $\ln(r_0)$ and $1/T$, the activation energy of the toluene
oxidation with Cu-K-OMS-2 catalyst was determined to be 91.18 kJ mol ⁻¹ . The E_a value of this
work is lower than the activation energy of the deep toluene oxidation with oxygen system by
using platinum on alumina catalyst, which has been reported to be 106 kJ mol ⁻¹ (Ordonez et al.,
2002). In addition, it is significantly lower than the activation energies of total oxidation of toluene
with oxygen by using palladium and platinum supported on carbon nanofiber as a catalyst, which
has been reported to be between 116–161 kJ mol ⁻¹ (Morales-Torres et al., 2009). Although the
inlet concentration of toluene was higher than other researches, the Cu-K-OMS-2 catalyst in this
work presented the highest toluene removal at the low reaction temperature, according to Table 3.
Hence, we can propose that the Cu-K-OMS-2 catalyst in this work can enhance the toluene
oxidation at low reaction temperature, which exposed a high toluene removal compared with other
researches.
[Table 3 near here]
Conclusions
High-valent copper was successfully doped into the K-OMS-2 framework structure by the in situ
hydrothermal method. The Cu ³⁺ species appeared in the K-OMS-2 structure, which was identified
using the XANES technique. In addition, the Cu ³⁺ species existed in the Cu-K-OMS-2 framework

structure by the Mn³⁺ substitution in the MnO₆ octahedral site, which influenced the high toluene

oxidation at the low reaction temperature. Moreover, the oxidation state of copper in Cu-K-OMS-2 material exhibited both the Cu³⁺ and Cu²⁺ species on the catalyst surface. The copper dopant can improve the physicochemical properties of Cu-K-OMS-2 catalysts, which is associated with the catalytic performance. The Cu-K-OMS-2 materials exhibited higher toluene removal than undoped K-OMS-2 material at low reaction temperature because they showed a pure phase of the Cu-K-OMS-2 structure, high specific surface area and Oads/Olatt ratio. Additionally, the low activation energy of the toluene oxidation with Cu-K-OMS-2 catalyst was observed to be 91.18 kJ mol⁻¹, resulted in the enhancement of toluene removal at low reaction temperature. The complete toluene oxidation took place at 190°C of reaction temperature. Moreover, the Cu-K-OMS-2 catalysts showed high stability for toluene oxidation at low reaction temperature.

461 Acknowledgements

The authors would like to acknowledge the financial support from Research Center for Environmental and Hazardous Substance Management (EHSM) and Research and Technology Transfer Affairs, Khon Kaen University. The authors would like to express their gratitude to Synchrotron Light Research Institute (Public Organization), Thailand for XANES, EXAFS and XPS measurement (SUT-SLRI: BL.1.1W and SUT-NANOTEC-SLRI: BL.5.3). Authors sincerely thank you to Professor Ning YAN (Department of Chemical and Biomolecular Engineering, National University of Singapore) for invaluable suggestions in preparation of this manuscript and supervision Miss Chartkamol Kaewbuddee for 3 months.

470	References
471	Adak, S., Hartl, M., Daemen, L., Fohtung, E., and Nakotte, H. (2017). Study of oxidation states of
472	the transition metals in a series of Prussian blue analogs using x-ray absorption near edge
473	structure (XANES) spectroscopy, J. Electron Spectrosc. Relat. Phenom., 214, 8-19.
474	Adjimi, S., Garcia-Vargas, J.M., Diaz, J.A., Retailleau, L., Gil, S., Pera-Titus, M., Guo, Y., and
475	Giroir-Fendler, A. (2017). Highly efficient and stable Ru/K-OMS-2 catalyst for NO
476	oxidation, Appl. Catal. B Environ., 219, 459–466.
477	Akgul, F.A., Akgul, G., Yildirim, N., Unalan, H.E., Turan, R. (2014). Influence of thermal
478	annealing on microstructural, morphological, optical properties and surface electronic
479	structure of copper oxide thin films, Mater. Chem. Phys., 147, 987-995.
480	Biesinger, M.C., Payne, B.P., Grosvenor, A.P., Lau, L.W.M., Gerson, A.R., and Smart, R.St.C.
481	(2011). Resolving surface chemical states in XPS analysis of first row transition metals,
482	oxides and hydroxides: Cr, Mn, Fe, Co and Ni, Appl. Surf. Sci., 257, 2717–2730.
483	Calvert, C., Joesten, R., Ngala, K., Villegas, J., Morey, A., Shen, X., and Suib, S.L. (2008).
484	Synthesis, characterization, and rietveld refinement of tungsten-framework-doped porous
485	manganese oxide (K-OMS-2) material, Chem. Mater., 20, 6382–6388.
486	Carabineiro, S.A.C., Santos, V.P., Pereira, M.F.R., Orfao, J.J.M., Figueiredo, J.L. (2016). CO
487	oxidation over gold supported on Cs, Li and Ti-doped cryptomelane materials, J. Colloid
488	<i>Interface Sci.</i> , 480 , 17–29.
489	Chandarak, S., Jutimoosik, J., Pojprapai, S., Srilomsak, S., Rujirawat, S., Yimnirun, R., and
490	Monnor, T. (2011). Synchrotron X-ray absorption study of Cu and Mn doped BiFeO ₃ -
491	BaTiO ₃ multiferroic ceramics, <i>Ferroelectrics.</i> , 422 , 23–29.

