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Abstract 

Drifting buoy data plays a vital role in climate and oceanographic research, offering critical insights into ocean 

surface dynamics, currents, and weather patterns. Accurate trajectory prediction of drifting buoys improves 

maritime weather forecasting, supports climate change research, and aids in search and rescue operations at 

sea. This research explores the application of two deep learning models, CNN (Conv1D) and GRU (1D), to 

predict buoy trajectories. The study utilizes the timestamped geographical coordinate datasets, which were 

processed and divided into training and testing sets. Both models were optimized using the Adam algorithm 

and Huber loss function, with hidden layer filter configurations of 64, 128, and 256. Model performance was 

evaluated using MSE, RMSE, MAE, R², Cohen’s Kappa, and F1-score. Results indicate that CNN (Conv1D) 

consistently outperforms GRU, particularly with 256 filters, achieving significantly lower RMSE and MAE 

values, demonstrating higher predictive accuracy. While GRU exhibited performance fluctuations across 

different filter configurations, CNN (Conv1D) maintained stable accuracy across varying dataset conditions. 

Notably, CNN (Conv1D) achieved at least 50% greater accuracy than GRU while preserving a near-perfect 

correlation to input data. The study highlights the critical role of high-resolution data in enhancing prediction 

reliability, as lower-resolution or highly variable datasets negatively impact model performance. Additionally, 

it underscores the importance of effective preprocessing techniques for handling missing data to ensure robust 

predictions. This research advances deep learning applications in marine studies by optimizing trajectory 

forecasting models. Future work should explore hybrid approaches integrating Conv1D with other 

architectures or leveraging transformer models to enhance long-term prediction accuracy. These findings 

provide a reliable framework for oceanographic research, maritime navigation, and environmental monitoring 

in dynamic marine conditions. 
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1. Introduction 

Numerous studies highlight the significance of 

drifting buoy data in various applications. For 

instance, the impact of station density on Numerical 

Weather Prediction (NWP) in the North Atlantic has 

been explored, demonstrating that halving station 

density disproportionately reduces forecast 

effectiveness [1].  

This underscores the importance of dense station 

networks, especially in regions with strong 

atmospheric activity. However, the lack of pressure 

sensors at nearly half of the drifting buoy stations 

poses challenges, prompting recommendations to 

improve pressure data collection in critical regions 

like the Arctic and the Gulf Stream.
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Similarly, the importance of pressure data from 

drifting buoys has been analyzed through 

observational system experiments [2]. Denial 

experiments revealed that excluding pressure data 

significantly increases forecast errors for pressure, 

temperature, and wind fields globally, underscoring 

the buoys' critical role in the World Meteorological 

Organization's global observation network. 

Innovative technologies for drifting buoy 

applications are also being developed. Recent 

advancements include a rescue buoy network 

utilizing AIS and Beidou systems for search-and-

rescue operations [3]. The need for precise short-term 

drift simulations, particularly in hydrological 

emergencies like oil spills, has been emphasized, 

highlighting the necessity of coupling atmospheric 

and oceanic models [4]. The evaluation of four ocean 

drift forecasting models using extensive drifting 

buoy data in Canada’s St. Lawrence Bay has shown 

that incorporating Stokes drift into models reduces 

trajectory prediction errors by 34 - 40%, with the best 

results achieved through combined models 

integrating near-surface corrections and Stokes drift 

[5]. Studies have also analyzed the FOAM system's 

near-surface current predictions using drifting buoy 

trajectories, identifying biases in the Southern Ocean 

due to missing buoy bottoms [6]. Hyper-ensemble 

techniques applied to buoy drift forecasting have 

revealed that dynamic methods reduce forecast errors 

by at least threefold compared to individual models 

[7]. 

Advancements in deep learning methods have 

also enhanced trajectory prediction. For instance, 

DriftNet, a deep learning framework for simulating 

Lagrangian drift, has excelled in surface drift 

modeling [8]. The validation of OpenDrift, an open-

source Lagrangian particle trajectory modeling 

system for oil spill simulations, demonstrated 

improved accuracy through factors like Stokes drift 

and currents [9]. Machine learning techniques further 

enhance model precision. The combination of 

regression neural networks with drifting buoy and 

satellite data has optimized surface current 

predictions in the Gulf of Mexico, achieving 

improved spatial and temporal resolution [10]. 

Additionally, acoustic depth measurement buoys 

have been utilized to improve tropical tuna fishing 

efficiency, achieving detection accuracies of 75 - 

85% [11]. Statistical methods like linear regression 

and support vector machines have also demonstrated 

success in predicting water current velocity [12]. 

Global Navigation Satellite System (GNSS)-

based studies have contributed to water level and 

wave movement measurements. Compact GNSS-

equipped buoys have been developed for measuring 

river water levels with mean errors below 2 cm [13]. 

