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Abstract 

Groundwater is a crucial resource for managing water sustainably, but it faces challenges like overuse and 

changes due to human activities and climate. This study looks at how deep learning models—specifically 

Convolutional Neural Networks (Conv1D), Simple Recurrent Neural Networks (SimpleRNN), and Gated 

Recurrent Units (GRU), can be used to analyze groundwater data from three monitoring stations in Vietnam. 

The data comes from different areas, including urban (Hanoi), metropolitan (Ho Chi Minh City), and rural-

agricultural (Kien Giang) regions, with varying time intervals and data characteristics. The models were tested 

using several performance metrics like Mean Squared Error (MSE), Root Mean Squared Error (RMSE), Mean 

Absolute Error (MAE), and R-squared (R²). The results showed that the Conv1D model was the best, providing 

the most accurate predictions, especially when the data had moderate changes. The SimpleRNN model worked 

well with high-resolution data but struggled when the data was more variable or incomplete. The GRU model 

had limited success with data that showed significant fluctuations. This study shows that Conv1D is a strong 

tool for groundwater monitoring and offers useful guidance on choosing the right model based on the data. It 

also suggests that improving data handling and adding more relevant features could help further improve 

predictions. 
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1. Introduction 

Groundwater is an indispensable resource, serving as 

a primary source of water for domestic, agricultural, 

and industrial purposes, particularly in regions with 

limited surface water availability. According to Todd 

and May [1], groundwater accounts for 

approximately 30% of the Earth's total freshwater, 

making it a critical component of the global 

hydrological cycle. It supports ecosystems by 

maintaining water levels in wetlands and rivers, helps 

mitigate soil erosion, and plays a pivotal role in 

sustainable agricultural practices. In Vietnam, 

groundwater is the primary source of freshwater for 

millions of residents across rural and urban areas, 

with the Mekong Delta region being particularly 

reliant on this resource due to its geographic and 

climatic conditions [2]. However, the over-extraction 

and mismanagement of groundwater pose significant 

risks, including resource depletion, subsidence, and 

saltwater intrusion, making sustainable management 

and protection of groundwater essential for ensuring 

long-term water security. 

Advances in computational technologies have 

enabled the application of data-driven models 

(DDMs) to address challenges in groundwater 

resource management. These models utilize machine 

learning (ML) techniques to analyze complex 

datasets, identify trends, and improve the predictive 

accuracy of traditional hydrological models. 
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For instance, one study [3] demonstrated the 

effectiveness of DDMs in reducing root mean square 

error (RMSE) by 82% for temporal predictions, 60% 

for spatial predictions, and 48% for spatiotemporal 

predictions, thereby improving the reliability of 

groundwater flow models. Integrating machine 

learning into groundwater analysis has yielded 

significant insights. An ensemble framework was 

introduced [4], combining spectral analysis, machine 

learning algorithms, and uncertainty quantification to 

predict groundwater level changes. When applied to 

the High Plains Aquifer (HPA) and Mississippi River 

Valley Aquifer (MRVA), the framework identified 

irrigation demand as the most significant influencing 

factor. With prediction accuracies exceeding 80% for 

most wells and cumulative errors under 2 meters 

across validation datasets from 2003 to 2012, the 

study demonstrated the robustness of ensemble 

approaches in managing groundwater resources. 

Similarly, GIS-based statistical models have been 

applied to estimate groundwater contamination 

levels, such as nitrate concentrations, in compliance 

with environmental directives. Multiple machine 

learning algorithms, including Random Forest (RF), 

Boosted Regression Trees (BRT), and Multivariate 

Linear Regression (MLR), have been evaluated [5] to 

predict nitrate levels using spatial environmental 

indicators, with the RF model proving most effective. 

Hydrogeological characteristics, agricultural land 

ratios, and nitrogen balance were identified as key 

predictors. Machine learning techniques have also 

demonstrated strong performance in forecasting 

groundwater availability and quality. The use of 

automated feature selection and regression 

algorithms has been explored [6], where support 

vector regression (SVR) significantly outperformed 

other methods by minimizing RMSE and mean 

absolute error (MAE). Additionally, incorporating 

global features through Gaussian Mixture Models 

further improved prediction accuracy. 

Artificial intelligence (AI) models have been 

employed to predict irrigation water quality. 

Ensemble methods, including Adaboost and Random 

Forest, have been employed [7] to estimate water 

quality indicators such as TDS (Total Dissolved 

Solid), SAR (Sodium Adsorption Ratio), and MAR 

(Magnesium Adsorption Ratio) using input variables 

like electrical conductivity (EC), pH, and 

temperature. While Artificial Neural Networks 

(ANN) and Support Vector Regression (SVR) 

produced generalized results, the ensemble 

approaches demonstrated higher prediction accuracy 

and greater robustness against input variability. 

