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Abstract
The Mekong Delta and Ho Chi Minh City in Vietnam are recognized as areas significantly impacted by land subsidence. This 
phenomenon has led to notable consequences, including increased vulnerability to issues such as saline intrusion and tidal flooding. 
GNSS-CORS technology, known for its capability to provide continuous time-series data, plays a crucial role in accurately monitoring 
changes in the land surface. Despite the existence of traditional algorithms for analyzing continuous measurement data collected 
through GNSS-CORS technology, their effectiveness is constrained by challenges in handling diverse input data and limitations in 
forecasting future displacements. Consequently, there is a growing trend towards the adoption of artificial intelligence techniques, 
particularly artificial neural networks (ANN), for predicting Up component in GNSS time-serries daily solution. This study leverages 
data from the CTHO GNSS CORS station located in the Mekong Delta to evaluate proposed models. An innovative hybrid approach, 
which integrates the Moving Average Filter (MAF) and Multilayer Perceptron Neural Network (MLPNN), is introduced to enhance the 
accuracy of forecasting. Performance evaluation metrics such as Mean Absolute Error (MAE), Mean Squared Error (MSE), and Root 
Mean Squared Error (RMSE) are utilized to assess the effectiveness of the models. Results demonstrate the superior performance of 
the MLPNN model, achieving high prediction accuracy with metrics including MAE = 0.001, MSE = 0.000, and RMSE = 0.002. This 
research underscores the robustness of the proposed model in forecasting GNSS time-serries daily solution, highlighting its potential for 
practical applications in geodetic research.

1. Introduction and literature review
Vertical displacement of the land surface is the change in 

elevation of the ground due to the tectonic activities of the 
Earth’s crust and surface subsidence due to causes such as 
mining, groundwater extraction or sediment compaction, etc. 
For areas with low terrain such as the Mekong Delta, Ho Chi 
Minh City – Vietnam, vertical displacement of the ground ex-
acerbates the inundation of the city during high tides, heavy 
rain or saline intrusion (Construction 2019, Wang, Jiang et al. 
2021). To determine the vertical displacement, some methods 
can be used such as GNSS, InSAR, PInSAR, geometric level-
ling or using gravity gradient data.

GNSS allows to determine the movement of coordinate 
components with high accuracy by processing data with 
some specialized software packages such as Bernese, Gamit/
Globk Based on the GNSS data from thousands of tide gaug-
es, (Hammond, Blewitt et al. 2021) created the vertical dis-
placement map on a global scale with precision to mm. In 
addition, the earth’s crust movement can be computed by us-
ing data measured in discrete cycle (Abidin, Andreas et al. 
2013, Duong, Sagiya et al. 2013, Trần, Nguyễn et al. 2013) 
or continuous observation series (Kiani 2020, Lau, Cole-

man et al. 2021, Trọng, Nghĩa et al. 2022, Dinh, Nguyen  
et al. 2023).

It can be seen that the advantage of GNSS is determin-
ing the crustal displacement with high accuracy, but the 
disadvantage is that it only can observe the displacement at 
the point where the GNSS receiver is installed but not pres-
ent for the entire surface. To overcome the aforementioned 
disadvantage, some different techniques are combined with 
GNSS to monitor the movement of the land surface. (Abidin, 
Andreas et al. 2011, Abidin, Andreas et al. 2015) combined 
levelling data, GPS and InSAR data to observe the subsidence 
in Jakarta city with the highest subsidence value up to 16cm/
year and the displacement in 10 years from 1997 to 2007 up 
to 90cm. Through analyzing the GNSS and InSAR data, (Cat-
alao, Raju et al. 2013) computed the highest vertical displace-
ment at some places in Singapore up to 7mm/year, and up to 
70mm/year in Karrapina – Turkey (Orhan, Oliver-Cabrera et 
al. 2021). Moreover, by using a combination of different data 
types such as SAR, levelling, hydrology, InSAR, (Chen, Gong 
et al. 2017) observed the maximum subsidence value up to 
100mm/year and displacement features at some places in Bei-
jing city – China.
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GNSS CORS (Continuously Operating Reference Station) 
is a new solution of GNSS technology in recent years. With 
the advantage is working continuously over a long period, 
data from CORS not only can monitor the displacement but 
also determine the shifting rules as well as the related effects 
(Wang, Jiang et al. 2021). According to this, the coordinate 
or displacement values can be computed accurately through 
the analysis of GNSS data at each station by using profession-
al software packages such as Gamit/Globk, Bernese (Trọng, 
Nghĩa et al. 2022), Bernese (Kall, Oja et al. 2019). Moreover, 
the time series of coordinate values obtained from GNSS data 
can also be analyzed by using other methods such as physical 
models and digital models. Especially, some components such 
as linear velocity, annual and semi-annual amplitudes of sine 
and cosine functions can be determined by using the tradi-
tional analytical method.