Free Ocean Wave Data (FOWD) has been introduced 

for analyzing extreme wave activity, enabling 

accurate wave height predictions [14]. Machine 

learning approaches, such as the Extra Trees (ET) 

algorithm, have further improved wave height 

predictions with greater accuracy [15]. High-

frequency monitoring systems combined with 

machine learning have enabled innovative solutions 

like soft sensors for chlorophyll-a (Chl-a) data, 

offering rapid and cost-effective water monitoring 

[16]. Cognitive sensor frameworks with deep 

learning have been introduced for real-time drifting 

object prediction, demonstrating the effects of wind 

and currents on drift coefficients [17]. Additionally, 

the CNN-BiGRU-Attention model has shown 

excellent generalization and convergence for long-

term trajectory predictions under varying marine 

conditions [18]. 

The analysis of drifting buoy data plays a crucial 

role in predicting the trajectories of floating objects, 

ships, and oil spills, supporting maritime safety, 

search and rescue, and environmental incident 

response. Current models rely on weather, wave, and 

ocean forecast data but still have limitations, 

particularly in integrating drift factors. Therefore, 

this study focuses on improving the accuracy of buoy 

trajectory prediction, optimizing rescue operations, 

and minimizing maritime damage [19] and [20]. The 

CNN (Conv1D) and GRU models have demonstrated 

superior performance in geospatial data analysis, 

including spatial prediction of fluvial floods [21], 

groundwater data analysis [22], and intelligent 

network traffic prediction [23]. However, no studies 

have yet explored the application of these models in 

analyzing drifting buoy data at sea. 

This study employs GRU and CNN (Conv1D) 

models to analyze time-series and spatial data. Using 

data from two drifting buoys, it evaluates the 

performance of these models with varying data 

volumes to understand their predictive accuracy and 

optimize their application in ocean studies. 

Convolutional Neural Networks (CNNs), particularly 

1D CNNs (Conv1D), provide significant advantages 

in spatiotemporal data analysis. They effectively 

capture local spatial dependencies and reduce 

computational complexity through parallel 

processing, making them scalable for large datasets 

[24]. In contrast, GRUs excel in capturing long-term 

temporal dependencies but face inefficiencies due to 

their sequential processing nature [25]. 
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2. Data and Methodology 

2.1 Data Utilized 

In the East Sea of Vietnam, a large amount of data 

from various drifting buoys is available [26]. From 

the collected dataset, the data from two drifting 

buoys, 49676 and 56644, were randomly selected as 

the experimental data for this study. Each dataset 

includes detailed information such as buoy ID, 

timestamp, geographical coordinates (latitude and 

longitude), and other environmental parameters (sea 

surface temperature), the flow velocity (represented 

by the speed of the drifting buoy) recorded at each 

location and time point, such as flow velocity and 

salinity [12].  

Table 1 summarizes the key attributes of the 

experimental data. In Table 1, the time interval is set 

to 1 hour because the drifting buoy is programmed to 

record a dataset every hour. The datasets represent 

distinct time spans of observation to evaluate the 

prediction accuracy of deep learning models under 

varying data availability conditions. The geographic 

study area, delineated by a red boundary in Figure 1, 

is situated in the East Sea, part of the western Pacific 

Ocean. The East Sea exhibits a tropical monsoon 

climate with pronounced seasonal variations shaped 

by monsoon systems and oceanic circulation 

patterns. 

 

Table 1: Information about the experimental data 
 

Description of Parameters Drifting Buoy 56644 Drifting Buoy 49676 

Start time 20/11/2005 20/11/2004 

Stop time 30/11/2005 13/12/2005 

Latitude (Min, Max) 20.60624, 22.42329 14.29034, 22.92967 

Longitude (Min, Max) 118.68426, 119.99723 107.95411, 119.99973 

Data sampling interval 1 hour 1 hour 

 

 
 

Figure 1: Study area: (a) Boundary of the study area (red line); (b) Trajectory of 49676 Buoy (yellow dots); 

and (c) Trajectory of 56644 Buoy (yellow dots) 

 

 

 
(a) 

 
(b) 

 
(c) 
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It experiences two primary seasons: the rainy season, 

driven by the southwest monsoon (May - September), 

and the dry season, influenced by the northeast 

monsoon (October - April). 

 

• Rainy Season (May - September): Character-

ized by high temperatures exceeding 30°C and 

significant humidity due to warm, moist air 

from the Indian Ocean. Precipitation is 

abundant, particularly in central and southern 

regions, with annual rainfall often surpassing 

2000 mm. 

• Dry Season (October - April): Marked by 

cooler, drier airflows from the Asian continent. 

Temperatures range between 20°C and 28°C, 

with reduced precipitation and calmer weather. 

 

Additionally, the region is susceptible to typhoons, 

mainly between July and November, peaking from 

August to October. These events bring heavy rainfall, 

strong winds, and storm surges, impacting both 

marine and coastal ecosystems. Oceanic currents, 

such as the warm Kuroshio Current, significantly 

influence the sea’s surface temperature and climate 

patterns, contributing to the region’s dynamic 

environmental conditions [27]. 

 

2.2 Methodology 

The initial datasets were processed to generate a 

structured input dataset containing parameters such 

as timestamp, latitude, and longitude for each buoy. 

These datasets were then partitioned into training and 

testing subsets to facilitate model evaluation. The 

experimental workflow is illustrated in Figure 2. 