2		
2 3 4	492	Chen, C.H., Sarma, L.S., Wang, G.R., Chen, J.M., Shih, S.C., Tang, M.T., Liu, D.G., Lee, J.F.,
5 6	493	Chen, J.M., and Hwang, B.J. (2006). Formation of bimetallic Ag-Pd nanoclusters via the
7 8 0	494	reaction between Ag nanoclusters and Pd2+ ions, J. Phys. Chem. B, 110, 10287–10295.
9 10 11	495	Chen, J., Li, J., Li, H., Huang, X., and Shen, W. (2008). Facile synthesis of Ag-OMS-2 nanorods
12 13	496	and their catalytic applications in CO oxidation, Microporous Mesoporous Mater. 116,
14 15 16	497	586–592.
10 17 18	498	Chen, S.Y., Tang, W., He, J., Miao, R., Lin, H.J., Song, W., Wang, S., Gao, P.X., and Suib, S.L.
19 20	499	(2018). Copper manganese oxide enhanced nanoarray-based monolithic catalysts for
21 22 23	500	hydrocarbon oxidation, J. Mater. Chem. A, 6, 19047–19057.
23 24 25	501	Chen, X., Shen, Y.F., Suib, S.L., and O'Young, C.L. 2001. Catalytic decomposition of 2-propanol
26 27	502	over different metal-cation-doped OMS-2 materials, J. Catal., 197, 292-302.
28 29 20	503	Ching, S., Carmichael, J.R., Eichelberger, L.A., Kriz, D.A., Alley, K.A., and Jackvony, S.E.
30 31 32	504	(2016). Influence of Fe, Cu, V, and Ce doping on morphology and catalytic activity of
33 34	505	amorphous manganese oxide hollow spheres, <i>Polyhedron</i> , 114 , 205–212.
35 36 27	506	Davo-Quinonero, A., Navlani-Garcia, M., Lozano-Castello, D., and Bueno-Lopez, A. (2016).
37 38 39	507	CuO/cryptomelane catalyst for preferential oxidation of CO in the presence of H_2 :
40 41	508	deactivation and regeneration, Catal. Sci. Technol., 6, 5684–5692.
42 43	509	DeGuzman, R.N., Shen, Y.F., Neth, E.J., Suib, S.L., O'Young, C.L., Levine, S., and Newsam,
44 45 46	510	J.M., 1994. Synthesis and characterization of octahedral molecular sieves (OMS-2) having
40 47 48	511	the hollandite structure, Chem. Mater., 6, 815-821.
49 50	512	Demchenko, I.N., Lawniczak-Jablonska, K., Tyliszczak, T., Birkner, N.R., Stolte, W.C.,
51 52 53 54 55 56 57	513	Chernyshova, M., and Hemmers, O. (2009). XANES studies of modified and newly
58 59 60		URL: http://mc.manuscriptcentral.com/ Email: wngill@sfo.com

2	
3 4	514
5 6	515
7 8	516
9 10	517
11 12	518
13 14 15	510
15 16	213
17 18	520
19 20	521
21 22	522
23 24	523
25 26 27	524
27 28 29	525
30 31	526
32	
33 34	527
35 36	528
37 38	529
39 40 41	530
42 43	531
44 45	532
46 47	533
48 49	534
50	534
51 52	535
53 54	
55	
56	
57 58	
59	
60	

synthesized nanostructured manganese oxides, *J. Electron Spectrosc. Relat. Phenom.*, **171**, 24–29.