Groundwater extraction has also been modeled 

using integrated datasets from remote sensing and 

meteorological observations. Multi-temporal satellite 

data has been utilized [8] to estimate groundwater 

withdrawals. The combination of machine learning 

and water balance components yielded a highly 

accurate model, with R² values of approximately 0.99 

and 0.93 for the training and testing datasets, 

respectively, showcasing the potential of hybrid 

approaches. Other studies have focused on 

groundwater quality and its influencing factors. BRT 

and RF models have been used to predict 

groundwater hardness using environmental and 

geospatial data. For instance, the authors in study [9] 

analyzed 135 monitoring wells, finding that 

proximity to rivers, groundwater depth, and elevation 

were critical determinants of water hardness, 

particularly in low-lying regions. Long-term 

forecasting of groundwater levels has been achieved 

using remote sensing and machine learning methods. 

RF was employed to analyze climate and Landsat 

data for groundwater-dependent ecosystems (GDEs) 

in California, revealing that 44% of GDEs 

experienced groundwater level declines between 

1985 and 2019 [10]. This decline, especially after 

2003, poses significant risks to ecosystems, 

emphasizing the urgent need for proactive 

groundwater management strategies.   

GRACE (Gravity Recovery and Climate 

Experiment) satellite data was integrated with ML 

algorithms to predict groundwater level anomalies 

(GWLA) in the Indo-Gangetic Basin, demonstrating 

high accuracy for shallow monitoring wells, though 

performance declined for deeper wells due to 

excessive groundwater extraction [11]. Machine 

learning models have been used for groundwater 

potential mapping in semi-arid and mountainous 

regions, with RF, Logistic Regression (LR), Decision 

Trees (DT), and Artificial Neural Networks (ANN) 

effectively identifying groundwater sources [12]. 

Through the analysis of 117 previously published 

studies, the authors [13] demonstrated that ML 

methods, particularly RF, outperformed traditional 

mathematical models in groundwater level 

forecasting. Groundwater quality modeling has also 

advanced with the application of deep learning (DL) 

techniques. Machine learning models have been 

comprehensively evaluated for groundwater quality 

prediction, with ANN highlighted as the most widely 

used model [14]. Once again, deep learning models 

have been demonstrated to outperform traditional 

machine learning approaches in groundwater quality 

forecasting [15]. The RF and XGBoost models were 

utilized by the authors in study [16], exhibiting 

superior data analysis performance. 
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Recent advancements in AI have led to the 

development of automated ML approaches for 

groundwater modeling. Groundwater level 

forecasting methods from 2010 to 2020 were 

analyzed and synthesized by [17], leading to 

recommendations for the use of AI models to 

improve accuracy. Based on a comparative analysis 

of groundwater data using various machine learning 

models, the authors [18] concluded that the Gaussian 

Process Regression (GPR) model provided the best 

forecasting performance. The AutoML-GWL 

(Automated Machine Learning for Groundwater 

Level Prediction) framework was applied by [19], 

utilizing Bayesian optimization for hyperparameter 

tuning, achieving an RMSE of 1.22 and R = 0.90, 

outperforming traditional models. Machine learning 

has also been applied in groundwater pollution 

prediction. ML models were used to forecast fluoride 

contamination, with the Extreme Learning Machine 

(ELM) model achieving R² = 0.921, outperforming 

Multi-Layer Perceptron (MLP) and SVM models 

[20]. In Vietnam, Cường and Thắng [21] applied ML 

models for groundwater quality prediction, 

demonstrating that the Cubist model achieved the 

highest accuracy, with R² = 98.8% for the training set 

and 96% for the testing set. 

Deep learning has further enhanced geospatial 

and time-series groundwater data analysis. 

Convolutional Neural Networks (CNNs), particularly 

Conv1D architectures, have gained attention for their 

ability to extract spatial-temporal patterns from 

groundwater datasets. Deep learning models have 

been confirmed to be superior in analyzing time-

series data, particularly in hydrological applications 

[22]. The CNN (Conv1D) model was utilized by [23] 

for flood risk zoning based on geospatial data, 

achieving an accuracy of up to 90.7%. Furthermore, 

the CNN (Conv1D) model has also demonstrated 

outstanding performance in analyzing GNSS time-

series data, with an R-squared value of 99.7% [24]. 

Recurrent Neural Networks (RNNs), including 

SimpleRNN and GRU, have also been explored for 

groundwater prediction. The SimpleRNN model has 

demonstrated its ability to capture temporal 

dependencies, making it suitable for long-term time-

series forecasting [25]. However, its limitations in 

retaining long-term dependencies have been 

addressed by more advanced architectures like 

LSTM (Long Short-Term Memory) and GRU (Gated 

Recurrent Unit). RNN, LSTM, and GRU models 

have been used for multi-class 

electroencephalography (EEG) signal classification, 

with experimental results showing that the GRU 

model performs efficiently in sequential data 

processing [26]. Given the growing demand for 

accurate groundwater monitoring, this study aims to 

compare the performance of deep learning models - 

CNN(Conv1D), SimpleRNN, and GRU - for 

groundwater time-series forecasting in Vietnam. 

Using data from Hanoi (urban), Ho Chi Minh City 

(metropolitan), and Kien Giang (rural-agricultural) 

monitoring stations, the models will be evaluated 

based on Mean Squared Error (MSE), Root Mean 

Squared Error (RMSE), Mean Absolute Error 

(MAE), and R-squared (R²). By identifying the most 

effective model for groundwater prediction, this 

research seeks to enhance data-driven decision-

making in groundwater management and contribute 

to sustainable water resource planning. 