 

Figure 2: Experimental calculation process 

of the paper 

 

 

The analyzed data were subjected to machine 

learning techniques, specifically CNN (Conv1D) and 

GRU (1D) models, selected for their efficacy in time 

series data processing [28][29] and [30]. The 

implementation utilized Python programming, 

leveraging TensorFlow and Scikit-learn libraries for 

model development and performance evaluation [31] 

and [32]. Key steps in the methodology include: 

 

1. Model Construction: Models were configured 

with the Adam optimization algorithm, the 

Huber loss function, and varying numbers of 

filters in hidden layers (64, 128, and 256). 

2. Performance Metrics: Model evaluation was 

based on metrics such as Mean Squared Error 

(MSE), Root Mean Squared Error (RMSE), 

Mean Absolute Error (MAE), Cohen’s Kappa, 

R², and F1-Score [33]. 

 

The final outcomes of the analysis included graphical 

representations of model performance saved in a 

Word file, alongside .csv files containing actual and 

predicted values for training and testing datasets. To 

prepare the input dataset for the CNN (Conv1D) and 

GRU models, the raw buoy data in .xlsx format was 

preprocessed. This dataset contained multiple 

columns, including ID, time, latitude, longitude, sea 

surface temperature, buoy velocity in the north and 

east directions, and buoy characteristics. Using a 

Python-based data processing program, the .xlsx file 

was converted into a .csv format for further analysis. 

Unnecessary attributes were removed, retaining only 

essential features: time, latitude, and longitude. This 

preprocessing step ensured a clean and structured 

dataset, facilitating effective model training. 

Additionally, missing values were handled 

appropriately, and the data was formatted for 

compatibility with deep learning algorithms. This 

refined dataset was then used as input for predicting 

buoy drift trajectories. 

During the model development process, the 

dataset was split into a training set and a testing set 

with a ratio of 70% and 30%, respectively. The 

outlier detection process was not addressed in this 

study. The computer program was developed using 

the latest versions of library functions and executed 

on a Dell 7520 workstation. The performance 

comparison of the CNN (Conv1D) model and the 

GRU model, as described in Figure 2, is conducted 

by comparing the magnitudes of performance metrics 

such as MAE, MSE, RMSE, R-squared, F1-score, 

and Kappa. 
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2.3 CNN(Conv1D) and GRU Model 

2.3.1 CNN(Conv1D) model 

A 1D Convolutional Neural Network (CNN) is a 

deep learning architecture designed to process 

sequential data, such as time series and 

spatiotemporal datasets. Unlike 2D CNNs that 

operate on images, 1D CNNs apply convolutional 

filters along a single temporal or spatial dimension, 

enabling efficient feature extraction from sequential 

patterns [34]. The fundamental operation in a 1D 

CNN is the convolution, mathematically expressed in 

equation 1. 

 
1

0

k

i i j j

i

y x w b
−

+

=

= +  

Equation 1 

Where: 

       yi is the output feature at position i; 

    xi+j  is the input sequence;  

      wj is the convolutional filter (kernel) of size k; 

        b is the bias term. 

 

A Conv1D model typically consists of multiple 

layers, each playing a distinct role in processing 

sequential data: 

 

1. Convolutional Layer: Applies multiple 

filters to extract meaningful local patterns. 

2. Activation Function: Introduces non-

linearity, commonly using the ReLU 

function as defined in equation 2. 

 

F(x) = max(0,x) 

Equation 2 

 

3. Pooling Layer: Reduces the dimensionality 

of feature maps via max-pooling defined in 

equation 3. 

 

yi = max(xi: i+k) 

Equation 3 

 

4. Fully Connected Layer: Integrates extracted 

features for final prediction. The CNN 

(Conv1D) model used in this study is 

constructed as described in Figure 3. 

 

 
 

Figure 3: Flowchart illustrating the structure of  

the CNN (Conv1D) model 

 

 

 

2.3.2 GRU model 

Gated Recurrent Unit (GRU) is a type of recurrent 

neural network (RNN) designed to handle sequential 

data effectively by addressing the vanishing gradient 

problem. Introduced by [35], GRU is a simplified 

variant of Long Short-Term Memory (LSTM) 

networks but with fewer parameters, making it 

computationally efficient while maintaining strong 

performance in sequence modeling tasks. A GRU 

unit consists of two primary gates: the reset gate and 

the update gate. These gates regulate how much past 

information is retained and how much new 

information is incorporated. The mathematical 

representation of these gates is defined in equations 4 

and 5. 

 

zi = σ(Wzxi + Uzhi-1 + b2) 

Equation 4 

 

rt = σ(Wrxt + Urht-1 + br) 

Equation 5 

Where: 

   zi is the update gate that controls the degree to  

            which the previous hidden state is retained 

   rt  is the reset gate that determines how much past  

            information is forgotten 

     b is bias 

     σ is the sigmoid activation function. 

    W and U are weight matrices 

 

The candidate hidden state ( th ) is computed from 

equation 6. 