Artificial Neuron Network (ANN) is widely used in GNSS 
data processing such as correcting compensation error when 
integrating GNSS with inertial positioning (INS) (Al Bi-
tar and Gavrilov 2021), evaluating the performance of TEC 
forecasting models over equatorial low-latitude GNSS sta-
tion (Sivavaraprasad, Deepika et al. 2020) and prediting the 
Earth’s crust vertical displacement with short time series data 
(Duong Van Phong 2023). In parallel with the development of 
modern geodetic techniques, information technology and es-
pecially artificial intelligence (AI) are being applied more and 
more to research the Earth’s crust displacement. AI including 
artificial neuron network, machine learning and deep learn-
ing has significantly contributed to improving the accuracy of 
forecasting, interpolating missing data and analyzing the time 
series of GNSS data gain (Wang, Jiang et al. 2021, Gao, Li et al. 
2022). Many machine learning models have been used in an-
alyzing the time series of GNSS data such as long short-term 

memory (LSTM), convolutional neural network long short-
term memory (CNN-LSTM), artificial neural network (ANN) 
(Chen, Lu et al. 2023).

Among them, LSTM is a type of recurrent neural network 
(RNN) architecture designed to address the limitations of 
traditional RNNs in capturing and remembering long-range 
dependencies in sequential data. Wenzong Gao and others 
evaluated the effectiveness of the LSTM technique in fore-
casting GNSS data compared with other techniques such as 
gradient boosting decision tree (GBDT) and support vector 
machine (SVM) whereby the forecasting accuracy increased 
30% to using the traditional least square(LS) method (Gao, 
Li et al. 2022). (Wang, Jiang et al. 2021) used MSSW-LSTM 
for GNSS time-serries forecasting to improve the precision 
of the LSTM method with the results reducing RMSE value 
up to 23,7% and MEA value to 22,2%. By combining Varia-
tional Mode Decomposition (VMD) and LSTM, (Chen, Lu et 
al. 2023) built the DVMD-LSTM model to analyze the GNSS 
series data in 22 years, the results showed the improvement 
in forecasting accuracy up to 36,5% and average velocity up 
to 33,02%.

The forecasting results of vertical displacement of the 
Earth's crust in (Duong Van Phong 2023) did not compare the 
effectiveness of the ANN model to the traditional methods and 
none of solution was proposed in case there is noise in the input 
data series. This article’s target is evaluating the effectiveness of 
ANN model to the forecasting result of using the Moving Av-
erage Filter as well as verify it’s ability in case of noise existing 
in the time series of GNSS data. Another traditional approach, 
namely Autoregressive Intergrated Moving Average (ARIMA) 
was also developed to forecast vertical land movement based 
on GNSS CORS data and compared to the ANN model to high-
light the superiority of the ANN model.