- 516 Deng, Y., Handoko, A.D., Du, Y., Xi, S., and Yeo, B.S. (2016). In situ raman spectroscopy of
 517 copper and copper oxide surfaces during electrochemical oxygen evolution reaction:
 518 Identification of CuIII oxides as catalytically active species, *ACS Catal.*, 6, 2473–2481.
- 519 Deng, Y.Q., Zhang, T., Au, C.T., Yin, S.F. (2014). Oxidation of p-chlorotoluene to p520 chlorobenzaldehyde over manganese-based octahedral molecular sieves of different
 521 morphologies, *Catal. Commun.*, 43, 126–130.
- 522 Doucet, N., Bocquillon, F., Zahraa, O., and Bouchy, M. (2006). Kinetics of photocatalytic VOCs
 abatement in a standardized reactor, *Chemosphere*, 65, 1188–1196.
- Elias, J.S., Risch, M., Giordano, L., Mansour, A.N., and Shao-Horn, Y. (2014). Structure, bonding,
 and catalytic activity of monodisperse, transition-metal-substituted CeO₂ nanoparticles, *J. Am. Chem. Soc.*, **136**, 17193–17200.
- Fang, J., Li, J., Gao, L., Jiang, X., Zhang, J., Xu, A., and Li, X. (2017). Synthesis of OMS 2/graphite nanocomposites with enhanced activity for pollutants degradation in the
 presence of peroxymonosulfate, *J. Colloid Interface Sci.*, 494, 185–193.
- ⁶ 530 Fu, Z., Liu, L., Song, Y., Ye, Q., Cheng, S., Kang, T., and Dai, H. (2017). Catalytic oxidation of
 ⁷ carbon monoxide, toluene, and ethyl acetate over the xPd/OMS-2 catalysts: Effect of Pd
 ⁶ 532 loading, *Front. Chem. Sci. Eng.*, **11**, 185–196.
- Gandhe, A.R., Rebello, J.S., Figueiredo, J.L., Fernandes, J.B. (2007). Manganese oxide OMS-2 as
 an effective catalyst for total oxidation of ethyl acetate, *Appl. Catal. B Environ.*, **72**, 129–
 535
 135.

1 2		
3 4	536	Genuino, H.C., Dharmarathna, S., Njagi, E.C., Mei, M.C., and Suib, S.L. (2012). Gas-phase total
5 6	537	oxidation of benzene, toluene, ethylbenzene, and xylenes using shape-selective manganese
7 8 0	538	oxide and copper manganese oxide catalysts, J. Phys. Chem. C, 116, 12066-12078.
9 10 11	539	Genuino, H.C., Meng, Y., Horvath, D.T., Kuo, C.H., Seraji, M.S., Morey, A.M., Joesten, R.L., and
12 13	540	Suib, S.L. (2013). Enhancement of catalytic activities of octahedral molecular sieve
14 15	541	manganese oxide for total and preferential CO oxidation through vanadium ion framework
16 17 18	542	substitution, ChemCatChem, 5, 2306–2317.
19 20	543	Gomes, W.C.M., Neto, A. de O.W., Pimentel, P.M., Melo, D.M. de A., and Silva, F.R.G. e. (2013).
21 22	544	An in situ X-ray absorption spectroscopy study of copper nanoparticles in microemulsion,
23 24 25	545	Colloids Surf. Physicochem. Eng. Asp., 426, 18–25.
23 26 27	546	Hernandez, W.Y., Centeno, M.A., Ivanova, S., Eloy, P., Gaigneaux, E.M., and Odriozola, J.A.
28 29	547	(2012). Cu-modified cryptomelane oxide as active catalyst for CO oxidation reactions,
30 31 22	548	Appl. Catal. B Environ., 123–124 , 27–35.
32 33 34	549	Hernandez, W.Y., Centeno, M.A., Romero-Sarria, F., Ivanova, S., Montes, M., and Odriozola,
35 36	550	J.A. (2010). Modified cryptomelane-type manganese dioxide nanomaterials for
37 38	551	preferential oxidation of CO in the presence of hydrogen, Catal. Today, 157, 160–165.
39 40 41	552	Hou, J., Li, Y., Liu, L., Ren, L., and Zhao, X. (2013a). Effect of giant oxygen vacancy defects on
42 43	553	the catalytic oxidation of OMS-2 nanorods, J. Mater. Chem. A, 1, 6736–6741.
44 45	554	Hou, J., Li, Y., Mao, M., Zhao, X., and Yue, Y. (2014). The effect of Ce ion substituted OMS-2
46 47 48	555	nanostructure in catalytic activity for benzene oxidation, Nanoscale, 6, 15048–15058.
49 50	556	Hou, J., Liu, L., Li, Y., Mao, M., Lv, H., and Zhao, X. (2013b). Tuning the K ⁺ concentration in
51 52	557	the tunnel of OMS-2 nanorods leads to a significant enhancement of the catalytic activity
53 54	558	for benzene oxidation, Environ. Sci. Technol., 47, 13730-13736.
55 56 57 58 59 60		URL: http://mc.manuscriptcentral.com/ Email: wngill@sfo.com