 

1tanh( ( ) )t h t h t t hh W x U r h b−= + +  

Equation 6 

 

Finally, the hidden state ht at time step t is updated in 

equation 7. 

1(1 )t t t t th h z z h−= − +  

Equation 7 

 

This formulation allows GRU to adaptively retain 

long-term dependencies without excessive memory 

usage. Due to its gating mechanism, GRU can 

efficiently capture complex temporal relationships 

while remaining less computationally demanding 

than LSTM. The GRU model used in this study is 

constructed as described in Figure 4. 

 
 

Figure 4: Structure of the GRU model 
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2.3.3 Model accuracy evaluation 

Mean Squared Error (MSE): MSE measures the 

average squared difference between predicted ( ˆ
ty ) 

and actual (yi) values. It penalizes larger errors more 

than smaller ones: The MSE is determined from 

equation 8. 

( )
2

1

1
ˆ

n

i i

i

MSE y y
n =

= −
 

Equation 8 

 

Where n is the number of observations. A lower MSE 

indicates better model performance [36]. 

 

Root Mean Squared Error (RMSE): RMSE is the 

square root of MSE, which retains the same unit as 

the predicted variable, making it more interpretable: 

It is determined from equation 9. 

 

( )
2

1

1
ˆ

n

i i

i

RMSE y y
n =

= −
 

Equation 9 

 

Mean Absolute Error (MAE): MAE calculates the 

mean absolute differences between actual and 

predicted values as defined in equation 10. 

 

1

1
ˆ

n

i i

i

MAE y y
n =

= −
 

Equation 10 

 

Unlike MSE, it does not penalize large errors as 

strongly, making it more robust to outliers [37]. 

 

Coefficient of Determination (R2): R2 measures how 

well the model explains variance in the target 

variable. R2  is defined in equation 11. 

 

( )

( )

2

2

2

ˆ
1

i i

i

y y
R

y y

−
= −

−


  

Equation 11 

 

Where y  is the mean of actual values. An R2 close 

to 1 suggests a strong predictive capability [38]. 

 

F1-score: F1-score evaluates classification models 

by combining precision and recall as defines in 

equation 12. 

 
Precision x Recall

F1- score = 2
Precision + Recall

 

 

Equation 12 

Cohen’s Kappa (k): Cohen’s Kappa assesses inter-

rater agreement while adjusting for chance [21]. It 

can be determined from equation 13. 

 

1

o e

e

p p
k

p

−
=

−
 

Equation 13 

 

Where Po is observed agreement, and Pe is expected 

agreement under randomness. 

 

The Adam optimizer was chosen for its efficiency in 

handling sparse gradients and its adaptive learning 

rate, which enhances convergence speed and stability 

by combining the benefits of momentum-based SGD 

and RMSProp. The Huber loss function was selected 

as it balances mean squared error (MSE) and mean 

absolute error (MAE), making the model more robust 

to outliers while maintaining sensitivity to small 

errors, which is particularly useful for sequential data 

with occasional large deviations. During training, the 

learning rate is automatically adapted by Adam, 

while a batch size of 16 was used to ensure a balance 

between computational efficiency and gradient 

stability. The model was trained for 200 epochs, 

providing sufficient learning while mitigating the 

risk of overfitting. 

 

3. Results and Discussion 

This section presents a detailed analysis of the 

performance of GRU and CNN (Conv1D) models in 

predicting the trajectories of drifting buoys. The 

results are discussed with reference to datasets from 

buoys 56644 and 49676, comparing the accuracy and 

robustness of the models across different 

configurations of the hidden layer filters.  

 

3.1 Analysis Results for Drifting Buoy Dataset 56644 

3.1.1 GRU model performance 

The results of analyzing buoy dataset 56644 using the 

GRU model are summarized in Table 2.  The data 

clearly indicate that increasing the number of filters 

in the hidden layer enhances model performance. 

Specifically, as the number of filters increased from 

64 to 256, the mean squared error (MSE) reduced 

from 0.000587 to 0.000227. Correspondingly, the 

root mean square error (RMSE) and mean absolute 

error (MAE) decreased, indicating improved 

predictive accuracy. Additionally, the R-squared (R²) 

values, ranging from 99.81% to 99.92%, underscore 

the high degree of model fit to the dataset.  
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Table 2: Results of analyzing the 56644-buoy data with the GRU(1D) model 
 

Number of 

filters 

MSE 

(Degree) 

RMSE 

(Degree) 

MAE 

(Degree) 
R2 k F1-Score 

64 0.587 x 10-3 24.224 x 10-3 20.047 x 10-3 0.998 1.0 1.0 

128 0.428 x 10-3 20.692 x 10-3 18.065 x 10-3 0.999 1.0 1.0 

256 0.227 x 10-3 15.072 x 10-3 12.813 x 10-3 0.999 1.0 1.0 
 

 
Figure 5: Loss function values for drifting buoy data 56644 using GRU with 256 filters 

 

 
 

Figure 6: Predicted vs. actual values for the training dataset of buoy 56644 using GRU with 256 filters 

 

The visualizations in Figures 5 to 7 further validate 

these findings. Figure 5 demonstrates the steady 

decline in the loss function during training, while 

Figures 6 and 7 illustrate the close alignment between 

the predicted and actual values for both training and 

test datasets when using 256 filters in the hidden 

layer. 

