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Abstract
Leaf phosphorus (P) concentration is a key factor that reflects the growth of rice

(Oryza sativa), affecting both the quality and productivity of the crop. The estima-

tion of leaf P concentration using unmanned aerial vehicle (UAV) remote sensing

plays a pivotal role in fertilization management, monitoring rice growth, and advanc-

ing precision agriculture strategies. This study aimed to integrate vegetation indices

(VIs), texture features (TFs) indices, and water indices (WIs) obtained from UAV

multispectral images to estimate leaf P concentration in rice using the multi-criteria

evaluation (MCE) model with analytical hierarchy process–based weights. The MCE

method was employed to integrate the 16 VIs, eight TFs, and two WIs with four sce-

narios (S1, S2, S3, and S4) to evaluate their contributions to estimating the rice leaf P

concentration. The S1 integrates the normalized difference vegetation index (NDVI),

the modified chlorophyll absorption in reflectance index (MCARI), and the mean

(MEA). The S2 extends S1 by incorporating the normalized difference water index

(NDWI), while S3 combines the indices from S1 with NIR shoulder region index

(NSRI). Finally, S4 integrates NDVI, MCARI, MEA, NDWI, and NSRI. The S4,

which integrates all VIs, TFs, and WIs, provides the highest accuracy in estimating

leaf P concentration with root mean square error values of 0.035. The research find-

ings indicate that leaf P concentration differs between the two rice varieties, TBR225

and J02. The J02 variety exhibits a higher leaf P concentration than the TBR225 vari-

ety, as it is more efficient in P synthesis. The results of this study provide an effective

foundation for developing solutions in rice nutrition management, with a focus on

advancing precision agriculture.

Abbreviations: AHP, analytical hierarchy process; DVI, difference vegetation index; GNSS, global navigation satellite system; MCARI, modified

chlorophyll absorption in reflectance index; MCE, multi-criteria evaluation; NDVI, normalized difference vegetation index; NDWI, normalized difference

water index; NIR, near-infrared; NSRI, NIR shoulder region index; P4M, DJI Phantom 4 Multispectral; PCA, principal component analysis; RE, red edge;

RMSE, root mean square error; RTK, real-time kinematic; TFs, texture features; UAV, unmanned aerial vehicle; VIs, vegetation indices; WIs, water indices.
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Plain Language Summary
The amount of phosphorus in rice leaves is an important indicator of rice growth,

influencing both crop quality and yield. Using drones (unmanned aerial vehicles

[UAVs]) to estimate leaf phosphorus concentration helps manage fertilizer use, mon-

itor plant health, and improve precision farming techniques. This study combined

three types of data—vegetation indices, texture features, and water indices—from

UAV multispectral images to estimate leaf phosphorus concentration using a multi-

criteria evaluation model with analytical hierarchy process–based weighting. The

results show that leaf phosphorus concentration varies between two rice varieties,

TBR225 and J02. The J02 variety has higher leaf phosphorus concentration than

the TBR225 variety because it processes phosphorus more efficiently. These find-

ings help improve rice nutrition management and support precision agriculture

advancements.

1 INTRODUCTION

Rice (Oryza sativa) is the primary staple food and the most

essential commodity in daily life in Vietnam. Rice yield is sig-

nificantly influenced by balanced fertilizer application, with

P playing a critical role (Guo et al., 2024; Irfan et al., 2020).

Moreover, P plays a critical role in influencing nitrogen (N)

uptake during different growth stages of rice plants. Phospho-

rus deficiency reduces N concentration in leaves during the

mid-tillering stage but increases N concentration at the early

heading stage when the same amount of N fertilizer is applied

(Peng et al., 2015). Phosphorus plays a vital role in nearly

all energy-dependent biological processes in plants, includ-

ing photosynthesis, respiration, membrane transport, and the

synthesis of cellular components (Tisdale & Nelson, 1985).

There are several methods for estimating leaf P concen-

tration that can be categorized into traditional and remote

sensing techniques. Although traditional methods are accu-

rate, they are costly, time consuming, laborious, and destruc-

tive (Siedliska et al., 2021). Additionally, these methods

offer limited insights and are not suitable for monitoring the

spatial and temporal variations of biochemical component

contents across large areas (Zhai et al., 2013). In contrast,

remote sensing can directly monitor crop conditions, allow-

ing for timely interventions without the need for destructive

sampling (Pinter et al., 2003; Ryu et al., 2020). Remote

sensing–based estimation of leaf P concentration plays a vital

role in enhancing fertilization management, tracking crop

growth, and promoting precision agriculture strategies (Y.

Zhang et al., 2023). The spectral reflectance of crop leaves

has been shown to correlate with their P status (Lu et al., 2020;

Magalhães et al., 2022; Mahajan et al., 2016; Pimstein et al.,

2011). Therefore, establishing a diagnostic model for leaf P

concentration using remote sensing technology is crucial for

precise P fertilizer management.

Remote sensing technology is a critical component of

precision agriculture and is increasingly being adopted by

scientists, engineers, and large-scale crop producers (Liaghat

& Balasundram, 2010). Remote sensing data can be col-

lected through a range of platforms, including ground-based,

manned aircraft, satellite, and unmanned aerial vehicle (UAV)

to assess precision agriculture (Velusamy et al., 2021). The

varying spatial and temporal resolution of satellite-captured

images makes them a preferred option for wide-area and field-

scale agricultural monitoring (Faustin, 2024). On the other

hand, UAVs offer flexibility for a wide range of applications

and provide effective solutions to challenges encountered by

other remote sensing platforms, as they are cost-effective,

easily deployable in various locations, and capable of cap-

turing real-time spatial images (Delavarpour et al., 2021).