This study builds on these advancements, 

applying CNN (Conv1D), SimpleRNN, and GRU 

models to groundwater observation data collected 

from three monitoring stations in Vietnam. The aim 

is to evaluate the suitability and performance of these 

models in predicting groundwater levels, with 

implications for improving water resource 

management and forecasting accuracy. These models 

were selected because they have demonstrated their 

advantages in processing time-series data, such as 

GNSS data [24], tidal observation data [27], and 

agricultural price forecasting [28]. 

 

2. Data and Methodology 

2.1 Investigation and Data Collection Area 

The dataset utilized in this research was obtained 

from the Southern Water Resources Planning and 

Investigation Federation under the National Center 

for Water Resources Planning and Investigation 

(NAWAPI). The data encompasses groundwater 

observations from three monitoring wells situated in 

distinct geographic regions of Vietnam: Hanoi, Ho 

Chi Minh City, and Kien Giang.   

 

Specifically:   

 

1. Station Q55M1 (Hanoi): Positioned in the northern 

region of Vietnam, this station captures data in an 

urban environment with significant population 

density and industrial activity. Its location provides 

insights into groundwater dynamics influenced by 

urbanization and local climatic patterns.   

 

2. Station Q080810 (Ho Chi Minh City): Situated in 

the southern part of Vietnam, this station monitors 

groundwater levels in a major metropolitan area 

characterized by rapid economic growth and high-

water demand. The data from this station is crucial 

for understanding groundwater fluctuations in highly 

urbanized settings.   
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3. Station Q40101T (Kien Giang): Located in the 

Mekong Delta, this station represents a rural and 

agriculturally intensive area. It offers a unique 

perspective on groundwater behavior in regions 

heavily influenced by irrigation practices and 

seasonal hydrological changes.   

 

The data from these three stations, detailed in Table 

1, serves as the foundation for evaluating the 

performance of deep learning models in analyzing 

groundwater levels across varying temporal and 

spatial conditions. Figure 1 illustrates the geographic 

positioning of these stations, highlighting their 

importance in capturing groundwater variability 

across urban, peri-urban, and rural landscapes in 

Vietnam. 

 

2.2 Methodology 

2.2.1 Model descriptions and evaluation metrics 

The Conv1D model, a specialized variant of 

Convolutional Neural Networks (CNN), is designed 

specifically for analyzing one-dimensional 

sequential data, such as time-series datasets. Unlike 

traditional convolutional architectures optimized for 

two-dimensional spatial inputs, Conv1D focuses on 

detecting temporal patterns and trends within 

sequential data. By applying convolutional 

operations along the time axis, it effectively identifies 

features such as recurring patterns or abrupt changes. 

This capability has made Conv1D highly effective in 

various domains, including predictive modeling, 

signal processing, and audio analysis. The 

architecture typically includes layers for feature 

extraction, dimensionality reduction through 

pooling, and final predictions via fully connected 

layers. Compared to Recurrent Neural Networks 

(RNNs), Conv1D models achieve a balance of 

efficiency and reliability by capturing temporal 

relationships with a relatively smaller parameter 

count, making them computationally efficient for 

time-series tasks. The Gated Recurrent Unit (GRU) 

is a type of RNN explicitly designed for sequential 

data by capturing temporal dependencies over 

extended timeframes.  

 

Table 1: Information about monitoring data 
 

TT Station name Latitude 

(degree) 

Longitude 

(degree) 

Elevation 

(m) 

Start time / 

Stop time 

Interval 

1 Q55M1 21.10 105.72 8.14 01/01/2020 

01/01/2023 

hourly 

2 Q808010 10.78 106.51 1.23 08/01/1992 

02/27/2016 

daily with missing 

data days 

3 Q40101T 9.88 105.16 2.00 03/01/2000 

12/01/2016 

daily 

 

 
 

Figure 1: Locations of groundwater observation wells in Vietnam
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Unlike Conv1D, which analyzes patterns within 

fixed-size temporal windows, GRUs are better suited 

for tasks requiring memory of long-term 

dependencies. GRUs achieve this through gating 

mechanisms, including update and reset gates, which 

regulate information flow and mitigate the vanishing 

gradient problem commonly observed in traditional 

RNNs. These features make GRUs highly effective 

for applications such as time-series forecasting, 

speech processing, and natural language 

understanding. While Conv1D models are 

computationally faster and excel at localized pattern 

detection, GRUs provide an advantage in scenarios 

where sequential context plays a critical role. The 

Simple Recurrent Neural Network (SimpleRNN) 

represents an earlier generation of RNN models used 

to analyze sequential data, including time series. It 

processes data sequentially by maintaining a hidden 

state that evolves with each time step, enabling the 

capture of short-term dependencies. However, its 

effectiveness diminishes for long-term dependencies 

due to the vanishing gradient problem, limiting its 

ability to model complex temporal patterns. Despite 

these limitations, SimpleRNN serves as a 

foundational model for time-series analysis, 

particularly in tasks with minimal temporal 

dependencies. It is computationally lightweight and 

straightforward to implement, though it is often 

replaced by more advanced architectures like GRU 

and LSTM for improved performance. 