 

3.1.2 CNN (Conv1D) model performance 

The CNN (Conv1D) model results are shown in 

Table 3.  Unlike the GRU model, the CNN’s 

performance did not follow a strictly linear 

improvement pattern as the number of filters 

increased. However, the highest performance was 

achieved with 256 filters, yielding an MSE of 

0.000093, RMSE of 0.009630, and MAE of 

0.007697. These values represent a significant 

improvement over the GRU model, with RMSE and 

MAE reductions of nearly 50%. The graphical 

representations in Figures 8 to 10 further highlight 

the CNN’s superior predictive capabilities. Figure 8 

shows the loss function’s rapid convergence, while 

Figures 9 and 10 demonstrate near-perfect alignment 

between actual and predicted values in the training 

and test datasets. 
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Figure 7: Predicted vs. actual values for the test dataset of buoy 56644 using GRU with 256 filters 
 

 
 

Figure 8: Loss function values for drifting buoy data 56644 using CNN(Conv1D) with 256 filters 

 

Table 3: Results of analyzing the 56644-buoy data with the CNN(Conv1D) model 

 

Number of 

filters 

MSE 

(Degree) 

RMSE 

(Degree) 

MAE 

(Degree) 
R2 k F1-Score 

64 0.472 x 10-3 21.733 x 10-3 17.747 x 10-3 0.999 1.0 1.0 

128 1.500 x 10-3 38.721 x 10-3 31.736 x 10-3 0.995 1.0 1.0 

256 0.093 x 10-3 9.630 x 10-3 7.697 x 10-3 1.000 1.0 1.0 

 

 
 

Figure 9: Predicted vs. actual values for the training dataset of buoy 56644 using CNN(Conv1D)  

with 256 filters 
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Figure 10: Predicted vs. actual values for the test dataset of buoy 56644 using CNN(Conv1D) with 256 filters 

 

The analysis results highlight key differences in the 

performance of GRU and CNN (Conv1D) models 

when applied to buoy dataset 56644. While both 

models achieved high levels of accuracy, CNN 

(Conv1D) consistently outperformed GRU, 

achieving superior prediction precision and lower 

error metrics. The reduction in RMSE and MAE 

values for CNN (Conv1D) underscores its robustness 

in capturing the spatiotemporal dynamics of drifting 

buoy data. These findings validate that CNN 

(Conv1D) is better suited for time-series data 

analysis in oceanographic applications. Moreover, 

the study underscores the importance of optimizing 

model configurations, such as the number of filters, 

to achieve maximal performance in predictive tasks. 

The performance comparison between GRU and 

CNN (Conv1D) across different filter configurations 

reveals significant variations in their predictive 

accuracy. As the number of filters increases, the CNN 

(Conv1D) model demonstrates a more stable 

reduction in error metrics, with MSE, RMSE, and 

MAE consistently decreasing, indicating enhanced 

learning capability. In contrast, the GRU model 

exhibits fluctuations in performance, particularly at 

128 filters, where a notable increase in error values is 

observed before improving at 256 filters. This 

suggests that GRU may be more sensitive to 

hyperparameter tuning and requires careful 

configuration to achieve optimal results. The 

differences in performance highlight the structural 

advantages of CNN (Conv1D) in extracting spatial 

dependencies more effectively than GRU, which 

relies on sequential processing. The consistently high 

R² values across both models indicate strong 

predictive reliability, yet CNN (Conv1D)’s lower 

error values suggest superior feature extraction from 

the buoy dataset. The near-identical Kappa and F1-

score values (both at 1.0) confirm that both models 

classify drift patterns effectively, but CNN (Conv1D) 

offers better numerical precision. Error pattern 

analysis further reinforces these observations. GRU's 

fluctuating RMSE and MAE values imply sensitivity 

to filter adjustments, potentially leading to 

inconsistent generalization. CNN (Conv1D), on the 

other hand, maintains a downward trend in error 

metrics, affirming its robustness in learning complex 

spatiotemporal relationships. These findings suggest 

that CNN (Conv1D) not only provides better 

predictive accuracy but also exhibits greater stability 

in handling varying filter configurations, making it a 

more reliable choice for buoy trajectory prediction. 

 

3.2 Analysis Results for Drifting Buoy Dataset 49676 

The performance of the GRU and CNN (Conv1D) 

models for predicting the trajectory of buoy dataset 

49676 is detailed below. Changes in prediction 

accuracy are analyzed as the number of filters in the 

hidden layer varies between 64, 128, and 256 filters. 