The UAV have undergone rapid advancements since the late

20th century, with significant progress in their application for

monitoring crop parameters, attributed to their exceptional

temporal and spatial resolution capabilities (Ban et al., 2022;

Sishodia et al., 2020; J. Zhang et al., 2022). The UAV-based

remote sensing technology has been extensively employed to

derive the physical and chemical properties of rice, emerging

as a key approach for remotely collecting data at the plot level

in rice fields (Dumitru, 2023; Rudoy et al., 2020). UAVs have

been successfully employed in monitoring nutrient levels in

crops in general and rice plants in particular (Zheng et al.,

2018).

Spectral reflectance data from bands such as green, red, red

edge (RE), and near-infrared (NIR), combined with vegeta-

tion indices (VIs) like the normalized difference vegetation

index (NDVI), ratio vegetation index, medium resolution

imaging spectrometer terrestrial chlorophyll index, difference

vegetation index (DVI), and green normalized difference veg-

etation index, serve as fundamental tools for investigating

agricultural parameters (Y. Liu et al., 2021; S. Zhang et al.,
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2019) including leaf N, P, and potassium (K) concentrations.

Among these nutrient parameters, leaf N concentration (Col-

orado et al., 2020; Khose & Mailapalli, 2024; S. Xu et al.,

2023) and leaf K concentration (Lu et al., 2020; Yu et al.,

2023) have been widely studied. However, the estimation of

leaf P concentration using UAV imagery remains significantly

constrained. This limitation arises from the low sensitivity of

the spectral bands in UAV multispectral imagery to leaf P

concentration. Additionally, leaf P concentration is indirectly

manifested through the plant’s metabolic and energy pro-

cesses, which are reflected in leaf water content and structure.

Therefore, this study expands a new solution to identify the

relationship between leaf P concentration and UAV-derived

spectral data through water-related factors, VIs, and texture

features (TFs).

During plant growth, changes in P levels lead to alterations

in leaf color (Hoque et al., 2010), chlorophyll content (Tairo

& Ndakidemi, 2013), water content (S. Jiang et al., 2023),

and canopy TFs (Barbosa et al., 2014; J. Zhang et al., 2022).

Moreover, canopy texture is a crucial component of UAV

imagery, where variations in structure in UAV imagery reflect

differences in leaf P levels.

Apart from its influence on spectral reflectance and leaf

structure, P content also affects the water content of plant

leaves. Phosphorus deficiency significantly impacts the rel-

ative water content retained by leaves (Oukaltouma et al.,

2020). The positive relationship between leaf P concentration

and water content has been observed in cotton (Gossypium
hirsutum) leaves (Singh et al., 2006). Spectral regions ranging

from the visible spectrum to the short wave infrared (SWIR)

are crucial for identifying leaf P concentration (Li et al.,

2018). The visible spectrum, particularly the blue, red, and

RE bands, is associated with plant stress caused by P defi-

ciency (Stein et al., 2014). Leaf water content was detected

using indices of NIR, middle-infrared (Hunt & Rock, 1989;

Ceccato et al., 2001), and water indices (WIs) such as normal-

ized difference water index (NDWI) (Gao, 1996; McFeeters,

2013; Z. Zhang et al., 2018). As leaf water content decreases,

reflectance generally increases across much of NIR spectrum

due to the absorption of infrared light by water in the leaves.

Consequently, reduced absorption leads to higher reflectance

in the NIR region (Carter, 1991). Thus, the spectral slope

across the 750–900 nm bands in the NIR is considered an

indicator of leaf water content, referred to as the NIR shoul-

der region index (NSRI) (L.-Y. Liu et al., 2014; D. Xu et al.,

2022). Currently, no published studies have explored the use

of UAV multispectral imaging that integrates VIs, TFs, and

WIs to estimate leaf P concentration in rice.

Previous studies have employed various models, such as

random forest, support vector machine, and back propaga-

tion artificial neural network, to integrate VIs for estimating

leaf P concentration (Y. Zhang et al., 2023). Other approaches

include ridge regression and partial least squares regression

Core Ideas
∙ Multispectral unmanned aerial vehicle (UAV)

imaging was employed to identify the optimal

indices related to rice leaf phosphorus concentra-

tion.

∙ The integration of vegetation indices (VIs), tex-

ture features (TFs), and water indices (WIs) can

improve the accuracy of leaf phosphorus concen-

tration estimation in rice.

∙ NIR shoulder region index (NSRI), as one of the

WIs, contributes to the estimation of phosphorus

concentration in rice leaves.

(J. Zhang et al., 2022) for combining spectral and TFs of

UAV images for leaf N concentration monitoring, and artifi-

cial neural network for detecting leaf P concentration using

band indices (Magalhães et al., 2022). These methods uti-

lize spectral bands and index channels, similar to those in

multispectral imagery, to classify and estimate leaf P concen-

tration. However, each spectral band or index shows varying

degrees of correlation with leaf P concentration, making them

potential indicators for its estimation. To better capture these

multivariate relationships, the analytical hierarchy process

(AHP)-based multi-criteria evaluation (MCE) model, widely

used in ecological and environmental multivariate analyses,

has yet to be applied to leaf P concentration estimation.

This study demonstrates three key objectives: (1) to use

UAV multispectral imaging data to identify the optimal VIs,

TFs, and WIs related to rice leaf P concentration; (2) to evalu-

ate NSRI as one of the WIs contributing to the determination

of leaf P concentration in rice, and (3) to demonstrate that

combining VIs, TFs, and WIs improves the precision of leaf

P concentration estimation using the AHP-based MCE model.