 

2.2.2 Implementation details 

In this study, all three models - Conv1D, GRU, and 

SimpleRNN - were implemented with a single hidden 

layer comprising 64 filters. The models employed the 

Adam optimization algorithm and Mean Squared 

Error (MSE) as the loss function. Adam combines the 

advantages of Gradient Descent and Momentum 

techniques, offering adaptive learning rates and 

reducing the likelihood of converging to local 

minima, which is especially beneficial for complex 

time-series datasets. MSE evaluates the accuracy of 

predictions by measuring the squared error between 

actual and predicted values, making it a suitable 

metric for regression and time-series tasks. 

 

2.2.3 Performance evaluation metrics 

To assess the effectiveness of the models in 

groundwater data analysis, the following metrics 

were used: 

1. Mean Squared Error (MSE): Measures the 

average squared difference between observed 

and predicted values. Lower MSE values 

indicate better model performance. 

2. Root Mean Squared Error (RMSE): As the 

square root of MSE, this metric provides error 

measurements in the same units as the target 

variable, making it more interpretable, 

especially when penalizing larger errors. 

3. Mean Absolute Error (MAE): Computes the 

average magnitude of prediction errors 

without considering direction. Unlike MSE, 

MAE is less sensitive to outliers and offers 

straightforward interpretability. 

4. R-squared (R²): Indicates the proportion of 

variance in the dependent variable explained 

by the model. R² values closer to 1 signify a 

better fit, reflecting high predictive accuracy. 

 

2.2.4 Development tools 

The computational framework for this study was 

implemented in Python, leveraging powerful 

libraries such as pandas for data manipulation, 

numpy for numerical computations, and tensorflow 

for deep learning model development [29] and [30]. 

These tools facilitated efficient data processing, 

model training, and evaluation, enabling robust 

analysis of the groundwater datasets. The 

methodology employed for analyzing groundwater 

observation data in this study is systematically 

illustrated in Figure 2.  

 

 
Figure 2: Flowchart of the groundwater data analysis procedure 
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This diagram provides a comprehensive overview of 

the step-by-step approach adopted to process and 

evaluate the groundwater datasets. The input data for 

the deep learning models consists of groundwater 

observation data recorded over time. This data is 

stored in a .csv file with two columns: time and water 

level. Before being fed into the models, the dataset 

undergoes preprocessing, including normalization 

and partitioning into training, validation, and testing 

sets. This ensures that the models can learn patterns 

effectively while avoiding overfitting. 

Once the data is prepared, it is used as input for 

three different deep learning architectures: CNN 

(Conv1D), GRU, and SimpleRNN. The CNN 

(Conv1D) model extracts spatial features from the 

time-series data using one-dimensional 

convolutional filters. This method helps capture local 

patterns within the sequence. The GRU (Gated 

Recurrent Unit) model processes the data 

sequentially and retains important information over 

time through its gating mechanism, making it 

effective for handling long-term dependencies. The 

SimpleRNN model, a basic recurrent neural network, 

also processes sequential data but is more prone to 

issues like vanishing gradients, which may affect its 

performance compared to GRU. 

The final step involves evaluating model 

performance. The predicted values from CNN, GRU, 

and SimpleRNN are compared against actual 

groundwater levels to assess accuracy. Standard 

performance metrics such as Root Mean Square Error 

(RMSE) and Mean Absolute Error (MAE) are used 

for this evaluation. By analyzing these results, the 

most suitable model for groundwater level prediction 

can be identified. This structured data flow ensures a 

systematic approach to modeling groundwater levels, 

providing valuable insights into the effectiveness of 

different deep learning techniques for time-series 

forecasting. 

 

3. Results and Discussion 

The performance evaluation of the SimpleRNN, 

CNN(Conv1D), and GRU models for groundwater 

level prediction across three distinct monitoring 

stations in Vietnam (Q55M1, Q080810, and 

Q40101T) reveals critical insights into their 

respective predictive accuracies and limitations. This 

section provides a detailed analysis of the results 

obtained for each model, highlighting their 

suitability, strengths, and challenges when applied to 

different datasets. 

 

 

 

 

3.1 Analysis with the SimpleRNN Model 

The performance metrics for the SimpleRNN model, 

summarized in Table 2, show strong agreement 

between predicted and observed values, with R² 

values nearing 100% across all stations. However, 

variations in error metrics (MSE, RMSE, and MAE) 

highlight a station-dependent performance gradient: 

 

• Station Q55M1: The SimpleRNN model 

achieved an RMSE of 0.07 mm and an MAE of 

0.06 mm, reflecting near-perfect accuracy. The 

high data resolution (hourly measurements over 

three years) at this station likely contributed to 

the model's superior performance by providing 

a rich dataset for temporal learning. 

• Station Q080810: The RMSE increased to 2.58 

mm, and the MAE to 2.28 mm, indicative of 

slightly reduced accuracy. The daily data 

collection frequency, along with missing data 

points, may have introduced challenges in 

capturing detailed temporal patterns, reducing 

the model's precision. 