3 4	559	Hou, J., Sha, Z., Hartley, W., Tan, W., Wang, M., Xiong, J., Li, Y., Ke, Y., Long, Y., and Xue, S.
5 6	560	(2018). Enhanced oxidation of arsenite to arsenate using tunable K ⁺ concentration in the
7 8 0	561	OMS-2 tunnel, Environ. Pollut., 238, 524–531.
9 10 11	562	Iyer, A., Galindo, H., Sithambaram, S., King'ondu, C., Chen, C.H., and Suib, S.L. (2010).
12 13	563	Nanoscale manganese oxide octahedral molecular sieves (OMS-2) as efficient
14 15 16	564	photocatalysts in 2-propanol oxidation, Appl. Catal. Gen., 375, 295-302.
17 18	565	Jia, J., Zhang, P., and Chen, L. (2016). The effect of morphology of α -MnO ₂ on catalytic
19 20	566	decomposition of gaseous ozone, Catal. Sci. Technol., 6, 5841–5847.
21 22 22	567	Jothiramalingam, R., Viswanathan, B., and Varadarajan, T.K. (2006a). Synthesis, characterization
23 24 25	568	and catalytic oxidation activity of zirconium doped K-OMS-2 type manganese oxide
26 27	569	materials, J. Mol. Catal. Chem., 252, 49–55.
28 29	570	Jothiramalingam, R., Viswanathan, B., and Varadarajan, T.K. (2006b). Synthesis and structural
30 31 32	571	characterization of copper incorporated manganese oxide OMS-2 materials synthesized via
33 34	572	potassium birnessite, Mater. Chem. Phys., 100, 257–261.
35 36	573	Kaewbuddee, C., Chanlek, N., and Wantala, K., (2019a). Effect of synthesized conditions of Cu-
37 38 30	574	K-OMS-2 on toluene oxidation performance, Appl. Environ. Res., 41, 83–95.
40 41	575	Kaewbuddee, C., Kidkhunthod, P., Chanlek, N., Khunphonoi, R., and Wantala, K. (2019b).
42 43	576	Chemical surface analysis on post-thermal treatment of the K-OMS-2 catalysts and
44 45	577	catalytic oxidation efficiency at low temperature, Sains Malays., 48, 1447–1457.
46 47 48	578	Kataoka, T., Yamazaki, Y., Singh, V.R., Fujimori, A., Chang, F.H., Lin, H.J., Huang, D., Chen,
49 50	579	C., Xing, G., Seo, J., Panagopoulos, C., and Wu, T. (2011). Ferromagnetic interaction
51 52	580	between Cu ions in the bulk region of Cu-doped ZnO nanowires, Phys. Rev. B, 84, 153203.
53 54 55		
56 57		
58 59		
60		URL: http://mc.manuscriptcentral.com/ Email: wngill@sfo.com

W.J. (2008).
ıs. Matter, 20,
, and Suib, S.,
e framework
l, Adv. Funct.
by manganese
al., 262 , 304–
ferent valence
nganese oxide
post plasma-
rine-doped tin
ht Irradiation,
ali metal and
ganese oxide
by mang al., 262 , ferent van ganese post pl rine-dop ght Irrad cali met ganese

2		
3 4	602	Liu, L., Song, Y., Fu, Z., Ye, Q., Cheng, S., Kang, T., and Dai, H. (2017). Effect of preparation
5 6	603	method on the surface characteristics and activity of the Pd/OMS-2 catalysts for the
/ 8 9	604	oxidation of carbon monoxide, toluene, and ethyl acetate, Appl. Surf. Sci., 396, 599-608.
) 10 11	605	Liu, X.S., Jin, Z.N., Lu, J.Q., Wang, X.X., and Luo, M.F. (2010). Highly active CuO/OMS-2
12 13	606	catalysts for low-temperature CO oxidation, Chem. Eng. J., 162, 151-157.
14 15 16	607	Luo, J., Zhang, Q., Garcia-Martinez, J., and Suib, S.L. (2008). Adsorptive and acidic properties,
16 17 18	608	reversible lattice oxygen evolution, and catalytic mechanism of cryptomelane-type
19 20	609	manganese oxides as oxidation catalysts, J. Am. Chem. Soc., 130, 3198-3207.
21 22	610	Luo, J., Zhang, Q., Huang, A., and Suib, S.L. (2000). Total oxidation of volatile organic
23 24 25	611	compounds with hydrophobic cryptomelane-type octahedral molecular sieves,
26 27	612	Microporous Mesoporous Mater., 35–36 , 209–217.
28 29	613	Ma, J., Wang, C., and He, H. (2017). Transition metal doped cryptomelane-type manganese oxide
30 31 32	614	catalysts for ozone decomposition, Appl. Catal. B Environ., 201, 503-510.
33 34	615	McManus, I.J., Daly, H., Manyar, H.G., Taylor, S.F.R., Thompson, J.M., and Hardacre, C. (2016).
35 36	616	Selective hydrogenation of halogenated arenes using porous manganese oxide (OMS-2)
37 38 30	617	and platinum supported OMS-2 catalysts, Faraday Discuss., 188, 451–466.
39 40 41	618	Morales-Torres, S., Perez-Cadenas, A.F., Kapteijn, F., Carrasco-Marin, F., Maldonado-Hodar,
42 43	619	F.J., Moulijn, J.A. (2009). Palladium and platinum catalysts supported on carbon nanofiber
44 45	620	coated monoliths for low-temperature combustion of BTX., Appl. Catal. B Environ., 89,
46 47 48	621	411–419.
49 50	622	Munoz-Rojas, D., Subias, G., Oro-Sole, J., Fraxedas, J., Martinez, B., Casas-Cabanas, M.,
51 52 53	623	Canales-Vazquez, J., Gonzalez-Calbet, J., Garcia-Gonzalez, E., Walton, R., and Casan-
54 55 56		
57 58		
59 60		URL: http://mc.manuscriptcentral.com/ Email: wngill@sfo.com