2 MATERIALS AND METHODS

2.1 Overall methodology

The leaf P concentration in rice is determined following

the procedure outlined in Figure 1. First, UAV multispectral

images are processed to generate spectral reflectance orthoim-

ages for blue, green, red, RE, and NIR bands. The VIs and WIs

are calculated from various combinations of spectral bands,

while TFs are generated from principal component analysis

(PCA) using five bands and 16 VIs. In the model construc-

tion phase for leaf P concentration estimation, the indices

are evaluated against leaf P concentration measurements from

field samples to identify those with a high correlation to leaf
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F I G U R E 1 Flow chart of estimating rice leaf P concentration in rice from unmanned aerial vehicle (UAV) multispectral images.

P concentration. Subsequently, an integration of appropriate

indices into the AHP-based method is used to construct a

model for extracting leaf P concentration. The resulting leaf P

concentration is assessed for accuracy using the testing leaf P

concentration.

2.2 Study area and experimental design

The experiment was conducted in a rice cultivation area in

Phu Tho Province, Vietnam (21˚16′35″ N, 105˚19′59″ E)

(Figure 2). This area is part of the Red River Delta region,

characterized by a long-standing tradition of wetland rice cul-

tivation, typical of the northern lowlands of Vietnam. The area

has a tropical monsoon climate, where rice is cultivated in

two annual cropping seasons: the winter–spring and summer–

autumn crop. Additionally, the terrain of the experimental

area is flat, which is advantageous for irrigation manage-

ment. The entire survey site is open and free of obstacles that

could interfere with UAV-based aerial imaging. Before mea-

surement and UAV aerial imagery, the field was drained to

minimize the impact of water on the spectral reflectance of

the rice.

Figure 2 illustrates rice cultivation across 55 plots, each

measuring 100 m2 (10 m × 10 m per plot except for plot

T1). Each plot is separated by a 1-m-wide boundary. Two

rice varieties, TBR225 and J02, were selected for experi-

mental cultivation, with 27 and 28 plots assigned to each

variety, respectively. These high-yielding rice varieties have

been and continue to be widely cultivated in Phu Tho, Viet-

nam. TBR225 is a local traditional rice variety that has been

cultivated in this area for a long time, while J02 is a new high-

yielding rice variety originating from Japan. Rice plots are

fertilized with randomly varying ratios of N, P, and K to man-

ually induce variation in the rice growth rate. These variations

in N, P, and K combinations help diversify the values of the

sampling points. Additionally, three sample points were ran-

domly selected within each rice plot to collect rice leaves for

leaf P concentration extraction. These sample points were dis-

tributed across an area of 100m2 to capture variations in the

rice within each plot. The sampling design was intended not

only to provide the necessary data for training and testing the

model, but also to ensure nondestructively sampled plots.

The experiment was conducted during the milk stage of

rice, with field data collection comprising two main tasks:

(1) aerial photography using a multispectral UAV and (2) leaf

sampling from the rice plots.

2.3 UAV multispectral image acquisition
and processing

The DJI Phantom 4 Multispectral (P4M) drone was used to

capture multispectral images of the experimental area. The

P4M is a small, vertical takeoff and landing multispectral

drone (Figure 3), equipped with six cameras, each with a

resolution of 2.08 megapixels (DJI, 2022). One camera cap-

tures images in the visible spectrum (red, green, blue), while

the other five cameras capture spectral bands, including red,

green, blue, RE, and NIR. A sun sensor is integrated on the top

of the P4M drone to acquire instantaneous spectral radiation

for calibrating multispectral images. The drone is connected

to a global navigation satellite system (GNSS) base station to

provide a real-time kinetic (RTK) processing for improving
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F I G U R E 2 Rice plots and leaf sampling points, Phu Tho, Vietnam. NIR, near-infrared; UAV, unmanned aerial vehicle.

GNSS 

receiver 

and 

Sunlight 

sensor

Multispectral cameraRemote controller

Drone

RTK

base

station

F I G U R E 3 Unmanned aerial vehicle (UAV) with a multispectral imaging system. GNSS, global navigation satellite system; RTK, real-time

kinematic.

the geometric accuracy of images. The spectral bandwidth and

central wavelength of the camera sensor are shown in Table 1.

UAV images were acquired between 10:00 a.m. and 11:45

a.m. on May 6, 2022, under favorable weather conditions,

including a sunny day with no cloud cover. The flight altitude

during image acquisition was 38 m, with a 75% longitudi-

nal and lateral overlap between images. The aircraft operated

in hover-and-capture mode, achieving a ground sampling

distance of 2 cm. The multispectral images were radiomet-

rically corrected using data from the sunlight sensor, which is

mounted on top of the drone to instantaneously record inci-

dent spectral intensity corresponding to the camera’s spectral

wavelength bands while capturing images. Radiometric cor-

rection calculates the surface reflectance of spectral bands
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T A B L E 1 Parameters of the multispectral sensor for DJI Phantom

4 Multispectral (P4M).

Image bands Abbreviations
Central
wavelength (nm)

Spectral band
width (nm)

Blue B 450 ± 16 20

Green G 560 ± 16 20

Red R 650 ± 16 10

Red edge RE 730 ± 16 10

Near-infrared NIR 840 ± 26 40

using incident spectral irradiation recorded by the sunlight

sensor and reflected spectral irradiation captured by the spec-

tral camera. This correction is applied to each image during

image processing. Subsequently, the images were processed

using scale-invariant feature transform and structure from

motion method to generate a point cloud, digital surface

model, and multispectral orthophoto.

2.4 Leaf sampling and measurement

Simultaneously with the acquisition of multispectral UAV

images, three randomly selected sample points were estab-

lished in each plot to assess leaf P concentration, producing

a total of 165 sample points for collecting rice leaves for

P concentration extraction. Locations of leaf samples points

are accurately measured on the field using a GNSS RTK

instrument to synchronize with the multispectral orthoimage

obtained from UAV. Leaf P concentration was measured in

dried rice leaves using an inductively coupled plasma optical

emission spectroscopy (ICP-OES) instrument. Specifically,

10 g of leaves were dried at 200˚C and milled to a particle size

smaller than 200 nm. A 0.2 g portion of the resulting powder

was mixed with 9 mL of HNO3 and 1 mL of H2O2, heated

at 200˚C for 1 h, and diluted to a final volume of 100 mL.