• Station Q40101T: The model exhibited the 

highest error metrics, with an RMSE of 4.23 

mm and an MAE of 2.57 mm. The lower 

accuracy is attributed to the limited dataset size 

and the significant variability in groundwater 

levels at this station, which posed challenges for 

the SimpleRNN's capability to generalize.  

 

The evaluation metrics in the table indicate the 

model's accuracy across different observation 

stations. The MSE values show that the prediction 

error is minimal for Q55M1 (0.00 mm) and increases 

for Q808010 (6.67 mm) and Q40101T (17.89 mm), 

suggesting slightly larger deviations at these stations. 

The RMSE values, which measure the standard 

deviation of prediction errors, follow a similar trend, 

with Q55M1 having the lowest error (0.07 mm) and 

Q40101T the highest (4.23 mm). The MAE values 

indicate that, on average, the absolute difference 

between predicted and actual values is smallest for 

Q55M1 (0.06 mm) and largest for Q40101T (2.57 

mm), but all values remain relatively low. The R² 

values are close to 1 for all stations, ranging from 

0.9998 to 1.00, demonstrating that the model fits the 

observed data extremely well and provides highly 

accurate predictions. 

Visual analysis (Figure 3) demonstrates that 

while the model captured the general trends in 

groundwater fluctuations, deviations between 

observed and predicted values were more 

pronounced in datasets with higher temporal 

variability, as seen in station Q40101T. 
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Table 2: Performance statistics of the SimpleRNN model 
 

Station MSE (mm) RMSE (mm) MAE (mm) R2 

Q55M1 0.00 0.07 0.06 1.00 

Q808010 6.67 2.58 2.28 1.00 

Q40101T 17.89 4.23 2.57 0.99 
 

 
 

Figure 3: SimpleRNN predicted and actual groundwater level at observation stations: 

(a) Q55M1 (b) Q808010 (c) Q40101T 

 

From the above figure, it can be observed that the 

predicted values using the SimpleRNN model are 

very close to the actual values at the groundwater 

observation points. The performance of the 

SimpleRNN model is the weakest when analyzing 

data collected at station Q40101T, leading to 

noticeable differences between the predicted and 

actual values at this station. This discrepancy is 

visually evident as the predicted values can be 

distinguished by their color on the graph. The three-

dimensional plots (Figure 4) provide further 

confirmation of this trend, highlighting the need for 

more advanced models to address such variability. 

 

3.2 Analysis with the CNN (Conv1D) Model 

The prediction performance of the CNN(Conv1D) 

model for the data from the three stations is shown in 

Table 3. The CNN(Conv1D) model outperformed the 

SimpleRNN model in most performance metrics, as 

detailed in Table 3. Its architecture, designed for 

extracting temporal features in sequential data, 

proved particularly effective for the groundwater 

datasets: 

• Station Q55M1: The CNN(Conv1D) model 

achieved an RMSE of 0.05 mm and an MAE of 

0.03 mm, outperforming the SimpleRNN. Its 

ability to detect fine-grained temporal patterns 

likely contributed to this exceptional accuracy. 

• Station Q080810: The model exhibited a 

substantial improvement, reducing the RMSE 

from 2.58 mm (SimpleRNN) to 0.06 mm and 

the MAE from 2.28 mm to 0.04 mm. This 

significant enhancement underscores the CNN's 

robustness in handling datasets with lower 

resolution and missing values. 

• Station Q40101T: Despite the challenges posed 

by high variability, the CNN(Conv1D) model 

achieved an RMSE of 2.88 mm and an MAE of 

2.0 mm, a marked improvement over the 

SimpleRNN's performance. The model's 

capability to learn localized patterns even in 

datasets with significant fluctuations is evident. 

 

(a) 

(b) (c) 

Epoch 

Epoch Epoch 
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Figure 4: 3D projection of groundwater level using SimpleRNN at observation stations:  

(a) Q55M1 (b) Q808010 (c) Q40101T 

 

Table 3: Performance statistics of the CNN(Conv1D) model 
 

Station MSE (mm) RMSE (mm) MAE (mm) R2 

Q55M1 0.00 0.05 0.03 1.00 

Q808010 0.00 0.06 0.04 1.00 

Q40101T 8.30 2.88 2.0 0.99 

 

Table 3, the results indicate a further reduction in 

prediction errors compared to the first table. Both 

MSE and RMSE values for Q55M1 and Q808010 are 

extremely low (0.00 mm and 0.05–0.06 mm, 

respectively), suggesting near-perfect predictions at 

these stations. The MAE values are also minimal, 

with the largest absolute error at Q40101T (2.0 mm), 

which remains relatively low. The R² values remain 

consistently close to 1 (ranging from 0.9999 to 1.00), 

reinforcing the high accuracy of the model. However, 

Q40101T still shows slightly higher errors compared 

to the other stations, as reflected in its MSE (8.30 

mm) and RMSE (2.88 mm), though these values 

indicate improved performance relative to the Table 

2. The predicted versus observed plots (Figure 5) 

illustrate the CNN(Conv1D)'s superior alignment 

with the observed data trends. The results suggest 

that this model is particularly suitable for 

groundwater monitoring tasks, especially in 

environments with moderate to high data variability. 