 

3.2.1 GRU model performance 

The results of the GRU model for the 49676 datasets 

are summarized in Table 4. The model’s prediction 

performance showed inconsistency with changes in 

the number of filters. Notably, the configuration with 

128 filters achieved the highest accuracy, with an 

MSE of 6.51 × 10⁻⁷, RMSE of 0.000807, and MAE 

of 0.000623. These metrics underscore the model’s 

ability to provide highly precise predictions under 

optimal configurations. The data in Tables 2 and 4 

show that when the input data volume is larger, the 

prediction accuracy with the GRU model is also 

higher. The graphs in Figures 11 through 13 further 

illustrate the GRU model’s performance. Figure 11 

shows the consistent reduction of the loss function, 

while Figures 12 and 13 demonstrate excellent 

agreement between predicted and actual values for 

both training and test datasets, particularly when 

using 128 filters. 
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Table 4: Analysis results of the 49676-buoy dataset with the GRU(1D) model 
 

Number of 

filters 

MSE 

(Degree) 

RMSE 

(Degree) 

MAE 

(Degree) 
R2 k F1-Score 

64 0.154 x 10-3 12.413 x 10-3 12.403 x 10-3 1.0 1.0 1.0 

128 6.51 x 10-7 0.807 x 10-3 0.623 x 10-3 1.0 1.0 1.0 

256 8.90 x 10-6 2.983 x 10-3 2.100 x 10-3 1.0 1.0 1.0 
 

 
 

Figure 11: Loss function values for buoy 49676 using GRU with 128 filters 
 

 
 

Figure 12: Predicted vs. actual values for the training dataset of buoy 49676 using GRU with 128 filters 
 

 
 

Figure 13: Predicted vs. actual values for the test dataset of buoy 49676 using GRU with 128 filters 
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Table 5: Analysis results of the 49676-buoy dataset with the CNN(Conv1D) model 

 

Number of 

filters 

MSE 

(Degree) 

RMSE 

(Degree) 

MAE 

(Degree) 
R2 k F1-Score 

64 2.75 x 10-9 5.25 x 10-5 4.48 x 10-5 1.0 1.0 1.0 

128 4.89 x 10-12 2.21 x 10-6 1.78 x 10-6 1.0 1.0 1.0 

256 1.90 x 10-7 0.436 x 10-3 0.426 x 10-3 1.0 1.0 1.0 

 

3.2.2 CNN (Conv1D) model performance 

The results of the CNN (Conv1D) model are 

summarized in Table 5. The prediction accuracy was 

highest with 128 filters, yielding an MSE of 

4.89×10⁻¹², RMSE of 2.21×10⁻⁶, and MAE of 

1.78×10⁻⁶. These metrics represent exceptional 

precision and demonstrate the model’s capability for 

handling this dataset effectively. Despite minor 

variations in performance as the number of filters 

changed, the degree of fit to the data was consistently 

100%. From the data in Tables 2 to 5, it can be seen 

that the highest forecasting performance for both the 

GRU and CNN(Conv1D) models is achieved with 

the same number of filters in the hidden layer. Similar 

to the forecasting case using the GRU function, the 

degree of fit between the model and the input data is 

maximal, corresponding to a value of 100%. 

The results indicate that while both GRU and 

CNN (Conv1D) achieve perfect model fit (R² = 1.0, 

Kappa = 1.0, F1-Score = 1.0) across all filter 

configurations, the detailed error metrics reveal 

nontrivial variations in predictive precision. Notably, 

for CNN (Conv1D), the lowest RMSE (2.21×10⁻⁶) 

and MAE (1.78×10⁻⁶) occur at 128 filters, 

demonstrating the model's peak accuracy at this 

configuration. However, performance slightly 

deteriorates at 256 filters, as reflected in increased 

RMSE (4.36×10⁻⁴) and MAE (4.26×10⁻⁴). This trend 

suggests that CNN (Conv1D) may reach an optimal 

capacity at a certain filter threshold, beyond which 

additional filters introduce redundancy or overfitting 

effects. 

For the GRU model, performance fluctuations are 

more pronounced, particularly at 256 filters, where 

RMSE (2.983×10⁻³) and MAE (2.100×10⁻³) increase 

compared to 128 filters. This implies that, unlike 

CNN (Conv1D), GRU’s sequential nature makes it 

more sensitive to filter count variations, potentially 

leading to unstable learning when the filter size is too 

large. These results suggest that CNN (Conv1D) 

benefits from an intermediate number of filters for 

optimal performance, whereas GRU requires a more 

refined tuning strategy to maintain predictive 

consistency. Additionally, the observed variations 

may stem from computational efficiency differences 

between the two models. While increasing filter size 

enhances feature extraction, excessive filters may 

introduce unnecessary complexity, leading to slower 

convergence and optimization challenges. This is 

particularly relevant for CNN (Conv1D), where a 

well-balanced filter configuration is crucial to 

maintaining generalization while avoiding 

overfitting. These findings emphasize the importance 

of systematic hyperparameter tuning to achieve the 

best trade-off between accuracy and computational 

efficiency. The inconsistent improvements in CNN 

(Conv1D) performance with an increasing number of 

filters can be attributed to several factors. The data 

indicate improvements from 64 to 128 filters. 

However, performance deteriorates at 256 filters, as 

shown by the increase in MSE, RMSE, and MAE. 