The solution was then divided into 10 10 mL aliquots, and

standard reference solutions with phosphorus concentrations

of 40, 50, 60, 70, and 90 ppm were prepared. Phosphorus con-

centration (mg/kg) in the fresh leaf samples was determined

using ICP-OES by analyzing both the samples and standard

solutions. As a result, 70% of P samples (116 samples) are

randomly selected for constructing the model to estimate leaf

P concentration, while the remaining 30% (49 samples) were

used to evaluate the model’s accuracy.

2.5 Index extraction and variable selection

2.5.1 Vegetation indices

The structural characteristics of the leaves, canopy, and soil

background can significantly affect the optical properties of

both the leaves and the canopy (Bausch, 1993; Jay et al.,

2017). Furthermore, several VIs were selected from the lit-

erature to estimate leaf P concentration (Colorado et al.,

2020; Mahajan et al., 2016; S. Xu et al., 2023; Zhai et al.,

2013; J. Zhang et al., 2022). Consequently, a total of 16

VIs calculated from UAV multispectral images were tested

for their correlation with leaf P concentration in rice sam-

ples (Table 2). The Pearson correlation coefficient was used

to evaluate the relationship between 116 leaf P concentra-

tion samples and corresponding values of each VI. Any VIs

that were not significantly correlated to leaf P concentration

(Pearson’s coefficient r < 0.6), were excluded from the leaf

P concentration estimation model (Trigunasih et al., 2022).

Additionally, the 116 VI values were subjected to pairwise

comparison to test the similarity of VI pairs using Pearson’s

correlation coefficient.

2.5.2 Texture feature

The PCA method was used to process a dataset of 21 images,

comprising five UAV spectral bands and 16 VIs to extract

images containing the maximum amount of information. The

first two principal component images, identified by the high-

est eigenvalues (PCA1 and PCA2) were processed to generate

eight TFs. These TFs were calculated using the gray-level

co-occurrence matrix method, employing a 3 × 3 matrix for

optimal granularity. A detailed description of eight TFs is

provided in Table 3.

2.5.3 Water indices

In this study, we investigated two WIs to estimate leaf P con-

centration. The NDWI was calculated using the green (G) and

NIR bands (McFeeters, 2013), as shown in Equation (1). The

NDWI can be considered an independent index from NDVI,

serving as an indicator of vegetation moisture (Gao, 1996).

Additionally, the NSRI is defined as the ratio of reflectance

at 890 nm to reflectance at 780 nm (H.-H. Liu et al., 2014).

The spectral reflectance at wavelengths of 890 and 780 nm

corresponds to the NIR and RE band, respectively, in the

multispectral UAV images (Equation 2).

NDWI =
𝑅G − 𝑅NIR
𝑅G + 𝑅NIR

(1)

NSRI =
𝑅NIR
𝑅RE

(2)

2.5.4 Variable selection

In addition to using coefficient of determination (R2) to

evaluate the relationship between variables and leaf P concen-

tration, this study also used the Pearson correlation coefficient
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T A B L E 2 Vegetation indices used for testing the correlation with leaf P concentration in rice.

No. Vegetation indices Formulas Reference
1 Difference vegetation index DVI = 𝑅NIR − 𝑅R (Jordan, 1969)

2 Enhanced vegetation index EVI = 2.5(𝑅NIR − 𝑅R)∕(𝜌NIR + 6𝑅R − 7.5𝑅B + 1) (Huete et al., 2002)

3 False color vegetation index FCVI = 1.5(2𝑅NIR + 𝑅B − 2𝑅G)∕(2𝑅G + 2𝑅B − 2𝑅NIR + 127.5) (J. Jiang et al., 2019)

4 Green normalized difference

vegetation index

GNDVI = (𝑅NIR − 𝑅G)∕(𝑅NIR +𝑅G) (Buschmann & Nagel,

1993)

5 Leaf chlorophyll index LCI = (𝑅NIR/𝑅RE ) − 1 (A. A. Gitelson et al.,

2003)

6 Modified chlorophyll absorption in

reflectance index

MCARI = 𝑅RE − 𝑅R − 0.2(𝑅RE − 𝜌G)𝑅RE∕𝑅R (Daughtry et al., 2000)

7 Modified soil adjusted vegetation

index

MSAVI = 0.5(2𝑅NIR + 1 −
√

(2𝑅NIR + 1)3 − 8(𝑅NIR − 𝑅R)) (Qi et al., 1994)

8 Modified simple ratio MSR = [(𝑅NIR∕𝑅R) − 1]∕[(𝑅NIR∕𝑅R) + 1] (Chen, 1996)

9 Normalized difference red edge index NDRE = (𝑅NIR − RRE)∕(𝑅NIR + 𝑅RE) (Gamon & Surfus,

1999)

10 Normalized difference vegetable

index

NDVI = (𝑅NIR −𝑅R)/(𝑅NIR + 𝑅R) (Rouse et al., 1973)

11 Optimized soil adjusted vegetation

index

OSAVI = (𝑅NIR −𝑅R)∕(𝑅NIR + 𝑅R + 0.16) (Rondeaux et al., 1996)

12 Photochemical reflectance index PRI = (𝑅G − 𝑅B)∕(𝑅G +𝑅B) (Gamon et al., 1997)

13 Red edge chlorophyll index RECI = (𝑅NIR − 𝑅RE)∕𝑅RE (A. Gitelson &

Merzlyak, 1994)

14 Ratio vegetation index RVI = 𝑅NIR∕𝑅R (Jordan, 1969)

15 Transformed vegetation index TVI = (𝑅G −𝑅R)∕(𝑅G + 𝑅R) (Broge & Leblanc,

2001)

16 Structure-intensive pigment index SIPI = (𝑅NIR − 𝑅B)∕(𝑅NIR +𝑅B) (Peñuelas et al., 1994)

Note: RNIR, RRE, RR, RB, and RG correspond to spectral reflectance values in the NIR, red edge, red, blue, and green bands, respectively.