1 2		
2 3 4	624	Pastor, N. (2007). Ag ₂ CuMnO ₄ : A new silver copper oxide with delafossite structure, J.
5 6	625	Solid State Chem., 179, 3883–3892.
7 8	626	Natarajan, K., Saraf, M., and Shaikh, M. (2018). Visible light driven water splitting through an
9 10 11	627	innovative Cu-treated-δ-MnO2 nanostructure: Probing enhanced activity and mechanistic
12 13	628	insights, Nanoscale, 10, 13250–13260.
14 15	629	Ordonez, S., Bello, L., Sastre, H., Rosal, R., and Diez, F.V. (2002). Kinetics of the deep oxidation
16 17 18	630	of benzene, toluene, n-hexane and their binary mixtures over a platinum on γ -alumina
19 20	631	catalyst, Appl. Catal. B Environ., 38, 139–149.
21 22	632	Ozacar, M., Poyraz, A.S., Genuino, H.C., Kuo, C.H., Meng, Y., and Suib, S.L. (2013). Influence
23 24 25	633	of silver on the catalytic properties of the cryptomelane and Ag-hollandite types manganese
25 26 27	634	oxides OMS-2 in the low-temperature CO oxidation, Appl. Catal. Gen., 462-463, 64-74.
28 29	635	Pan, F., Liu, W., Yu, Y., Yin, X., Wang, Q., Zheng, Z., Wu, M., Zhao, D., Zhang, Q., Lei, X., and
30 31	636	Xia, D. (2016). The effects of manganese oxide octahedral molecular sieve chitosan
32 33 34	637	microspheres on sludge bacterial community structures during sewage biological
35 36	638	treatment, Sci. Rep., 6, 37518.
37 38	639	Pan, R., Li, Y., Fang, F., and Cao, W. (2016). Surface valence states of Mn ions and magnetic
39 40 41	640	properties of La _{0.67} Sr _{0.33} MnO ₃ Films, Int. J. Mater. Sci. Eng., 5, 222–227.
42 43	641	Ramstad, A.L., and Mikkelsen, O. (2004). Structural characterisation of copper-containing
44 45	642	manganese oxide octahedral molecular sieve (Cu-OMS-2) materials by X-ray absorption
46 47 48	643	spectroscopy and cyclic voltammetry, J. Mol. Struct., 697, 109-117.
49 50	644	Rebhan, B., Tollabimazraehno, S., Hesser, G., and Dragoi, V. (2015). Analytical methods used for
51 52	645	low temperature Cu-Cu wafer bonding process evaluation, Microsyst. Technol., 21, 1003-
53 54 55 56 57 58	646	1013.

2		
3 4	647	Roozeboom, F., Cordingley, P.D., and Gellings, P.J. (1981). Vanadium oxide monolayer catalysts:
5 6	648	The vapor-phase oxidation of methanol, J. Catal., 68, 464–472.
7 8	649	Said, S., Riad, M., Helmy, M., Mikhail, S., and Khalil, L. (2016). Preparation of nano-structured
9 10 11	650	cryptomelane materials for catalytic oxidation reactions, J. Nanostructure Chem., 6, 171-
12 13	651	182.
14 15	652	Santos, V.P., Bastos, S.S.T., Pereira, M.F.R., Orfao, J.J.M., and Figueiredo, J.L. (2010). Stability
16 17 18	653	of a cryptomelane catalyst in the oxidation of toluene, Catal. Today, 154 , 308–311.
19 20	654	Santos, V.P., Pereira, M.F.R., Orfao, J.J.M., and Figueiredo, J.L. (2011). Mixture effects during
21 22	655	the oxidation of toluene, ethyl acetate and ethanol over a cryptomelane catalyst, J. Hazard.
23 24 25	656	Mater., 185, 1236–1240
25 26 27	657	Santos, V.P., Pereira, M.F.R., Orfao, J.J.M., and Figueiredo, J.L. (2009). Catalytic oxidation of
28 29	658	ethyl acetate over a cesium modified cryptomelane catalyst, Appl. Catal. B Environ., 88,
30 31	659	550–556.
32 33 34	660	Santos, V.P., Soares, O.S.G.P., Bakker, J.J.W., Pereira, M.F.R., Orfao, J.J.M., Gascon, J.,
35 36	661	Kapteijn, F., Figueiredo, J.L. (2012). Structural and chemical disorder of cryptomelane
37 38	662	promoted by alkali doping: Influence on catalytic properties, J. Catal., 293, 165–174.
39 40 41	663	Schurz, F., Bauchert, J.M., Merker, T., Schleid, T., Hasse, H., and Glaser, R. (2009). Octahedral
42 43	664	molecular sieves of the type K-OMS-2 with different particle sizes and morphologies:
44 45	665	Impact on the catalytic properties in the aerobic partial oxidation of benzyl alcohol, Appl.
46 47 48	666	<i>Catal. Gen.</i> , 355 , 42–49.
49 50	667	Shaikjee, A., and Coville, N.J. (2011). The effect of copper catalyst reducibility on low
51 52	668	temperature carbon fiber synthesis, Mater. Chem. Phys., 125, 899-907.
53 54		
55		
56		
57 58		
50 59		