One possible reason is overfitting, where the model 

captures noise instead of meaningful patterns when 

the number of filters is too high. This is particularly 

evident in the second dataset, where performance 

improves from 64 to 128 filters but degrades at 256 

filters, as indicated by the increase in MSE, RMSE, 

and MAE. Additionally, increasing the number of 

filters may lead to diminishing returns due to 

redundant feature extraction, where additional filters 

do not contribute new information but rather amplify 

existing noise. Computational complexity also plays 

a role, as excessive filters may lead to optimization 

challenges, making training less stable. These 

variations suggest that an optimal number of filters 

exists for CNN (Conv1D), and blindly increasing 

them may not always yield better performance. 

Therefore, careful hyperparameter tuning and 

validation are necessary to determine the best 

configuration for a given dataset. 

Figures 14 through 16 provide additional insights 

into the CNN (Conv1D) model’s performance. 

Figure 14 highlights the smooth and rapid 

convergence of the loss function. Figures 15 and 16 

depict near-perfect alignment between actual and 

predicted values for training and test datasets when 

using 128 filters. The results indicate that both the 

GRU and CNN (Conv1D) models achieve 

exceptional prediction accuracy for buoy 49676. 

Notably, both models achieved their best 

performance with 128 filters, highlighting the 

importance of tuning model configurations for 

optimal results. 
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Figure 14: Loss function values for buoy 49676 using CNN (Conv1D) with 128 filters 
 

 
 

Figure 15: Predicted vs. actual values for the training dataset of buoy 49676 using CNN (Conv1D)  

with 128 filters 
 

 
Figure 16: Predicted vs. actual values for the test dataset of buoy 49676 using CNN (Conv1D)  

with 128 filters 

 

The CNN (Conv1D) model demonstrated marginally 

superior performance compared to GRU, particularly 

in terms of precision and stability. These findings 

reinforce the suitability of CNN (Conv1D) for time-

series predictions in oceanographic studies, while 

also highlighting the potential of GRU models under 

certain configurations. The ability of both models to 

achieve near-perfect fits underscores their robustness 

in handling complex, spatiotemporal data such as 

drifting buoy trajectories. 

3.3 Compare with Similar Studies 

The results of this study align with previous research 

emphasizing the effectiveness of deep learning 

techniques in time-series prediction tasks. For 

instance, DriftNet, a deep learning framework 

developed for Lagrangian drift modeling, 

demonstrated high accuracy in predicting oceanic 

drift patterns by leveraging spatiotemporal data [8].  
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Table 6: Summary of comparative studies on deep learning models for trajectory prediction 
 

Studies Method used Key findings Comparison to this study 

DriftNet [8] Deep learning 

framework for 
lagrangian drift 

High accuracy in predicting oceanic 

drift patterns using spatiotemporal 
data 

The present study shows similar accuracy 

using purely data-driven approaches (CNN 
and GRU) without physical models. 

OpenDrift [9] Open-source 

trajectory modeling 
system 

Improved prediction accuracy 

through integration of Stokes drift 
and currents 

This study achieves comparable accuracy 

without explicit incorporation of 
environmental factors. 

Hyper-Ensemble 

techniques [7] 

Ensemble models for 

buoy drift 
forecasting 

Reduced forecast errors by at least 

threefold compared to individual 
models 

CNN (Conv1D) demonstrated superior 

predictive accuracy as a standalone model. 

Stokes drift 

integration [5] 

Integration of Stokes 

drift into prediction 
models 

Reduced trajectory prediction errors 

by 34–40% 

CNN (Conv1D) achieved similar error 

reductions with optimized neural network 
configurations. 

Geospatial studies 

(Flood prediction) 
[21] 

CNN (Conv1D) High predictive accuracy with 

CNN(Conv1D) for spatial 
dependencies 

This study extends their application to 

marine datasets, revealing CNN (Conv1D) 
outperforms GRU in trajectory prediction. 

Groundwater data 

analysis [22] 

GRU and CNN 

(Conv1D) 

GRU and CNN effectively captured 

long-term and local dependencies 

Similar strengths observed, but CNN 

(Conv1D) provided more robust predictions 
for drifting buoy data. 

CNN for 

spatiotemporal data 
[34] 

CNN (Conv1D) Demonstrated robust performance 

for time-series data processing 
through parallel processing 

Consistent with findings in this study where 

CNN (Conv1D) outperformed GRU in 
predictive accuracy and stability. 

 

Similarly, OpenDrift, an open-source trajectory 

modeling system validated for oil spill simulations, 

showed improved prediction accuracy by 

incorporating factors like Stokes drift and currents 

[9]. These studies highlight the importance of 

advanced modeling techniques for capturing 

dynamic oceanic processes. 