T A B L E 3 Formulas for calculating texture features from vegetation indices (VIs) and spectral bands.

No. Texture features Description Abbreviations Formula
1 Contrast Reflecting the degree of local variation CON

∑𝑛

𝑖=1
∑𝑛

𝑗=1 (𝑖 − 𝑗)2𝑃𝑖,𝑗

2 Correlation Capturing the linear relationship between

pixel values in the image

COR
∑𝑛

𝑖=1
∑𝑛

𝑗=1
(𝑖−MEA𝑗 )(𝑗−MEA𝑗 )𝑃𝑖,𝑗√

VAR𝑖 .
√
VAR𝑗

3 Dissimilarity Showing differences in grayscale values DIS
∑𝑛

𝑖=1
∑𝑛

𝑗=1 |𝑖 − 𝑗|𝑃𝑖,𝑗

4 Entropy Expressing the level of randomness in the

matrix; second moment

ENT −
∑𝑛

𝑖=1
∑𝑛

𝑗=1 𝑃𝑖,𝑗 log𝑃𝑖,𝑗

5 Homogeneity Measuring the uniformity within the

matrix

HOM
∑𝑛

𝑖=1
∑𝑛

𝑗=1
𝑃𝑖,𝑗

1+ (𝑖−𝑗)2

6 Mean Representing the average gray level of all

pixels in the matrix

MEA
∑𝑛

𝑖,𝑗=1 𝑖𝑃𝑖,𝑗

7 Second moment Representing the uniformity of grayscale

distribution

SEM
∑𝑛

𝑖=1
∑𝑛

𝑗=1 𝑃
2
𝑖,𝑗

8 Variance Indicating how spread out the values are

from the mean

VAR
∑𝑛

𝑖=1
∑𝑛

𝑗=1 𝑖𝑃𝑖,𝑗(𝑖 −MEA)2

Note: i and j represent the row and column of the images, respectively, and 𝑃𝑖,𝑗 is relative frequency of two adjacent pixels (J. Zhang et al., 2022).
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(r). Since a weighted multi-criteria analysis method was used,

the selection of individual variables within each group of

VIs, WIs, and TFs should consider both positive and nega-

tive linear relationships with leaf P concentration. In addition

to expert knowledge, the positive–negative relationships also

serve as the foundation for determining the weights in the

AHP method used in this study. Pearson correlation coef-

ficient measures the strength and direction of the linear

relationship between a predictor variable and a target vari-

able, with values ranging from −1 to 1. Predictor variables

exhibiting a higher absolute value of r exhibit a stronger lin-

ear correlation with the target variable. Consequently, these

variables are prioritized over those with lower absolute values

of r in the variable selection process based on r (Wang et al.,

2021). So, to determine robust VIs, WIs, and TFs for the leaf

P concentration of rice, this study selected VIs, WIs, and TFs

that showed strong correlations with field leaf P concentra-

tion values (|r| > 0.63). Additionally, to mitigate the impact

of multicollinearity, the correlation matrix is also utilized to

select appropriate variables within the VIs. Correlations coef-

ficient above 0.7 typically indicate collinearity concerns (C.

Liu et al., 2018).

2.6 MCE for estimating leaf P
concentration

The AHP technique as an MCE approach, effectively integrat-

ing geographic information system analysis to estimate leaf

P concentration (Y). The AHP is a crucial decision-making

technique that helps ensure the coherence of attributes pro-

posed by decision-makers. The process involves conducting

pairwise comparisons of factors to establish the hierarchy of

their influence (Saaty, 1977), which helps mitigate the effect

of multicollinearity. Therefore, AHP does not require testing

for multicollinearity (Guo et al., 2024; Hasan et al., 2025; H.-

H. Liu et al., 2014). This estimation is performed using a set of

multiple criteria Xi, as described in Equation (3). Here, Xi rep-

resents criteria drawn from categories of VIs, TFs, and WIs,

all of which are closely related to P assimilation

𝑌 =
𝑛∑
𝑖=1

𝑊𝑖𝑋𝑖 (3)

where Y represents leaf P concentration, 𝑊𝑖 represents

weight of criterion i, 𝑋𝑖 represents value of criterion i, and n
represents number of criteria.

The pairwise comparison matrix in the AHP model is used

to determine the weights of the criteria. The influence of each

pair of criteria on leaf P concentration is evaluated based on

expert knowledge of the relationship between these factors

and leaf P concentration. To assess the role of water, chloro-

phyll, and texture in relation to the leaf P concentration of rice,

this paper employs the MCE model to estimate leaf P concen-

tration under six scenarios, which are combinations of VIs,

TFs, and WIs.

2.7 Accuracy evaluation

The estimated leaf P concentration results were compared

with the testing points (30% of the samples) using mean abso-

lute error (MAE) and the least squares method through the

root mean square error (RMSE). The MAE and RMSE are

defined in Equations (4) and (5), respectively.