From the charts and statistical data in Tables 2 

and 3, it can be observed that, in addition to the small 

amount of input data, one of the reasons for the lower 

prediction performance with data from station 

Q40101T is the high variability in the groundwater 

levels at this station. 3D plots representing the 

predicted groundwater levels of stations Q55M1, 

Q808010, and Q40101T using the CNN (Conv1D) 

model are shown in Figure 6. 

 

 

(a) 

(b) (c) 
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Figure 5: CNN(Conv1D) predicted and actual values at observation stations: 

(a) Q55M1 (b) Q808010 (c) Q40101T 
 

 
Figure 6: 3D projection of groundwater level using CNN(Conv1D) at observation stations: 

(a) Q55M1 (b) Q808010 (c) Q40101T 

 

Epoch 

Epoch Epoch 

(a) 

(b) (c) 

(a) 

(b) (c) 
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From Figure 6, it can be observed that the predicted 

value curve (especially for the data from station 

Q40101T) obtained using the CNN (Conv1D) model 

is closer to the actual value curve. This is entirely 

consistent with the fact that the forecasting 

performance of the CNN (Conv1D) model is better 

than that of the SimpleRNN model. 

 

3.3 Analysis with the GRU Model 

The results of the analysis of groundwater monitoring 

data from the three stations Q55M1, Q080810, 

Q40101T using the GRU model with 128 filters are 

provided in Table 4. The GRU model's performance, 

summarized in Table 4, was less consistent compared 

to the CNN(Conv1D) and SimpleRNN models. 

While it effectively captured general trends, its 

predictive accuracy varied across stations: 

• Station Q55M1: The GRU model yielded an 

RMSE of 1.35 mm and an MAE of 1.26 mm. 

Although the R² value was high, the error 

metrics were significantly higher than those of 

the CNN and SimpleRNN models, indicating a 

relative inefficiency in leveraging high-

resolution datasets. 

 

• Station Q080810: The GRU model 

demonstrated comparable performance to the 

SimpleRNN, with an RMSE of 2.57 mm and an 

MAE of 2.36 mm. This indicates that the GRU 

struggled with the same challenges faced by the 

SimpleRNN model, particularly data sparsity 

and missing values. 

 

• Station Q40101T: The GRU model's RMSE 

increased to 7.39 mm, and its MAE to 5.82 mm, 

the highest among the models tested. This 

indicates significant limitations in handling 

datasets with extreme variability and limited 

size.  

From Table 4, it can be seen that the prediction errors 

increase significantly, particularly for Q40101T. The 

MSE (54.58 mm) and RMSE (7.39 mm) are notably 

higher than in previous tables, suggesting greater 

deviations between predicted and actual values at this 

station. Similarly, MAE for Q40101T reaches 5.82 

mm, indicating larger average errors. In contrast, 

Q55M1 and Q808010 still maintain relatively low 

error values, though they are slightly higher than 

those in the previous tables. Despite these variations, 

the R² values remain at or near 1.00, demonstrating 

that the model still effectively captures the overall 

trends in groundwater levels, even with increased 

prediction errors at certain stations. Figure 7 (two-

dimensional plots) and Figure 8 (three-dimensional 

visualizations) reveal that while the GRU captured 

broad trends, it struggled with fine-grained 

predictions, particularly in highly variable datasets. 

The GRU model performs the worst compared to the 

SimpleRNN and CNN (Conv1D) models. As a result, 

the predicted groundwater level curve shows a more 

significant difference from the actual value curve. 

 

3.4 Independent Forecast Results 

To rigorously evaluate the performance of models in 

groundwater data analysis, groundwater level 

forecasting was conducted for future timeframes. 

Specifically, observational data from station 

Q40101T, starting on July 1, 2016, was withheld 

from the model training process. This withheld data 

was then utilized as a validation set to assess the 

prediction accuracy for the target dates of July 1, 

2016, and August 1, 2016. The model development 

leveraged the complete dataset, excluding the 

validation period, to ensure robust training. The 

forecasting outcomes generated by the CNN 

(Conv1D), GRU, and SimpleRNN models are 

summarized in Table 5, while Table 6 provides a 

detailed comparison of the deviations in predicted 

groundwater levels for the specified future dates.  

 

Table 4: Results of groundwater monitoring data analysis at 3 stations using the GRU model with 128 filters 
 

Station MSE (mm) RMSE (mm) MAE (mm) R2 

Q55M1 1.83 1.35 1.26 1.0 

Q808010 6.58 2.57 2.36 1.0 

Q40101T 54.58 7.39 5.82 0.999 

 

Table 5: Predicted future groundwater levels for station Q40101T 
 

Time 
True groundwater 

level value (m) 

Predicted groundwater level values (m) 

SimpleRNN CNN (conv1D) GRU 

July 1, 2016 1.432 1.412 1.427 1.383 

August 1, 2016 1.351 1.374 1.291 1.300 
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Figure 7: GRU predicted and actual values at observation stations: (a) Q55M1 (b) Q808010 (c) Q40101T 