1 2		
2 3 4 5 6 7 8 9	669	Sharma, R.K., Gaur, R., Yadav, M., Goswami, A., Zboril, R., and Gawande, M.B. (2018). An
	670	efficient copper-based magnetic nanocatalyst for the fixation of carbon dioxide at
	671	atmospheric pressure, Sci. Rep., 8, 1-12.
10 11	672	Shen, X., Morey, A.M., Liu, J., Ding, Y., Cai, J., Durand, J., Wang, Q., Wen, W., Hines, W.A.,
12 13	673	Hanson, J.C., Bai, J., Frenkel, A.I., Reiff, W., Aindow, M., and Suib, S.L. (2011).
14 15 16 17 18	674	Characterization of the Fe-doped mixed-valent tunnel structure manganese oxide K-OMS-
	675	2, J. Phys. Chem. C, 115, 21610–21619.
19 20	676	Sihaib, Z., Puleo, F., Garcia-Vargas, J.M., Retailleau, L., Descorme, C., Liotta, L.F., Valverde,
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 20	677	J.L., Gil, S., and Giroir-Fendler, A. (2017). Manganese oxide-based catalysts for toluene
	678	oxidation, Appl. Catal. B Environ., 209, 689–700.
	679	Sinha, W., Sommer, M., Deibel, N., Ehret, F., Bauer, M., Sarkar, B., and Kar, S. (2015).
	680	Experimental and theoretical investigations of the existence of CuII, CuIII, and CuIV in
	681	copper corrolato complexes, Angew. Chem. Int. Ed., 54, 13769-13774.
	682	Sithambaram, S., Xu, L., Chen, C.H., Ding, Y., Kumar, R., Calvert, C., and Suib, S.L. (2009).
	683	Manganese octahedral molecular sieve catalysts for selective styrene oxide ring opening,
	684	<i>Catal. Today</i> , 140 , 162–168.
39 40 41	685	Stelmachowski, P., Legutko, P., Jakubek, T., and Kotarba, A. (2018). Phase evolution and
42 43	686	electronic properties of cryptomelane nanorods, J. Alloys Compd., 767, 592-599.
44 45 46 47 48 49 50	687	Suib, S.L. (2008). Structure, porosity, and redox in porous manganese oxide octahedral layer and
	688	molecular sieve materials, J. Mater. Chem., 18, 1623-1631.
	689	Sun, H., Chen, S., Wang, P., and Quan, X. (2011). Catalytic oxidation of toluene over manganese
51 52	690	oxide octahedral molecular sieves (OMS-2) synthesized by different methods, Chem. Eng.
53 54	691	<i>J.</i> , 178 , 191–196.
55 56 57		
57 58 59		