MAE = 1
𝑛

𝑛∑
𝑖=1

|𝑣𝑖| (4)

RMSE =

√[
𝑉𝑖𝑉𝑖

]
𝑛

(5)

where 𝑉𝑖 represents the actual error at testing point i, cal-

culated as 𝑉𝑖 = LPCM − LPCF, n represents the number

of sample points used for model evaluation, LPCM repre-

sents the leaf P concentration estimated by the model, and

LPCF represents the leaf P concentration obtained from field

measurements.

3 RESULTS

3.1 Selection of VIs

Table 4 indicates that 14 out of 16 VIs exhibit a strong rela-

tionship with leaf P concentration, except for photochemical

reflectance index and DVI, which have R2 values of 0 and 0.36

respectively. Among the 14 VIs, the NDVI is the most strongly

correlated with leaf P concentration, with a R2 value of 0.62.

Therefore, NDVI is the most prioritized index for inclusion

in the leaf P concentration estimation model. To reduce the

number of VI variables included in the model, the correlation

matrix (Figure 4) illustrates the similarity between each pair

of VIs.

As shown in Figure 4, the VIs demonstrate a very high level

of similarity. Among them, modified chlorophyll absorption

in reflectance index (MCARI) and NDVI are highly similar

with the absolute value of r reaching 0.92 (Figure 4). However,

NDVI exhibits the strongest positive correlation with leaf P

concentration (Figure 5a), while MCARI is the only index

negatively correlated with leaf P concentration (Figure 5b).

Therefore, the effects of NDVI and MCARI on leaf P con-

centration are different. The results show that both NDVI and

MCARI were selected for inclusion in the leaf P concentration

estimation model



VAN LE AND PHAM 9 of 17

F I G U R E 4 Vegetation indices (VIs) correlation matrix. EVI, enhanced vegetation index; FCVI, false color vegetation index; GNDVI, green

normalized difference vegetation index; LCI, leaf chlorophyll index; MCARI, modified chlorophyll absorption in reflectance index; MSAVI,

modified soil adjusted vegetation index; MSR, modified simple ratio; NDRE, normalized difference red edge; NDVI, normalized difference

vegetation index; OSAVI, optimized soil adjusted vegetation index; RECI, red-edge chlorophyll index; RVI, ratio vegetation index; SIPI,

structure-intensive pigment index; TVI, transformed vegetation index.

F I G U R E 5 Relationship between (a) leaf P concentration and normalized difference vegetation index (NDVI) and (b) leaf P concentration and

modified chlorophyll absorption in reflectance index (MCARI).
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T A B L E 4 Relationship between vegetation indices (VIs) and leaf

P concentration.

Number VIs R2 r Number VIs R2 r
1 DVI 0.36 0.60 9 NDVI 0.62 0.78

2 EVI 0.52 0.72 10 OSAVI 0.61 0.78

3 FCVI 0.50 0.71 11 PRI 0.00 −0.06

4 GNDVI 0.47 0.68 12 RECI 0.54 0.73

5 MCARI 0.54 −0.73 13 RVI 0.60 0.77

6 MSAVI 0.61 0.78 14 TVI 0.40 0.63

7 MSR 0.61 0.78 15 SIPI 0.52 0.72

8 NDRE 0.55 0.74 16 LCI 0.54 0.73

Abbreviations: DVI, difference vegetation index; EVI, enhanced vegetation index;

FCVI, false color vegetation index; GNDVI, green normalized difference vegeta-

tion index; LCI, leaf chlorophyll index; MCARI, modified chlorophyll absorption

in reflectance index; MSAVI, modified soil adjusted vegetation index; MSR, mod-

ified simple ratio; NDRE, normalized difference red edge; NDVI, normalized

difference vegetation index; OSAVI, optimized soil adjusted vegetation index;

PRI, photochemical reflectance index; RECI, red-edge chlorophyll index; RVI,

ratio vegetation index; SIPI, structure-intensive pigment index; TVI, transformed

vegetation index.

T A B L E 5 Texture features (TFs) and leaf P concentration

relationship.

Number TFs R2 r Number TFs R2 r
1 CON 0.13 −0.36 5 HOM 0.12 0.35

2 COR 0.08 0.28 6 MEA 0.64 0.80

3 DIS 0.13 −0.36 7 SEM 0.16 0.40

4 ENT 0.30 −0.55 8 VAR 0.16 −0.40

Abbreviations: CON, contrast; COR, correlation; DIS, dissimilarity; ENT,

entropy; HOM, homogeneity; MEA, mean; SEM, second moment; VAR, variance.

3.2 Selection of TFs

PCA1 and PCA2 are the two principal components derived

from 16 VIs and five bands of UAV multispectral data. PCA1

and PCA2 exhibit correlations with leaf P concentration of

0.74 and 0.73, respectively. Therefore, PCA1 was selected for

calculating the TFs. The relationship between TFs and leaf P

concentration is presented in Table 5. Table 5 indicates that

the relationship between TFs and leaf P concentration is gen-

erally low to moderate, except for the mean (MEA) index,

which has a R2 value of 0.64. Therefore, MEA was selected

as the representative TF demonstrating a strong relationship

with leaf P concentration (Figure 6).

3.3 Selection of WIs

Figure 7 indicates that the relationship between NDWI, NSRI,

and leaf P concentration is strong, with R2 values of 0.55 and

0.64, respectively. However, while NDWI exhibits a negative

correlation with leaf P concentration, NSRI shows a positive

F I G U R E 6 Relationship between mean (MEA) and leaf P

concentration.

correlation with leaf P concentration. Therefore, both NDWI

and NSRI are considered criteria for the leaf P concentration

estimation model.

3.4 Model for leaf P concentration
estimation in rice

The AHP-based MCE technique is chosen as the model

for estimating leaf P concentration (Equation 3). The crite-

ria include NDVI and MCARI, representing the VIs group;

MEA, representing the TFs group; and NDWI and NSRI, rep-

resenting the WIs group. Figure 8 illustrates the R2 and r value

for each criterion in relation to leaf P concentration.