 

 
 

Figure 8: 3D projection of groundwater level using GRU at observation stations: 

(a) Q55M1 (b) Q808010 (c) Q40101T 
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Table 6: Deviation of predicted future groundwater levels 
 

Time 
Deviation of groundwater level prediction (mm) 

SimpleRNN CNN (conv1D) GRU 

July 1, 2016 -20 -5 -49 

August 1, 2016 23 -60 -51 
 

Based on the table, the predicted values from the 

CNN (Conv1D) model are the closest to the true 

values, particularly on July 1, 2016, where the 

predicted value (1.427) is almost identical to the 

actual value (1.432). Similarly, for August 1, 2016, 

the SimpleRNN model provides a closer estimate 

(1.374) compared to the true value (1.351), while 

CNN (Conv1D) slightly underestimates the value 

(1.291). Among the three models, the GRU model 

shows the largest deviation from the actual values on 

both dates, especially on July 1, 2016, where it 

predicts 1.383 instead of 1.432. This suggests that 

GRU has the weakest performance in this scenario, 

while CNN (Conv1D) and SimpleRNN demonstrate 

better predictive accuracy. 

The results presented in Table 6 indicate that the 

CNN (Conv1D) model achieves the highest accuracy 

for near-term groundwater level predictions, with a 

minimal deviation of only 5 mm for the immediate 

next time point. This is followed by the SimpleRNN 

model, which exhibits a slightly larger deviation of 

20 mm, while the GRU model demonstrates the least 

accurate performance with a deviation of 49 mm. For 

predictions extending to two consecutive time points, 

the SimpleRNN model outperforms the others, 

showing the smallest deviation of 23 mm at the 

second time point. The GRU model ranks second in 

accuracy for this scenario, whereas the CNN 

(Conv1D) model shows the largest deviation of 6.1 

cm at the second time point. Despite this, it is 

important to note that in practical applications, 

forecasted values are commonly updated using newly 

measured data from the preceding time point. This 

iterative update process enhances the overall 

reliability of the CNN (Conv1D) model, 

underscoring its effectiveness in forecasting future 

groundwater levels under real-world conditions. 

 

3.5 Comparison with Similar Studies 

The use of deep learning models for groundwater 

monitoring has gained significant attention due to 

their ability to analyze complex temporal patterns 

and produce accurate predictions. This study 

contributes to the field by evaluating three models - 

Conv1D, SimpleRNN, and GRU - for predicting 

groundwater levels in various regions of Vietnam. 

The findings extend previous research, 

demonstrating improvements in prediction accuracy 

and model adaptability. An ensemble framework that 

integrated machine learning with spectral analysis 

achieved over 80% accuracy in predicting 

groundwater levels in agricultural areas [4]. 

However, the Conv1D model in this study 

outperformed previous approaches, particularly in 

datasets with missing values or moderate variability, 

such as at station Q808010. The superior 

performance of Conv1D is attributed to its capability 

to capture intricate temporal patterns effectively. 

Other studies have employed machine learning 

models such as Random Forest (RF) and Support 

Vector Regression (SVR) for predicting groundwater 

quality and availability, yielding satisfactory results 

in certain cases but encountering difficulties with 

complex or time-dependent data [5][6]. In contrast, 

the Conv1D model demonstrated robust performance 

across diverse scenarios, achieving near-perfect 

prediction accuracy in terms of R² values. 

High-resolution data has been identified as a 

crucial factor for improving prediction accuracy [6]. 

This study reaffirmed that the SimpleRNN model 

performed well with high-resolution data, such as 

hourly readings at station Q55M1, but struggled with 

lower-resolution or highly variable datasets. Similar 

challenges have been reported in earlier research [8]. 

Meanwhile, the Conv1D model maintained 

consistent performance across different data types, 

highlighting its versatility. However, datasets with 

missing information or substantial variability 

presented difficulties for all models, particularly at 

station Q40101T. Previous studies that utilized 

machine learning and remote sensing for 

groundwater predictions also noted that incomplete 

data led to decreased accuracy [10]. While the 

Conv1D model in this study managed these 

challenges better than other models, addressing data 

gaps through preprocessing techniques could further 

enhance its reliability. 

Long-term groundwater level predictions have 

also been explored using Random Forest models 

[19]. However, this study found that GRU models, 

despite being designed for sequential pattern 

recognition, struggled with highly variable data. 

These findings emphasize the need for advanced 

techniques, such as hybrid approaches that integrate 

Conv1D with other architectures or the application of 

transformers, to further enhance long-term prediction 

accuracy. Table 7 shows a comparative analysis 

summarizing the main findings of recent studies and 

comparing them with the results of this study.  