Fig. 1. Types of moving average filters

Fig. 2. An example structure of the MLP model for forecasting GNSS time-serries daily solution

Rys. 1. Rodzaje filtrów średniej ruchomej

Rys. 2. Przykładowa struktura modelu MLP do prognozowania dziennego rozwiązania dla serii czasowych GNSS
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2. Methodology
2.1 Moving average filter (MAF)

The Moving Average Filter, a Finite Impulse Response 
(FIR) smoothing filter, is employed to mitigate short-term 
overshoots or noisy fluctuations in a signal. It aids in preserv-
ing the true signal representation and retaining a sharp step 
response. This statistical tool is simple yet elegant, serving as 
an effective means for denoising signals in the time domain.

Preferred in many Digital Signal Processing (DSP) appli-
cations involving time-series data, the Moving Average Fil-
ter stands out for its simplicity, speed, and remarkable noise 
suppression capabilities while retaining a sharp step response. 
Consequently, it is considered an optimal choice for signals 
encoded in the time domain.

While the Moving Average filter excels as a smoothing filter 
in the time domain, it performs poorly in the frequency do-
main. Its effectiveness shines in applications solely reliant on 
time-domain processing, but in scenarios where information is 
encoded in both time and frequency or exclusively in the fre-
quency domain, it may prove to be an unsuitable option.

Various types of moving average filters exist, with simple, 
cumulative moving average, weighted moving average, and 
exponentially weighted average filters forming the fundamen-

tal basis for most other variants. Although numerous filter 
variants exist, the core structure generally boils down to four 
types, as illustrated in Figure 1. In this study, a simple moving 
average filter was applied to reduce dataset noise.

The Simple Moving Average (SMA) represents one of the 
simplest forms of moving average filters, known for its ease of 
understanding and application. Its main advantage lies in its 
straightforward formula, requiring no complex mathematics 
for interpretation.

However, the drawback of SMA is that it assigns equal 
weightage to all samples, resulting in less effective suppression 
of noisy signals. The mathematical model of SMA is described 
as follows:

Suppose that we have a given dataset [a1, a2, …, an]. If we 
consider the periodicity or window length as 'k,' (assume k = 
3), then the average of 'k' elements would be:

	 (1)

	
(2)

(3)

Fig. 3. Proposed framework of the MAF-MLPNN model for forecasting GNSS time-series daily solution

Tab. 1. Data information of CTHO station

Fig. 4. VNGEONET network Fig. 5. Structure of VNGEONET station

Rys. 3. Proponowana struktura modelu MAF-MLPNN do prognozowania dziennych rozwiązań szeregów czasowych GNSS

Tab. 1. Informacje o danych stacji CTHO

Rys. 4. Sieć VNGEONET Rys. 5. Struktura stacji VNGEONET
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Finnally, simple moving average result will be calculated 
as follows:

	 (4)

2.2 Multi-layer perceptron neural network (MLPNN)
The Multilayer Perceptron (MLP) is a straightforward and 

efficient multi-layer feedforward neural network with distinct 
input, hidden, and output layers. The hidden layer comprises 
one or more layers, each hosting a specific number of neurons 
responsible for summing and activating weighted inputs to 
generate outputs. The primary algorithm employed is the Back-
propagation Neural Network (BPNN), where signals propa-
gate forward during the learning process, and errors propagate 
backward. In a magnified MLP neural network, each node is 
composed of an adder and an activation function.

The MLP model follows four essential steps:
1. Variable selection: Decide on the variables that will be 
used in the model.

2. Methodologies for instruction, evaluation, and formula 
verification: Establish methodologies for training, evalua-
tion, and verifying the model's formulas.
3. Buildings and other structures: Develop the network 
architecture, including input, hidden, and output layers.
4. Model validation and forecasting: Validate the model 
and use it for forecasting. 