Figure 8 demonstrates a strong relationship between the

five criteria and leaf P concentration. However, while NDVI,

MEA, and NSRI exhibit positive correlations, MCARI and

NDWI show negative correlations. Overall, the group with

positive correlations has higher values compared to the group

with negative correlations. To evaluate the contribution of

index groups to the estimated leaf P concentration using the

AHP-based MCE model, four scenarios (S1, S2, S3, and

S4) are constructed from five criteria, as shown in Table 6.

The weights Wi were determined using the AHP model. The

results of the weights, RMSE, MAE, and R2 values of the

models are presented in Table 7.

Abbreviations: MAE, mean absolute error; MCARI, mod-

ified chlorophyll absorption in reflectance index; MCE,

multi-criteria evaluation; MEA, mean; NDVI, normalized dif-

ference vegetation index; NDWI, normalized difference water

index; NSRI, NIR shoulder region index; RMSE, root mean

square error.

Table 7 provides information on the MCE scenarios for esti-

mating P content, based on factors such as NDVI, MCARI,

MEA, NSRI, and NDWI. It shows that MEA plays the most

important role in all scenarios with the highest weight ranging

from 0.41 in S4 to 0.59 in S1. Moreover, Table 7 also shows
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F I G U R E 7 Relationship between (a) leaf P concentration and normalized difference water index (NDWI) and (b) leaf P concentration and NIR

shoulder region index (NSRI).

F I G U R E 8 The relationship between the indices (criteria) and leaf P concentration. MCARI, modified chlorophyll absorption in reflectance

index; NDVI, normalized difference vegetation index; NDWI, normalized difference water index, NSRI, NIR shoulder region index.

T A B L E 6 Scenarios of multi-criteria evaluation (MCE)

Scenarios of the
MCE model Characteristics Equation
S1 The indices in each of VIs and TFs W1.NDVI + W2. MCARI + W3.MEA

S2 VIs, TFs, and WIs, which have negative

correlation with leaf P concentration

W1.NDVI + W2. MCARI + W3.MEA + W5.NDWI

S3 VIs, TFs, and WIs, which have positive

correlation with leaf P concentration

W1. NDVI + W2.MCARI + W3. MEA + W4. NSRI

S4 All of VIs, TFs, and WIs W1. NDVI + W2. MCARI + W3.MEA + W4.NSRI + W5.NDWI

Note: W1 represents weight of NDVI, W2 represents weight of MEA, W3 represents weight of NSRI, W4 represents weight of NDWI, and W5 represents weight of

MCARI.

Abbreviations: MCARI, modified chlorophyll absorption in reflectance index; MEA, mean; NDVI, normalized difference vegetation index; NDWI, normalized difference

water index; NSRI, NIR shoulder region index; TFs, texture features indices; VIs, vegetation indices; WIs, water indices.

that the relationship between MEA and leaf P concentration

is the strongest. When considering indices within the same

group, the NDVI in the VIs group has a higher weight than

the MCARI. Similarly, in the WIs group, the NSRI holds a

higher weight compared to NDWI in S4.

Moreover, the R2 value increases from 0.70 in S1 to 0.75 in

S4, reflecting a significant improvement in the model’s ability

to explain the relationship between the factors and leaf P con-

tent. Additionally, the RMSE and MAE decrease slightly from

0.041 of RMSE and 0.038 of MAE in S1 to 0.035 of RMSE
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T A B L E 7 The weights Wi using analytic hierarchy process (AHP) model.

MCE

Weight

R2 RMSE (%) MAENDVI MCARI MEA NSRI NDWI
S1 0.25 0.16 0.59 – – 0.70 0.041 0.038

S2 0.23 0.10 0.48 – 0.19 0.72 0.043 0.036

S3 0.19 0.11 0.48 0.22 – 0.72 0.039 0.033

S4 0.18 0.08 0.41 0.17 0.15 0.75 0.035 0.030

F I G U R E 9 Leaf P concentration, which was extracted by combining vegetation indices (VIs), texture features indices (TFs), and water indices

(WIs) (T, TBR225; J, J02).

and 0.003 of MAE in S4, suggesting that the model’s error

reduces as additional factors are included. These results indi-

cate that the model becomes more accurate across scenarios.

Figure 9 corresponding to S4 represents the best scenarios.

Figure 10 indicates that the leaf P concentration of rice

variety J02 ranges from 0.343% to 0.462%, while that of rice

variety TBR225 ranges from 0.272% to 0.442%. Overall, the

leaf P concentration of variety J02 is higher than that of variety

TBR225.

4 DISCUSSION

4.1 Comparison of variable importance

In this study, we examined the relationship between 26 spec-

tral variables and leaf P concentration, including 16 VIs, eight

TFs, and two WIs. Among these, five indices were selected as

criteria in the leaf P concentration estimation models, namely

NDVI, MEA, NSRI, NDWI, and MCARI.
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Several studies have demonstrated that combining VIs and

TFs significantly enhances the accuracy of rice yield estima-

tion models (Zhou et al., 2022) and N content estimation in

crops (J. Zhang et al., 2022). By integrating spectral and tex-

tural information, these models can capture both biochemical

and structural traits of the plants, leading to more reliable N,

K, and P assessments. In the scenarios presented in Table 7,

these results indicate that the integration of VIs and TFs has

enhanced the accuracy and quality of the model in estimating

leaf P concentration.

Figure 11 shows that the NDWI has distributed at 19% in S2

and 15% in S4. Therefore, NDWI can be considered an impor-

tant independent index to NDVI (Gao, 1996), as evidenced

by the results in S2. When NDWI was combined with indices

from NDVI, MCARI, and MEA, the results of the MCE model

were significantly improved (Table 7).