 

International Journal of Geoinformatics, Vol. 21, No. 3, March, 2025 

ISSN: 1686-6576 (Printed)  |  ISSN  2673-0014 (Online) | © Geoinformatics International  

112 

Table 7: Comparative analysis of deep learning models for groundwater prediction 
 

Models Used 
Dataset 

Characteristics 

Performance 

Metrics 
Key Findings 

Comparison with This 

Study 
Reference 

Machine Learning 

(ML) + Spectral 

Analysis 

Agricultural 

groundwater 

datasets, US 

Accuracy > 

80% 

Identified irrigation 

demand as the 

most significant 

factor 

Our Conv1D model 

achieved near-perfect 

accuracy (R² ≈ 1), 

demonstrating better 

handling of missing data 

and variability 

[4] 

Random Forest (RF), 

Boosted Regression 

Trees (BRT), 

Multivariate Linear 

Regression (MLR) 

Groundwater 

contamination 

prediction 

RF performed 

best 

Effective for 

contamination 

level estimation but 

struggled with 

time-dependent 

data 

Conv1D outperforms in 

time-series forecasting but 

RF is better for spatial 

contamination mapping 

[5] 

Support Vector 

Regression (SVR), 

RF, Automated 

Feature Selection 

Groundwater 

availability 

prediction 

RMSE and 

MAE 

minimized 

with SVR 

High-resolution 

data improves 

accuracy 

Similar finding: Our 

SimpleRNN model 

performed well with high-

resolution data at Q55M1, 

but struggled with 

variability 

[6] 

ML + Remote 

Sensing 

Groundwater 

withdrawal 

estimation 

R² ≈ 0.99 

(train), 0.93 

(test) 

Missing data 

reduced model 

performance 

Our Conv1D model 

managed missing data 

better, achieving high 

accuracy even with 

variable data 

[8] 

Random Forest 

(RF) 

Long-term 

groundwater 

level forecasting 

44% decline in 

GDEs detected 

RF is good for 

long-term trends 

but lacks fine-scale 

accuracy 

GRU in this study 

performed worst, 

suggesting more advanced 

hybrid models are needed 

for long-term forecasting 

[10] 

Automated ML for 

Groundwater Level 

(AutoML-GWL) 

Bayesian 

optimization for 

hyperparameters 

RMSE = 1.22, 

R = 0.90 

Outperformed 

traditional ML 

models 

Our CNN (Conv1D) 

model performed similarly 

in accuracy but with 

simpler architecture and 

manual tuning 

[19] 

 

Table 7 illustrates how this research aligns with and 

expands upon prior studies. It highlights the strengths 

of the Conv1D model in handling variable and 

missing data, the effectiveness of SimpleRNN with 

high-resolution data, and the limitations of GRU in 

extreme variability scenarios. 

 

4. Conclusion 

This study tested three machine learning models - 

SimpleRNN, CNN (Conv1D), and GRU - for 

predicting groundwater levels at three stations in 

Vietnam: Q55M1, Q080810, and Q40101T. The 

results showed that the performance of each model 

varied depending on the quality and type of the data. 

The CNN (Conv1D) model was the most accurate, 

especially when there was moderate variability or 

missing data, like at station Q080810, where it 

achieved very low error rates (RMSE of 0.06 mm and 

MAE of 0.04 mm). This model’s ability to capture 

detailed patterns over time made it highly effective 

for groundwater monitoring. The SimpleRNN model 

worked very well with high-resolution data, like the 

hourly data at station Q55M1, where it had almost 

perfect accuracy (RMSE of 0.07 mm and MAE of 

0.06 mm). However, it struggled with data that had 

lower resolution or more variability, like the data 

from station Q40101T. The GRU model, on the other 

hand, showed the highest error rates across all 

stations, especially at Q40101T, where it had a large 

RMSE of 7.39 mm and an MAE of 5.82 mm. While 

it was good at capturing general trends, it wasn’t as 

accurate in predicting specific values. For short-term 

predictions at Q40101T, the CNN (Conv1D) model 

provided the best predictions for the next time point, 

with a small error of just 5 mm.  The SimpleRNN and 

GRU models were less accurate. However, when 

predicting the second time point, the SimpleRNN 

model performed best, with the smallest error of 2.3 

cm.  

This shows that different models work better at 

different time points, depending on the data and the 

prediction needs. The CNN (Conv1D) model’s 

consistent accuracy across different datasets and its 

ability to handle data variability make it the best 

choice for long-term groundwater level forecasting.  
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The SimpleRNN model works well with high-

resolution data, but its performance drops when the 

data is more variable, suggesting that improving the 

data or using a combination of models could help. 

The GRU model could be improved by adding more 

complexity or using better features for datasets with 

complex patterns. Improving data quality through 

methods like filling in missing data or adding extra 

environmental data could also improve predictions 

for all models. Future research could explore more 

advanced deep learning techniques, such as 

transformers, to improve long-term predictions. In 

conclusion, the CNN (Conv1D) model stands out as 

the best option for different groundwater monitoring 

scenarios, but the choice of model should depend on 

the characteristics of the data and the specific 

forecasting needs. 

 

5. Recommendations 

Based on the obtained results, the groundwater data 

analysis method proposed in this paper can be 

effectively applied in practice. Although the 

experimental results in this study demonstrate the 

high performance of the artificial intelligence model 

in analyzing groundwater monitoring data, further 

research is needed to optimize the model for different 

cases. Additionally, analysis using a combination of 

various types of input data, alongside groundwater 

data, should be conducted to enhance its applicability 

in studies on natural hazards and climate change. 
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