The MLPNN approach is a type of feedforward neural net-
work that employs the Backpropagation technique for learning. 
It consists of input neurons, one or more hidden layers for com-
putation and iterations, and an output layer for forecastings. 
Initially introduced in 1943 by McCulloch and Pitts, ANNs 
have gained popularity for their non-linear mapping capabil-
ities in statistical analyses. MLP, being flexible and possessing 
proper representational capability, is widely used and regarded 
as the most practical type of ANN. The backpropagation algo-
rithm is applied to train MLPs, which function as feedforward 
neural tools and general approximators. The overall structure 

Fig. 6. MAF results of the dataset used

Fig. 7. Training performance of the MAF-MLPNN model for forecasting Up component

Fig. 8. Comparison of actual and forecasted Up component using the MAF-MLPNN model on the training samples

Rys. 6. Wyniki MAF dla użytego zbioru danych

Rys. 7. Wydajność treningu modelu MAF-MLPNN dla prognozowania składnika Up

Rys. 8. Porównanie rzeczywistej i prognozowanej składowej Up przy użyciu modelu MAF-MLPNN na próbkach treningowych
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of the MLP considered in the study includes input and output 
layers, a hidden layer, and strong connections between adjacent 
layer neurons. Figure 2 shows the structure of MLP model for 
forecasting GNSS time-serries daily solution.

2.3 Multi-layer perceptron neural network (MLPNN)
In addressing the time series problem at hand, we pro-

pose a comprehensive framework that integrates the Moving 
Average Filter and Multilayer Perceptron Neural Network 
(MLPNN) model. This hybrid approach aims to leverage the 
smoothing capabilities of the Moving Average Filter along-
side the forcastive power of the MLP model to enhance the 
accuracy and effectiveness of GNSS time-serries daily solu-
tion forecasting. Through this combined framework, we seek 
to capitalize on the strengths of both methods, providing a 
robust solution for capturing patterns, reducing noise, and 
making accurate forecasting s in time-dependent datasets. 
The framework of the MAF-MLPNN model for forecasting 
GNSS time-serries daily solution is proposed in Figure 3.

2.4 Evaluation methods
For evaluating the forecasting performance of the ANN 

and ARIMA models, three performance metrics, including 
mean absolute error (MAE), mean-squared error (MSE), and 
root-mean-squared error (RMSE) were applied, as calculated 
according to equations (5-7).

(5)

Where:
n is the number of data points;
yi is the actual value at data point i;
ŷi is the forecasted value at data point i.

	 (6)

Where the expressions involving n, yi, ŷi retain the same 
meaning as above.

Fig. 9. Comparison of actual and forecasted Up component using the MAF-MLPNN model on the testing samples

Fig. 10. Correlation between the actual and forecasted Up component based on the MAF-MLPNN model

Fig. 11. Training performance of the MLPNN model for forecasting Up component

Rys. 9. Porównanie rzeczywistej i prognozowanej składowej Up przy użyciu modelu MAF-MLPNN na próbkach testowych

Rys. 10. Korelacja między rzeczywistym i prognozowanym składnikiem Up na podstawie modelu MAF-MLPNN

Rys. 11. Wydajność treningu modelu MLPNN dla prognozowania składnika Up
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	 (7)

It is the square root of the Mean Squared Error and pro-
vides an assessment of the magnitude of forecasting errors in 
the units of the dependent variable.

3. GNSS Cors data and analysis
3.1 Data collection

The Vietnam’s national network of satellite positioning 
stations (VNGEONET) is operated by the end of 2019 con-
sists of 65 CORS stations (24 geodetic stations and 41 NRTK 
stations) (figure 4) for multiple purposes including the ver-
tical displacement of the Earth’s crust (Quân, Trung et al. 
2021). To ensure the above tasks, the VNGEONET’s stations 
are designed and buried deep to the bedrock layer (figure 5) 
(DOSM). From the data of this CORS network, some studies 
on the displacement of the earth's surface have been published 
(Nguyễn Gia Trọng 2021, Quân, Trung et al. 2021, Trọng, Ng-
hĩa et al. 2022).