In addition, the NSRI has been used as an indicator of

variations in leaf water content. The NSRI index has lower

sensitivity compared to SWIR and NDWI. However, its effec-

tiveness also depends on the study subject and the degree

of leaf water variation (L.-Y. Liu et al., 2014). The NSRI

appears only in S3 and S4 with contribution of 22% and 17%,

respectively (Figure 11), reflecting the plant’s stress level,

particularly under conditions of water or nutrient deficiency

(Huang et al., 2015).

On the other hand, a comparison of correlation and the con-

tribution of the two WIs to MCE reveals distinct differences.

The relationship between NSRI and leaf P concentration
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(R2 = 0.64) is stronger than that between NDWI and leaf P

concentration (R2 = 0.55). In S4 of Figure 11, NSRI con-

tributed 17% to leaf P concentration estimation, while NDWI

contributed only 15%. These findings indicate that within the

WIs group, NSRI demonstrates greater sensitivity than NDWI

for estimating leaf P concentration. This outcome demon-

strates the novel contribution of this study in identifying a

water-related index that performs well in determining leaf P

concentration in rice.

4.2 Evaluation of modeling variables and
accuracy

Table 7 suggests that as the model’s ability to explain

the data improves (higher R2), its prediction accuracy also

increases (lower RMSE). This trend highlights that the model

is optimized with each scenario, especially in S4, where

the combination of factors like NDWI and NSRI leads to

the best results, offering both the highest R2 (0.75) and

the lowest RMSE (0.035). NDWI captures the water con-

tent in vegetation and helps differentiate water bodies from

land areas, which can be crucial in agricultural and environ-

mental studies, especially in assessing P concentrations that

often correlate with water systems. NDWI is widely used

in environmental studies for assessing vegetation health and

water stress (Gao, 1996). Research has shown that NDWI

play a significant role in enhancing model accuracy for pre-

dicting various leaf P concentration. Research indicates that

plants experiencing water stress often exhibit reduced nutrient

absorption capabilities, including P (Aguswan et al., 2022).

By accurately measuring water content through NDWI, mod-

els can better predict the P in plant tissues, as water stress can

limit the mobility of nutrients within the soil and their uptake

by roots (Onprasonk et al., 2023). Similarly, NSRI has been

recognized as a useful index for determining plant stress and

nutrient uptake, including P. Studies have indicated that NSRI

can help monitor the physiological responses of these plants to

varying P levels (Crusciol et al., 2021). Its inclusion in models

typically improves predictions of ecological factors, particu-

larly when modeling stress-sensitive variables like P in soil

and water.

In summary, NDWI and NSRI can be integrated into

models for assessing and predicting rice P. Additionally,

incorporating VIs, TFs, and WIs, the model becomes bet-

ter suited to predict leaf P concentration in rice with higher

precision, which explains the trend observed in the data for S4.

4.3 Analysis Leaf P Concentration

TBR225, a popular rice variety in Northern Vietnam, is

known for its susceptibility to certain diseases but also

exhibits specific traits that may influence nutrient uptake,

including P (Duy et al., 2021). The leaf P concentration of

rice varieties J02 and TBR225 reveals notable differences in

nutrient uptake, with variety J02 demonstrating higher P lev-

els than variety TBR225. This difference may be attributed to

the inherent characteristics of the varieties, with Japonica rice

(variety J02) showing better adaptability to environmental

conditions and potentially greater nutrient uptake efficiency

compared to Indica rice varieties such as TBR225 (Das et al.,

2020). These findings suggest that rice variety J02 may be

more efficient in utilizing P, which could play a crucial role

in optimizing nutrient management in rice cultivation.

4.4 Research limitations and future
prospects

The UAV multispectral technology offers an innovative

remote sensing approach essential for advancing precision

agriculture research. This study was conducted on a pilot scale

within a small area (5500 m2) with a limited experimental

dataset comprising 165 sampling points. Moreover, UAVs are

expensive, and data collection is time-consuming and labor-

intensive. Therefore, expanding the sampling to include a

larger number of points and integrating satellite remote sens-

ing technology, such as Worldview-3, could enhance model

accuracy on a large scale, and facilitate continuous monitoring

of leaf P concentration in rice at different growth stages.

In this paper, indices from the VIs, TFs, and WIs groups

were combined in various scenarios to improve the esti-

mation accuracy of leaf P concentration for two different

rice varieties. The leaf P concentration of the rice varieties,

derived from UAV multispectral imagery, serves as a basis

for assessing nutrient deficiencies or excesses in rice plants.

This information enables precise fertilizer application deci-

sions, tailored to each rice variety and, in future studies, to

individual paddy fields.

5 CONCLUSION

Based on the outcomes from this study, it can be concluded

that monitoring leaf P concentration in rice plants using

UAV data is feasible. However, the accuracy of this approach

depends on the effective combination of VIs, TFs, and WIs.

WIs play a significant role in leaf P concentration esti-

mation, as multispectral UAV imagery not only captures

variations in VIs and TF, but also enables WIs, derived from

specific spectral bands, to further delineate leaf texture char-

acteristics. This enhances the ability of remote sensing data

to detect P signals. Therefore, fusion indicators, derived from

five parameters, were selected based on their strong rela-

tionship with rice leaf P concentration using the AHP-based

MCE method, including two VIs (NDVI and MCARI), one

TF (MEA) and two WIs (NDWI and NSRI). This integration

can improve the accuracy of leaf P concentration estimation.
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Understanding the nutrient uptake differences between rice

varieties TBR225 and J02 is crucial for improving agricul-

tural productivity and sustainability, informing decisions on

rice variety selection and fertilization strategies in various

agroecological zones.
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