3 4	692	Sun, H., Liu, Z., Chen, S., and Quan, X. (2015). The role of lattice oxygen on the activity and
5 6	693	selectivity of the OMS-2 catalyst for the total oxidation of toluene, Chem. Eng. J., 270, 58-
/ 8 9	694	65.
10 11	695	Sun, L., Cao, Q., Hu, B., Li, J., Hao, J., Jing, G., and Tang, X. (2011). Synthesis, characterization
12 13	696	and catalytic activities of vanadium-cryptomelane manganese oxides in low-temperature
14 15 16	697	NO reduction with NH ₃ , <i>Appl. Catal. Gen.</i> , 393 , 323–330.
17 18	698	Sun, M., Yu, L., Ye, F., Diao, G., Yu, Q., Hao, Z., Zheng, Y., and Yuan, L. (2013). Transition
19 20	699	metal doped cryptomelane-type manganese oxide for low-temperature catalytic
21 22 23	700	combustion of dimethyl ether, Chem. Eng. J., 220, 320–327.
24 25	701	Sun, M., Zhang, B., Liu, H., He, B., Ye, F., Yu, L., Sun, C., and Wen, H. (2017). The effect of
26 27	702	acid/alkali treatment on the catalytic combustion activity of manganese oxide octahedral
28 29 30	703	molecular sieves, <i>RSC Adv.</i> , 7, 3958–3965.
31 32	704	Tarjomannejad, A., Farzi, A., Niaei, A., and Salari, D. (2016). An experimental and kinetic study
33 34	705	of toluene oxidation over $LaMn_{1-x}B_xO_3$ and $La_{0.8}A_{0.2}Mn_{0.3}B_{0.7}O_3$ (A=Sr, Ce and B=Cu, Fe)
35 36 27	706	nano-perovskite catalysts, Korean J. Chem. Eng., 33, 2628–2637.
37 38 39	707	Tomson, N.C., Williams, K.D., Dai, X., Sproules, S., DeBeer, S., Warren, T.H., and Wieghardt,
40 41	708	K. (2015). Re-evaluating the Cu K pre-edge XAS transition in complexes with covalent
42 43	709	metal–ligand interactions, <i>Chem. Sci.</i> , 6 , 2474–2487.
44 45 46	710	Tsai, Y.W., Tseng, Y.L., Sarma, L.S., Liu, D.G., Lee, J.F., and Hwang, B.J. (2004). Genesis of Pt
47 48	711	clusters in reverse micelles investigated by in situ X-ray absorption spectroscopy, J. Phys.
49 50 51 52 53	712	<i>Chem. B</i> , 108 , 8148–8152.
54 55 56 57 58		
59 60		URL: http://mc.manuscriptcentral.com/ Email: wngill@sfo.com

2		
2 3 4	713	Wang, C., Ma, J., Liu, F., He, H., and Zhang, R. (2015). The effects of Mn ²⁺ precursors on the
5 6	714	structure and ozone decomposition activity of cryptomelane-type manganese oxide (OMS-
7 8	715	2) catalysts, J. Phys. Chem. C, 119, 23119–23126.
9 10 11	716	Wang, R., and Li, J. (2010). Effects of precursor and sulfation on OMS-2 catalyst for oxidation of
12 13	717	ethanol and acetaldehyde at low temperatures, Environ. Sci. Technol., 44, 4282–4287.
14 15	718	Wu, M.H., Shi, J., and Deng, H.P. (2018). Metal doped manganese oxide octahedral molecular
16 17	719	sieve catalysts for degradation of diclofenac in the presence of peroxymonosulfate, <i>Arab</i> .
18 19 20	720	J. Chem., 11, 924–934.
20 21 22	721	Wu, Y., Feng, R., Song, C., Xing, S., Gao, Y., and Ma, Z. (2017). Effect of reducing agent on the
23 24	722	structure and activity of manganese oxide octahedral molecular sieve (OMS-2) in catalytic
25 26	723	combustion of o-xylene, Catal. Today, 281, 500–506.
27 28 29	724	Wu, Y., Liu, M., Ma, Z., and Xing, S. tao. (2011). Effect of alkali metal promoters on natural
30 31	725	manganese ore catalysts for the complete catalytic oxidation of o-xylene, <i>Catal. Today</i> ,
32 33	726	175 . 196–201.
34 35	727	Yang Y Huang J Zhang S Wang S Deng S Wang B and Yu G (2014) Catalytic
36 37 29	728	removal of gaseous HCBz on Cu doned OMS: Effect of Cu location on catalytic
38 39 40	720	performance Appl Catal B Environ 150-151 167-178
41	125	performance, <i>Appr. Catal. D Environ.</i> , 130–131 , 107–178.
42 43	730	Yodsa-nga, A., Millanar, J.M., Neramittagapong, A., Khemthong, P., and Wantala, K. (2015).
44 45 46	731	Effect of manganese oxidative species in as-synthesized K-OMS 2 on the oxidation of
40 47 48	732	benzene, Surf. Coat. Technol., 271, 217–224.
49 50	733	Yun, L., Li, Y., Zhou, C., Lan, L., Zeng, M., Mao, M., Liu, H., and Zhao, X. (2017). The formation
51 52	734	of CuO/OMS-2 nanocomposite leads to a significant improvement in catalytic performance
53 54	735	for NO reduction by CO, Appl. Catal. A-Gen., 530, 1–11.
55 56		
57		
58 59		

Figure captions

Figure 1. XRD pattern of copper-doped K-OMS-2 samples compared with undoped K-OMS-2 catalyst.

Figure 2. The XANES feature of (a) the Mn K-edge spectra and (b) Cu K-edge spectra of Cu-K-

OMS-2 catalyst compared with the copper standards and manganese standards, respectively.

Figure 3. The XPS results of (a) Cu 2p, (b) Mn 2p and (c) O 1s spectra of the Cu-K-OMS-2 materials.

Figure 4. EXAFS analysis (a) Mn K-edge, (b) Cu K-edge of prepared Cu-K-OMS-2 catalyst These spectra were obtained by measurements and the cryptomelane Q structure model fitting as represented by the black and red lines, respectively.

Figure 5. The Cu-K-OMS-2 structure.