In Figure 4, the red line is used to indicate the boundary 
of the geographical location range within which the measure-
ment solution with CORS stations can be applied, following 
the network solution - for the areas enclosed by the red line. 
The data information is presented in table 1.

3.2 Data collection
Firstly, the data as described in Table 1 was processed 

using the precise GNSS processing software. The results of 
this data analysis yielded the values of the three-dimensional 
spatial coordinates of the monitoring point over time. Subse-
quently, the time-series Up component was analyzed utilizing 
ARIMA and MLPNN models. There are many ways to process 
the time series of GNSS data such as using Bernese software 
(Zhao, Chen et al. 2023) or Gamit/Globk (Li 2021). In this 
article, the authors use Gamit/Globk software to analyze the 
GNSS data series with output results are point’s coordinate 
components at each epoch.

Fig. 12. Comparison of actual and forecasted Up component using the MLPNN model on the training samples

Fig. 13. Comparison of actual and forecasted Up component using the MLPNN model on the testing samples

Fig. 14. Correlation between the actual and forecasted Up component based on the MLPNN model

Rys. 12. Porównanie rzeczywistej i prognozowanej składowej Up przy użyciu modelu MLPNN na próbkach treningowych

Rys. 13. Porównanie rzeczywistej i prognozowanej składowej Up przy użyciu modelu MLPNN na próbkach testowych

Rys. 14. Korelacja między rzeczywistym i prognozowanym składnikiem Up w oparciu o model MLPNN
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4. Results and discussion
The forecasting results using the MAF function are pro-

vided as shown in Figure 6. It can be observed that, during ex-
ecution, the MAF function partitions the dataset into subsets 
based on which it forcasts step changes in values.

The MLPNN function is developed as follows: it divides 
the input data into a training dataset (80%) and a test dataset 
(20%). Using all variables (i.e., X, Y, H) to forecast Up com-
ponent. The model training algorithm employed is the Adam 
algorithm. During model training, the epoch value is set to 
10, with 01 hidden layer containing 10 hidden nodes. ReLU 
is the chosen activation function for the intermediate layer, 
and Sigmoid is the corresponding activation function for the 
output layer. To assess the loss value, the Mean Squared Error 
(MSE) function is selected with a total of 200 epochs. Figure 
7 illustrates the correlation between the Loss function and 
Mean Squared Error Loss. It can be observed that, with the 
number of epochs reaching 25, the value of the Loss function 
has approached 0.

Subsequently, the performance and accuracy evaluation 
are conducted when employing the MAF-MLPNN function 
for forecasting GNSS time-serries daily solution. The evalu-
ation results are depicted in Figure 8. Examining the perfor-
mance and accuracy of the MAF-MLPNN model in forecast-
ing GNSS time-serries daily solution with the training dataset 
reveals a remarkably high performance in the model's fore-
casting capabilities.

From the forecasted results of Up component for the 
training dataset (Figure 8) and the test dataset (Figure 9), it 
can be observed that the MAF-MLPNN model is entirely suit-
able for practical use. To further ascertain the suitability of the 
MAF-MLPNN function, regression and correlation levels are 
determined. The results indicating the regression and correla-
tion levels are presented in Figure 10 for the training dataset 
(left) and the test dataset (right).

To compare the effectiveness of combining the MAF func-
tion with the MLPNN function, use the MLPNN function to 
forecast Up component with the same input dataset as before. 

Fig. 15. Comparison of actual and forecasted Up component using the ARIMA (1,1,1) model on the training samples

Fig. 16. Comparison of actual and forecasted Up component using the ARIMA (1,1,1) model on the testing samples

Fig. 17. Correlation between the actual and forecasted Up component based on the ARIMA (1,1,1) model

Rys. 15. Porównanie rzeczywistego i prognozowanego składnika Up przy użyciu modelu ARIMA (1,1,1) na próbkach treningowych

Rys. 16. Porównanie rzeczywistego i prognozowanego składnika Up przy użyciu modelu ARIMA (1,1,1) na próbkach testowych

Rys. 17. Korelacja pomiędzy rzeczywistym i prognozowanym składnikiem Up na podstawie modelu ARIMA (1,1,1)
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The results determining the loss function values for the training 
dataset using the MLPNN function are shown in Figure 11.