While DriftNet and OpenDrift primarily focus on 

enhancing prediction accuracy through 

environmental parameters and physical modeling, 

the present study demonstrates the capability of 

purely data-driven approaches such as CNN 

(Conv1D) and GRU to achieve comparable levels of 

accuracy without requiring extensive physical 

parameterizations. This distinction underscores the 

versatility of deep learning methods in handling 

diverse datasets and prediction scenarios. In 

comparison to studies evaluating hyper-ensemble 

techniques for buoy drift forecasting, which achieved 

a threefold reduction in forecast errors [7], the results 

of the current study illustrate the potential for 

standalone models like CNN (Conv1D) to 

outperform ensemble approaches. The findings 

further align with research on the integration of 

Stokes drift into ocean drift models, which reduced 

trajectory prediction errors by up to 40% [5]. The 

present study complements this body of work by 

demonstrating that optimizing neural network 

architectures can yield similar error reductions, 

particularly when using high-resolution datasets. 

Moreover, studies on CNN and GRU applications in 

geospatial domains, such as flood prediction [21] and 

groundwater analysis [22], have reported high 

predictive accuracy, with GRU excelling in capturing 

long-term temporal dependencies and CNN proving 

effective for spatial feature extraction. The current 

study builds upon these findings by applying CNN 

(Conv1D) and GRU to marine datasets, revealing that 

CNN (Conv1D) consistently outperforms GRU in 

trajectory prediction tasks, particularly when larger 

datasets are utilized. The observed limitations of 

GRU in handling large filter configurations, as 

indicated by performance fluctuations, corroborate 

findings in other studies where recurrent models 

exhibited sensitivity to hyperparameter tuning [35]. 

In contrast, CNN (Conv1D) demonstrated robust and 

stable performance, consistent with its reported 

strengths in handling spatiotemporal data through 

parallel processing [34]. These comparative insights 

suggest that while physical and hybrid modeling 

approaches remain indispensable for comprehensive 

oceanographic forecasting, data-driven methods like 

CNN (Conv1D) offer scalable and accurate 

alternatives for specific tasks such as drifting buoy 

trajectory prediction. The findings of this study 

contribute to a growing body of evidence supporting 

the integration of machine learning into marine 

research, with implications for advancing search and 

rescue operations, environmental monitoring, and 

maritime safety. As mentioned, the findings of this 

study align with and expand upon previous research 

in time-series prediction and trajectory modeling, as 

summarized in Table 6. 

 

4. Conclusion 

This study evaluates the predictive capabilities of two 

deep learning models, GRU and CNN (Conv1D), in 

forecasting the trajectories of drifting buoys.
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The focus is on their ability to process time-series and 

spatial data, both of which are crucial for accurate 

oceanographic modeling. The experimental results 

demonstrate that both models, when appropriately 

configured, exhibit remarkable predictive 

performance, achieving a near-perfect fit to the input 

data. This underscores their effectiveness in handling 

sequential data, making them suitable for marine and 

oceanographic applications. Among the two 

architectures, CNN (Conv1D) consistently 

outperformed GRU across all key performance 

metrics, including Mean Squared Error (MSE), Root 

Mean Squared Error (RMSE), and Mean Absolute 

Error (MAE). A particularly notable finding is that 

CNN (Conv1D) reduced prediction errors by up to 

50% compared to GRU, demonstrating its superior 

ability to capture complex patterns in buoy 

movement data. 

The study further emphasizes the significance of 

optimizing model configurations to achieve the best 

predictive accuracy. Specifically, the results suggest 

that for different buoy datasets, distinct filter 

configurations yield optimal performance. For one 

dataset, the best results were achieved with 256 filters 

in the hidden layers, while another dataset performed 

optimally with 128 filters. Moreover, a key 

observation is that larger datasets significantly 

enhance model accuracy, highlighting the necessity 

of sufficient and high-quality data for training deep 

learning models effectively. These insights reinforce 

the substantial potential of deep learning in 

improving the accuracy of trajectory forecasting in 

marine and oceanographic research. Given CNN 

(Conv1D)’s superior performance, it presents itself 

as a robust tool for analyzing similar datasets and 

tackling challenges in ocean monitoring and 

forecasting. 

Additionally, the study addresses concerns 

regarding model overfitting by implementing a 

structured data preprocessing pipeline, including 

normalization and an appropriate train-test split ratio 

of 70-30. However, to further enhance model 

generalizability, future research should focus on 

validating these models using independent datasets 

from different time frames and geographic locations. 

Such an approach will ensure that the models remain 

robust when applied to real-world data and will 

mitigate dataset-specific biases. To further 

strengthen predictive reliability, techniques such as 

cross-validation and hyperparameter tuning should 

also be explored. Furthermore, future studies should 

investigate how combining deep learning models can 

enhance drifting buoy data analysis. 

 

 

 

One limitation of this study is that it relies on specific 

buoy datasets, which may constrain the 

generalizability of the findings. To address this, 

subsequent research should involve model validation 

across diverse oceanic regions with varying 

environmental conditions. Additionally, 

implementing cross-validation strategies can help 

assess the robustness of the models across different 

datasets. Another crucial aspect that requires 

attention in future research is the prediction of buoy 

positions in independent scenarios, which was not 

explored in this study. Expanding the research scope 

to include a broader range of ocean conditions and 

integrating additional environmental factors, such as 

satellite data, could further enhance model versatility 

and reliability. These improvements will contribute 

to refining deep learning applications for 

oceanographic studies, maritime navigation, and 

environmental monitoring. 
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