Figure 6. The catalytic activity of K-OMS-2 and Cu-K-OMS-2 catalysts.

Figure 7. (a) The initial reaction rate of toluene oxidation versus reaction temperature and (b) the natural log of initial reaction rate of toluene oxidation versus inverse reaction temperature.

Figure 1. XRD pattern of copper-doped K-OMS-2 samples compared with undoped K-OMS-2

catalyst.

Figure 2. The XANES feature of (a) the Mn K-edge spectra and (b) Cu K-edge spectra of Cu-K-OMS-2 catalyst compared with the copper standards and manganese standards, respectively.

Figure 3. The XPS results of (a) Cu 2p, (b) Mn 2p and (c) O 1s spectra of the Cu-K-OMS-2 materials.

Figure 4. EXAFS analysis (a) Mn K-edge, (b) Cu K-edge of prepared Cu-K-OMS-2 catalyst These spectra were obtained by measurements and the cryptomelane Q structure model fitting as represented by the black and red lines, respectively.

Figure 7. (a) The initial reaction rate of toluene oxidation versus reaction temperature and (b) the natural log of initial reaction rate of toluene oxidation versus inverse reaction temperature.

Table captions

Table 1. The physicochemical properties of Cu-K-OMS-2 materials compared with undoped K-

OMS-2 material.

Table 2. EXAFS fitting results of Mn and Cu atoms as a central atom in the MnO_6 site.

Table 3. The comparisons of the activation energy and the catalytic performance on toluene

removal.

to peer perien only

Table 1. The physicochemical properties of Cu-K-OMS-2 materials compared with undoped K-OMS-2 material.

	Catalysts	Specific surface Mn ³⁺ /Mn ⁴⁺		Cu ³⁺ /Cu ²⁺	O _{ads} /O _{latt}
		area (m²/g)	ratio ^(a)	ratio ^(b)	Ratio ^(b)
	K-OMS-2	51.31	0.10	-	0.24
	Cu-K-OMS-2	60.74	0.08	2.83	0.62

^(a)The Mn³⁺/Mn⁴⁺ ratio was calculated by using the LCF of XANES spectra.

^(b)The Cu^{3+}/Cu^{2+} ratio and O_{ads}/O_{latt} ratio were calculated by using the XPS data.

C PC IC NON

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
22
27
25
20
27
20
29
20 21
21
22 22
27
24 25
22 24
30 27
3/ 20
38
39
40

Table 2. EXAFS fitting results of Mn and Cu atoms as a central atom in the MnO₆ site.

MnO ₆ site with Mn atom			MnO ₆ site with Cu atom				
Correlations	Coor. no.	Distance (Å)	σ^2 (Å ²)	Correlations	Coor. no.	Distance (Å)	σ^2 (Å ²)
Mn-O1	6	1.888 ± 0.005	0.004 ± 0.001	Cu–O1	6	1.920 ± 0.014	0.008 ± 0.001
Mn-Mn1	4	2.869 ± 0.007	0.005 ± 0.001	Cu–Cu1	4	2.767 ± 0.027	0.013 ± 0.004
Mn–O2	3	3.212 ± 0.021	0.004 ± 0.003	Cu–O2	3	3.756 ± 0.032	0.001 ± 0.001
Mn–Mn2	4	3.430 ± 0.001	0.005 ± 0.001	Cu–Cu2	4	3.290 ± 0.021	0.001 ± 0.001
Mn–O3	3	3.242 ± 0.021	0.004 ± 0.003	Cu–O3	3	3.785 ± 0.032	0.001 ± 0.001

1	
2	
4	
5	
6	
7 8	
9	
10	
11	
13	
14	
15 16	
17	
18	
19 20	
21	
22	
23 24	
25	
26	
27 28	
29	
30 21	
31	
33	
34 25	
35 36	
37	
38 39	
40	
41	
42 43	
44	
45	
46 47	
48	
49 50	
50	
52	
53 57	
55	
56	
57	

60

Table 3. The comparisons of the activation energy and the catalytic performance on toluene removal.

-		T 1 · · · ·			
	Ea	Inlet concentration	Reaction		
Catalysts	(kJ mol ⁻¹)	(ppmV)	temperature (°C)	References	
Pt/γ -Al ₂ O ₃	106	5000	$T_{50} \sim 180$	Ordonez et al., 2002	
Pt/ACNF	128	1000	$T_{95} \sim 190$	Morales-Torres et al., 2009	
Pt/γ - Al_2O_3	138	1000	$T_{85} \sim 190$	Morales-Torres et al., 2009	
Pd/ACNF	161	1000	$T_{50} \sim 190$	Morales-Torres et al., 2009	
Pd/γ - Al_2O_3	116	1000	$T_{25} \sim 190$	Morales-Torres et al., 2009	
Cu-K-OMS-2	91	7,550	$T_{100} = 190$	This work	

Perez Oni