The accuracy of forecasting Up component for the train-
ing dataset and the test dataset is depicted in Figures 12 and 
Figures 13, respectively.

The correlation between the actual values of Up compo-
nent and the corresponding forecasted values for both the 
training and test datasets is illustrated in Figure 14.

From the aforementioned analysis results, it can be ob-
served that combining the MAF function with the MLPNN 
function yields significantly better forecasting results for Up 
component compared to using only the MLPNN function. 
Detailed results for model efficiency comparison will be pro-
vided in the following section.

To reassert the effectiveness of the proposed artificial in-
telligence model for forecasting Up component, a traditional 
forecasting function, specifically the ARIMA function, is cho-
sen for comparison. To compare the effectiveness of using the 
combined MAF function, calculations have been performed 

for two scenarios: one using only the ARIMA function and 
the other using the combined MAF function with the ARIMA 
function.

When executing the two computation scenarios with the 
ARIMA function, the data is also divided into a training data-
set (80%) and a test dataset (20%).

In the case of using the ARIMA function, the computa-
tional results show that after 10 iterations, the best ARIMA 
model has been identified with parameters for the training 
dataset: 1 autoregressive component (utilizing only the height 
component), 1 integration, and 1 moving average component 
– ARIMA(1,1,1). The total time for model fitting in this case 
is 8.745 seconds.

Figure 15 illustrates the comparison results between the 
actual of Up component values and their corresponding fore-
casted values for the training dataset.

The correlation between the actual values of Up component 
and their corresponding forecasted values for the test dataset 
using the ARIMA(1,1,1) function is shown in Figure 16.

Fig. 18. Comparison of actual and forecasted Up component using the MAF-ARIMA (2,1,0) model on the training samples

Fig. 19. Comparison of actual and forecasted Up component using the MAF-ARIMA (2,1,0) model on the testing samples

Fig. 20. Correlation between the actual and forecasted Up component based on the MAF-ARIMA (2,1,0) model

Rys. 18. Porównanie rzeczywistego i prognozowanego składnika Up przy użyciu modelu MAF-ARIMA (2,1,0) na próbkach treningowych

Rys. 19. Porównanie rzeczywistego i prognozowanego składnika Up przy użyciu modelu MAF-ARIMA (2,1,0) na próbkach testowych

Rys. 20. Korelacja pomiędzy rzeczywistym i prognozowanym składnikiem Up na podstawie modelu MAF-ARIMA (2,1,0)
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It can be observed that the forecasted results of Up com-
ponent using the ARIMA(1,1,1) function on the test dataset 
form a straight line and are highly inaccurate. The correlation 
between the actual values of Up component and their corre-
sponding forecasted values for both the training and test data-
sets is illustrated in Figure 17.

The actual values of Up component and their corre-
sponding forecasted values for the test dataset using the 
ARIMA(2,1,0) function are illustrated in Figure 19. It can be 
observed that while the forecasted values closely match the 
actual values on the training dataset, they are still highly inac-
curate for the test dataset.

The regression and correlation of Up component for 
the training and test datasets when using the MAF-ARIMA 
function are shown in Figure 20. From Figure 20, it can be 
observed that the regression and correlation for the training 
dataset are very good, but conversely, for the test dataset, they 
are not as favorable.

The accuracy characteristics of the models, as mentioned 
in Formulas 5, 6, and 7 in Section 2.4, are summarized in Ta-
ble 2. The corresponding values for MAE, MSE, and RMSE 
are 0.001, 0.000, and 0.002 for both the training and test data-
sets, demonstrating the superior effectiveness of the MAF-
MLPNN model compared to other models.

From the values in Table 2, it can be observed that the pre-
diction results of the Up component using the MAE-MLPNN 
model outperform those of previous publications. Specifical-
ly, in comparison to the findings reported by (Wang, Jiang et 
al., 2021) where the minimum MAE and RMSE values were 
2.3864 and 3.1628 respectively, and the RMSE values pub-
lished by (Gao, Li et al., 2022) ranged from 0.0027 to 0.0070.

5. Conclusion
This research proposed a hybrid model, the Moving Average 

Filter-Multilayer Perceptron Neural Network (MAF-MLPNN), 
to enhance the accuracy of forecasting GNSS time-serries daily 
solution. By integrating the noise-reducing capabilities of the 
Moving Average Filter with the predictive power of the MLPNN 
model, we aimed to provide a robust solution for addressing the 
challenges associated with predicting GNSS time-serries daily 
solution in dynamic environments.

Through rigorous data analysis and evaluation, we 
demonstrated the superior performance of the MAF-MLPNN 
model compared to traditional methods like ARIMA. The 
model exhibited exceptional accuracy metrics, even in the 
presence of noise in the dataset, showcasing its reliability and 
effectiveness for practical applications in geodetic studies. The 
results of this study contribute to advancing prediction mod-
els in current spatial data analysis research, presenting a new 
approach that combines AI techniques with established meth-
ods to achieve enhanced forecasting accuracy. The proposed 
MAF-MLPNN model holds significant potential in improving 
assessment strategies and minimizing risks in areas prone to 
GNSS time-serries daily solution, thereby supporting envi-
ronmental management efforts and sustainable development 
endeavors.
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Przewidywanie szeregów czasowych GNSS przy użyciu filtra średniej ruchomej 
i wielowarstwowej sieci neuronowej perceptronu

Delta Mekongu i Ho Chi Minh City w Wietnamie są uznawane za obszary w znacznym stopniu dotknięte osiadaniem gruntu. Zjawisko 
to doprowadziło do znaczących konsekwencji, w tym zwiększonej podatności na takie zjawiska, jak wnikanie soli i powodzie pływowe. 
Technologia GNSS-CORS, znana ze swojej zdolności do dostarczania ciągłych danych szeregów czasowych, odgrywa kluczową rolę 
w dokładnym monitorowaniu zmian powierzchni ziemi. Pomimo istnienia tradycyjnych algorytmów do analizy ciągłych danych 
pomiarowych zebranych za pomocą technologii GNSS-CORS, ich skuteczność jest ograniczona wyzwaniami związanymi z obsługą 
różnorodnych danych wejściowych i ograniczeniami w prognozowaniu przyszłych przemieszczeń. W związku z tym istnieje rosnąca 
tendencja do przyjmowania technik sztucznej inteligencji, w szczególności sztucznych sieci neuronowych (ANN), do przewidywania 
komponentu Up w codziennym rozwiązaniu GNSS. Niniejsze badanie wykorzystuje dane ze stacji CTHO GNSS CORS zlokalizowanej 
w delcie Mekongu do oceny proponowanych modeli. Innowacyjne podejście hybrydowe, które integruje filtr średniej ruchomej (MAF) 
i wielowarstwową perceptronową sieć neuronową (MLPNN), zostało wprowadzone w celu zwiększenia dokładności prognozowania. 
Do oceny skuteczności modeli wykorzystano wskaźniki oceny wydajności, takie jak średni błąd bezwzględny (MAE), średni błąd 
kwadratowy (MSE) i średni błąd kwadratowy (RMSE). Wyniki pokazują doskonałą wydajność modelu MLPNN, osiągając wysoką 
dokładność przewidywania dzięki wskaźnikom takim jak MAE

 ruch pionowy lądu, tektonika płyt, Gamit/Globk, analiza danych GNSS, uczenie maszynowe, serie czasowe GNSSSłowa kluczowe:




