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Abstract: Landslides threaten human life, property, and vital infrastructure in most mountainous
regions. As climate change intensifies extreme weather patterns, the landslide risk is likely to in-
crease, resulting in challenges for disaster management, sustainability development, and community
resilience. This study presents a comprehensive framework for assessing landslide risk, integrating
advanced machine learning models with the Iyengar-Sudarshan method. Our case study is Son La
province, the Northwest region of Vietnam, with data collected from 1771 historical landslide occur-
rences and fifteen influencing factors for developing landslide susceptibility maps using advanced
ensemble machine learning models. The Iyengar-Sudarshan method was applied to determine
the weights for landslide exposure, vulnerability, and adaptive capacity indicators. The resulting
landslide risk map shows that the highest-risk districts in Son La province are located in the central
and northeastern regions, including Mai Son, Phu Yen, Thuan Chau, Yen Chau, Song Ma, and Bac
Yen. These districts experience high landslide hazards, exposure, and vulnerability, often affecting
densely populated urban and village areas with vulnerable populations, such as young children, the
elderly, and working-age women. In contrast, due to minimal exposure, Quynh Nhai and Muong La
districts have lower landslide risks. Despite having high exposure and vulnerability, Son La City is
situated in a low-susceptibility zone with high adaptive capacity, resulting in a low landslide risk for
this region. The proposed framework provides a reference tool for mitigating risk and enhancing
strategic decision making in areas susceptible to landslides while advancing our understanding of
landslide dynamics and fostering community resilience and long-term disaster prevention.

Keywords: landslide risk assessment; hazard; exposure; vulnerability; adaptive capacity; machine
learning; Iyengar-Sudarshan method; Son La province

1. Introduction

Landslides are a common and significant natural hazard in many nations of Asia
due to these regions’ diverse geography, climate, and geological characteristics [1]. A
total of 55,997 people were killed in 4862 landslide events in the period of 2004-2016 [2].
The distribution of these landslide events differs, but Asia is the region that takes the
majority worldwide [2,3], which is attributed to their complex landscapes and climatic con-
ditions [4,5]. Landslide events can cause significant damage to the environment, properties,
transportation networks, infrastructures, and human lives [6]. Landslides pose substantial
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dangers in mountainous areas due to various triggering factors of steep terrain, complex
geological conditions, extreme climate patterns, and human activities [7,8]. Landslides can
vary from small scale to large scale, depending on the cubic volume of the sliding block and
the extent of the damage they cause [9]. Still, all have destructive characteristics affected by
dynamic factors such as land use changes, urbanization, population growth, and climate
change status [10]. These factors evolve, complicating the risk assessment process and
requiring continuous updates to models and data [11].

Machine learning (ML) techniques are significant in landslide-related studies because
they address complex and large-scale datasets, identify samples, and make accurate fore-
casts [12]. Landslide risk assessment often involves various data, including topography,
geology, climate, environment, society, economy, and physical structures [13,14]. ML al-
gorithms can efficiently process and analyze these multidimensional datasets, identifying
intricate patterns and correlations within datasets [15]. In recent years, advanced ML mod-
els, such as hybrid ML models and deep learning, can capture intricate interactions among
multiple variables, leading to more accurate and robust landslide risk assessments [16,17].

The UltraBoost (UB) algorithm represents an innovative advancement in ML, intro-
ducing a range of optimizations that enhance the efficiency and accuracy of predictive
models based on the foundation of previously established boosting algorithms [18]. This
algorithm employs advanced gradient optimization techniques that allow faster conver-
gence during training, significantly reducing the computational time required to achieve
high-performance models [19]. These make UltraBoost particularly suitable for large-scale
datasets where traditional boosting algorithms might struggle with processing speed [20].
This was combined with the Weights of Evidence model to assess flood susceptibility in the
Putna river basin from Romania [21], or it was employed to determine a safe construction
location in the Mediterranean region during pre-earthquake disasters [18]. However, the
UB model has not yet been applied in landslide susceptibility mapping.

The increasing complexity and unpredictability of landslide hazards due to climate
change underscore the urgent need for advanced risk assessment methods. As a result,
several studies have explored landslide risk assessment by applying various ML models.
Novellino et al. [12] utilized three ML models, including Artificial Neural Networks, the
Generalized Boosting Model, and Maximum Entropy, to build the landslide hazard map
for the Termini—Nerano area in southern Apennines, Italy. Then, this landslide hazard
map was combined with the official population and building census data to estimate the
landslide risk for this region. Mallick et al. [22] developed four ensemble metaheuristic
ML algorithms for modelling rainfall-induced landslide susceptibility in Aqabat Al-Sulbat,
Asir region, Saudi Arabia. Landslide hazard maps were created by integrating the best
susceptibility model with the estimated rainfall to assess the risk to resources exposed
to landslides. Wen et al. [23] merged the Recursive Feature Elimination method and
Particle Swarm Optimization-AdaBoost hybrid model to create a landslide susceptibility
map for the Changshou-Fuling-Wulong-Nanchuan gas pipeline in China. The fuzzy
clustering (FC) and the CRITIC method (FC-CRITIC) were combined to segment pipelines
and develop a pipeline vulnerability model. This study produced a pipeline risk map
combining pipeline vulnerability and landslide susceptibility. Despite significant progress
in estimating landslide hazards over the past few decades, there remains a critical gap
in evaluating holistic landslide risks due to the lack of historical damage data and the
complexity of vulnerability and exposure elements [24].

The Iyengar-Sudarshan technique is a popular weighting method in climate change
risk assessment [25-28], which allows for flexibility in determining the weights of different
indicators depending on the complexity and uniqueness of assessment situations [29].
This technique makes the results interpretation easier because the calculated weights of
indicators provide clear insights into the relative significance of each indicator [30,31].
Therefore, this method was used to assess various disasters of flood risk [32,33], drought
hazard [34], and water quantity risk [35]. Thus, the Iyengar-Sudarshan method has the
potential to be applied in landslide risk assessment studies.
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Vietnam ranks among the sixth nations frequently impacted by natural hazards, includ-
ing landslide events [36]. The Son La province in North Vietnam is prone to landslides [37].
This study aimed to propose a comprehensive framework that combines advanced ML
models with the Iyengar-Sudarshan method for assessing landslide risk in Son La province.

2. Study Area and Theoretical Framework
2.1. Description of the Study Area

Son La is the fifth largest province in the Northwest region of Vietnam. Its topography
fully describes the geographical traits of the North region of Vietnam, with many mountains,
hills, rivers, and mineral sources surrounded by primitive forests [38]. It borders Yen Bai,
Lao Cai, and Lai Chau provinces in the North, Dien Bien Province in the West, Phu Tho and
Hoa Binh in the East, and Laos in the South. The geographical boundaries of this province
are defined by the latitudes 20°39 and 22°02 N and the longitudes 103°11’ and 105°02’ E. It
has 12 administrative units, including Son La City and 11 districts (Figure 1). The natural
area of Son La province is 14,125 km?. The province’s population was about 1,248,415 people
in 2021, of which people in urban areas account for 20.8% and people in rural areas account
for 79.2%. The population density of the whole province reaches 88 people/km?. Son La
province is also home to many ethnic groups, Thai, Kinh, Mong, Muong, Tay, and Nung, of
which the Thai people make the majority (available at https://sonla.gov.vn/, accessed on
1 October 2024).

Figure 1. The research area.

Extreme weather, prolonged heavy rainfall, human activities, and complex geological
conditions are the key reasons causing landslide formation in the study area [38]. The aver-
age annual rainfall ranges from about 1400 to 1700 mm/year and is heavily concentrated in
June, July, and August (available at https:/ /sonla.gov.vn/, accessed on 1 October 2024).
Many factors, such as topography, geology, land cover, weathering crust thickness, soil type,
and soil thickness, also contribute to the landslide occurrences in the study area [38]. In re-
cent years, Son La has experienced numerous landslides that have damaged roads, bridges,
and agricultural lands, disrupting transportation and impacting livelihoods. Heavy rain
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from 24 to 25 August 2021 caused flash floods and landslides across the region. A total of
656 people were evacuated, 35 houses were damaged, 82.58 hectares of agricultural land
were affected, many roads were destroyed, and over 1700 m of canals were broken [39].
In the latest event, typhoon Yagi caused widespread devastation in provinces in North
Vietnam, including Son La, resulting in 318 deaths, 1976 injuries, and the evacuation of
over 130,000 people, with damages exceeding VND 81,000 billion, severely impacting
homes, agriculture, infrastructure, and essential services like transportation, communi-
cation, and water supply [40]. Landslides pose a recurring and formidable threat to this
province, highlighting the urgent need for a comprehensive landslide risk assessment that
integrates evaluations of hazards, exposure, vulnerability, and adaptive capacity into a
holistic management strategy (Figure 2).

Figure 2. Some images of landslide events on Highway 6 in the Son La province in July and August
2018 through field surveys: (a) At Km 201 + 00; (b) At Km 203 + 500; (c) At Km 205 + 100; (d) At Km
206 + 800; and (e) At Km 230 + 300 (provided by Road Joint Stock Company 226, located in Son La
province, Vietnam).

2.2. Theoretical Framework

The “Risk” concept can be utilized in various ways due to the objective, approaches,
or reference system [41]. According to the most comprehensive method, the “Risk” concept
was defined as the expected value of losses of human life and property and the disruption
of social and economic activities caused by a ‘natural” disaster within a specific area over a
given period [2,42]. In this sense, risk assessment emphasizes understanding disaster risk
in all dimensions, including hazard characteristics, exposure, vulnerability, and adaptive
capacity [41]. Integrating these elements provides a holistic view of risk by considering the
likelihood and intensity of hazardous events, the exposure of assets and populations, their
vulnerabilities, and their ability to adapt and recover [43]. This study focuses on a landslide
risk-centred assessment framework, where landslide risk is expressed as a function of
landslide hazard, exposure, vulnerability, and adaptive capacity [44,45], as illustrated by
the following equation:

Risk — Hazard x Expo.sure X belnembzlzty o
Adaptive Capacity
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In this study, “Hazard” refers to the potential occurrence of landslide events and is
used to evaluate the spatial distribution of landslides without considering the temporal
aspect. By focusing solely on the spatial dimension, the analysis of landslide hazards
is directly described in landslide susceptibility modelling [46]. “Exposure” reflects the
degree to which human lives, properties, infrastructure, and the environment are at risk
in landslide-prone areas [47]. The human, infrastructure, and livelihood often represent
areas where human lives and properties are exposed to landslide events, so they are
frequently considered crucial criteria for landslide exposure [6]. “Vulnerability” reflects
the susceptibility of the population and structures to damage when a landslide occurs [11].
“Adaptive Capacity” demonstrates the ability of communities and systems to prepare
for, respond to, and recover from landslide events [48]. When evaluating landslide risk,
selecting the right indicators is crucial for a comprehensive and insightful assessment.
Seventeen indicators were collected and sorted into three categories to assess landslide
risk: exposure, vulnerability, and adaptive c. The indicators representing these mentioned
components may be chosen based on the availability of data and insights from previous
related studies [49].

3. Data and Methods Used for Landslide Susceptibility Modelling
3.1. Data for Landslide Susceptibility Modelling
3.1.1. Landslide Inventory

Landslide susceptibility modelling significantly depends on past landslides’ spatial
distribution [38]. Thus, the landslide inventory map is a crucial input parameter in landslide
susceptibility mapping as it provides a comprehensive database of historical landslide
events [50,51]. This landslide inventory map had 1771 landslide sites gathered from various
sources. Among these, 1225 landslide positions were investigated using data collected from
the Institute of Geosciences and Minerals of Vietnam, while an additional 546 landslide
locations were identified through a combination of field surveys in 2022, 2023 and the
analysis of Google Earth imagery (Figure 3).

Figure 3. The landslide inventory locations.
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Landslide inventory data were randomly separated into two datasets using the Sample
tool in ArcGIS Pro 3.1. Specifically, 1240 landslide sites corresponding to the 70% training
dataset were employed to build landslide susceptibility maps, and 531 landslide sites
belonging to the 30% testing dataset were applied to verify the forecast performance of
landslide susceptibility maps.

3.1.2. Landslide Conditioning Factors

Landslides are often influenced by various factors that contribute to their occur-
rence and severity [52]. Landslides have the potential to occur in any area characterized
by unfavourable conditions related to topography, geology, hydrology, and the environ-
ment [53,54]. The gathering and identification of factors influencing landslides may rely
on the availability of data and previous studies in the same study area [55]. Consequently,
fifteen landslide influencing factors were chosen, consisting of altitude, slope, aspect, cur-
vature, terrain roughness, Topographic Wetness Index (TWI), rainfall, drainage density,
road density, distance from the road, distance from the rivers, hydrogeology, geology,
geomorphology, and land cover.

The topographic variables, including altitude, slope angle, aspect, curvature, terrain
roughness, and TWI, were derived from the ALOS DEM with a spatial resolution of
30 m. The DEM dataset was acquired in March 2021 from https://www.eorc.jaxa.jp/
ALOS/en/dataset/aw3d30/aw3d30_e.htm, accessed on 1 February 2024. The rainfall
data were collected from 25 rain gauge stations in Son La province and the surrounding
areas between 2012 and 2022. The hydrogeology, geology, and geomorphology maps
were obtained from the Vietnamese Ministry of Natural Resources and Environment at
the 1:100,000 scale in 2020. The drainage density map was collected from the provincial
Department of Natural Resources and Environment in 2020. The land cover was obtained
from https:/ /livingatlas.arcgis.com/landcover/, accessed on 1 February 2024. The road
network map of the Son La province was derived from the national road network map,
which was supplied by the Department of Survey, Mapping, and Geographic Information
in 2020.

In this study, fifteen landslide-affecting factors were collected and grouped into various
categories based on their availability and contribution to landslide events. The topographic
factors (altitude, slope angle, aspect, curvature, terrain roughness, and TWI) were classified
into criteria based on various terrain morphology within the study area. The hydrogeology,
geology, and geomorphology data were classified into criteria based on field surveys on
underground water, rock formation, weathering degree, and rock stability. Other factors
were determined and classified based on characteristics, structure, and spatial distribution.

Additionally, the frequency ratio analysis was utilized to verify this remark by de-
termining the correlation between the historical landslide locations and the influencing
factors. The frequency ratio is obtained by taking the number of landslide positions within
a specific class, dividing it by the total number of landslide locations, and comparing it
with the ratio of pixels in that class to the overall pixel count [38]. The high-frequency ratio
values indicate a strong correlation between the input factors and the landslide formation
in the area and vice versa. The outcome of the analysis received demonstrates the correla-
tion between landslide causative factors and historical landslide events, resulting in the
classification suitable for all input factors (Figure 4).

All landslide causative factors are transformed into the raster format at a spatial
resolution of 30 m using the ArcGIS Pro environment. The comprehensive details of the
fifteen landslide conditioning factors are described in Table 1 and Figure 5.
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Table 1. Factors contributing to landslides and their categorization.

Figure 4. Frequency ratio analysis of landslide pixels on thematic maps of causative factors.

Factor Classification Classification Method
. (1) 70-300, (2) 300-500, (3) 500-700, (4) 700-900, (5) 900-1100,

Elevation (m) (6) 11001300, (7) 1300-1500, (8) 1500-2000, (9) >2000 Natural breaks

Slope angle (degree) (1) 0-10, (2) 10-20, (3) 20-30, (4) 3040, (5) 40-50, (6) >50 Natural breaks
(1) East, (2) Plat, (3) North, (4) Northeast, (5) Northwest, .

Aspect (6) South, (7) Southeast, (8) Southwest, (9) West Azimuth
(1) [(—9.786)~(—0.625)], (2) [(—0.625)~(—0.173)],

Curvature (3) [(—0.173)-0.208], (4) [0.208-0.659], (5) [0.659-9.717] Natural breaks
(1) [2.283-4.542], (2) [4.542-5.432], (3) [5.432-6.459],

TWI (4) [6.459-7.759], (5) [7.759-9.334], (6) [9.334-11.251], Natural breaks
(7) [11.251-19.808]
(1) [0-132.8], (2) [132.8-232.4], (3) [232.4-312.1],

Terrain roughness (m/km?2) (4) [312.1-385.2], (5) [385.2-464.8], (6) [464.8-557.8], Natural breaks
(7) [557.8-684.0], (8) [684.0-1035.9], (9) [1035.9-1700]
(1) [0-2.13], (2) [2.13-4.27], (3) [4.27-6.40], (4) [6.40-8.54],

Drainage density (km/km?2) (5) [8.54-10.68], (6) [10.68-12.82], (7) [12.82-14.95], Natural breaks
(8) [14.95-17.08], (9) [17.08-19.22]

Distance from the rivers (1) [0-200], (2) [200-500], (3) [500-1000], (4) [1000-1500], Natural breaks

(5) [1500-2000], (6) [2000-2500], (7) >2500

(1) Group 1 (Quaternary), (2) Group 2 (Paleogene),
(3) Group 3 (Jura-Creta-Cretaceous), (4) Group 4

Geology (TriasTriassic), (5) Group 5 (Devon-Devonia), (6) Group 6 Geological categories
(Cambri-Ordiovic), (7) Group 7 (NeoproterozoiCambri),
(8) Group 8 (Carbon-Permi), (9) Group 9 (Unknown)
(1) Very productive aquifer, (2) Moderately productive

Hydrogeology aquifer, (3) Poorly productive aquifer, (4) Very poorly Hydrogeological categories

productive aquifer
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Table 1. Cont.

Factor

Classification

Classification Method

Geomorphology

(Zone 1) Valley of invasion, (Zone 2) Cavitation plateaus
develop on carbonate rocks, (Zone 3) Driftwood washing
plateau grows on carbonate rock, (Zone 4) Erosion plateaus
develop onlimestones, (Zone 5) Erosion denudationplateaus
develop on limestones, (Zone 6) Cavitation mountain range
growing on carbonate rock, (Zone 7) Massive and structural
mountain ranges developed on non-carbonate rocks, (Zone
8) Erosion and erosion mountain ranges develop on rocks,
(Zone 9) Erosion massif develops on carbonate rock, (Zone
10) Masses and eroded mountain ranges develop on rocks,
(Zone 11) The valley erodes and accumulates, (Zone 12)
Cavitation mountain range growing on non-carbonate rock,
(Zone 13) The mountain range erodes the structure growing
on the rock, (Zone 14) Karst Funnel, (Zone 15)

Invasion valley.

Geomorphological categories

Rainfall (mm)

(1) [972-1038], (2) [1038-1089], (3) [1089-1143],
(4) [1143-1194], (5) [1194-1279]

Geostatistical Kriging method

Road density

(1) [0-2.077], (2) [2.077-3.676], (3) [3.676-5.274],
(4) [5.274-7.671], (5) [7.671-13.638]

Natural breaks

Distance from the road

(1) [0-50], (2) [50-100], (3) [100-200], (4) [200-500],
(5) [500-1000], (6) >1000

Natural breaks

Land cover

(1) Bare ground, (2) Built area, (3) Clouds, (4) Crops,
(5) Flooded vegetation, (6) Grass, (7) Scrub/Shrub, (8) Tree,
(9) Water.

Landcover categories

Figure 5. Cont.
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Figure 5. Cont.
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Figure 5. Thematic maps of landslide conditioning factors: (A) elevation, (B) slope, (C) aspect,
(D) curvature, (E) TWI, (F) terrain roughness, (G) drainage density, (H) distance from the rivers,
(I) geology, (J) geomorphology, (K) geohydrology, (L) annual rainfall, (M) road density, (N) distance
from the road, and (O) land cover.

3.2. Multicollinearity Analysis

Determining multicollinearity between independent variables is very important to
ensure the stability and reliability of the regression model [56]. Variance Inflation Fac-
tors (VIFs) and tolerance parameters can discover multicollinearity among landslide
causative factors to identify the most suitable input factors for landslide susceptibility
modelling [57,58]. The issue of multicollinearity arises when the VIF exceeds 10 or the
tolerance falls below 0.1 [59]. These thresholds indicate the presence of strong correlations
among the variables, affecting the reliability of the regression coefficients and the overall
forecast model [60,61]. This study employs VIF and tolerance parameters to detect and
mitigate the risks associated with multicollinearity among input variables and to build
accurate predictive models.

3.3. Machine Learning Models
3.3.1. UltraBoost (UB)

UB is an advanced ML algorithm that belongs to the family of boosting algorithms
that aims to improve prediction accuracy by combining multiple weak learners (usually
decision trees) into a single strong model [19]. In this way, each new weak learner is
trained to correct the errors made by the previously added learners [20]. The details of this
algorithm can be described as follows [19]:

1. Inputa training dataset D = (x;,¥;), i = 1 — N, where N represents the total number
of training samples; x; denotes the input values; and y; denotes the target values. An
initial simple prediction Fy(x) for all training samples is set by minimizing the loss
function L to find an initial constant prediction.

N
Fy(x) = argmin} _ L(y;,7) 2
v i

where Fy(x) is the initial simple prediction, L describes the loss function, and 7 is the
initial constant prediction.
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This technique iteratively trains weak learners, typically decision trees, for each
iterationt = 1,2,..., T, where T denotes the number of iterations or the total number
of weak models. At each iteration ¢, a new weak learner is trained to correct the errors
of the combined model from previous iterations. Then, the model is updated with the
new weak learner’s predictions, scaled by a learning rate ¢ to control its contribution.

Fi(x) = F_1(x)+e.ht(x) 3)

where Fi(x) and F;_ (x) signify the predictions of the model at iteration f and t — 1,
respectively; ¢ is the learning rate; and /;(x) denotes the t-th weak learner.

Continue adjusting the weights of the training samples based on errors from previous
iterations. The goal is to find the weak learner ;(x) that minimizes the weighted
loss function.

N
hy = argmin)_ w;L(y;, F—1(x;) + h(x;)) (4)
[/

where h; is the t-th weak learner; w; represents assigned weights for the training
samples, adjusted based on the errors of previous learners; and h(x;) is the prediction
of the weak learner for the i-th sample.

Finally, the predictions of all weak learners are combined to form the final strong model.
The combination is often a weighted sum of the individual learners’ predictions.

F(x) = i e (x) ®)
=1

where F(x) is the final prediction and T describes the total number of weak learners.

3.3.2. Decorate (DC)

The DC algorithm was introduced and developed by Melville and Mooney [62].

It is an ensemble learning technique that enhances the performance of a base classifier
by combining it with additional classifiers trained on modified versions of the original
dataset [62,63]. This algorithm operates based on the following principle [62]:

1.

Input a training dataset D = (x;,¥;), i = 1 — N with N samples. Decorate begins by
creating a set of base classifiers B = By, By, ..., Bj,j=1-M, where M is the total
number of base classifiers. Each base classifier B, is trained on a weighted version
of the original dataset, with sample weights adjusted iteratively based on previous
classification errors.

After training the base classifiers, a meta-learner is trained using the outputs of the
base classifiers as input features. Let i(x;) represent the meta-learner’s prediction.
The meta-learner / is trained on the base classifier predictions B and the target label
yi. The objective of the meta-learner training is to minimize the loss function L for the

meta-learner h.
N M
Lh)y =Y <yirh{ Y. Bj(xi)}> (6)
i=1 j=1

where L is the loss function and h{Xinl Bj(xi)} represents the meta-learner’s output

given the predictions of the base classifiers B for sample x;.
The final prediction F for a new sample x is obtained by first using the base classifiers
B to generate predictions and then applying the meta-learner /.

M
F(x) =) h(Bj(x)) 7)
j=1



Sustainability 2024, 16, 9574

13 of 37

3.3.3. Dagging (DG)

The DG algorithm was first introduced by Ting & Witten in (1997) [64]. It is a machine
learning ensemble method that divides the training dataset into disjoint subsets, training a
separate classifier on each subset and then aggregating their predictions [65]. The Dagging
algorithm can be summarized as follows
1. Inputa training dataset D = (x;,y;), i = 1 — N, with N samples. Dagging starts by

splitting the training dataset D into k disjoint subsets, suchthat D = D1 UDy U...U Dy,

with no overlap between the subsets, ensuring D; N D; = & for any i # j.

2. Each disjoint subset D; is used to train a base classifier B; withi =1,2,..., k to create

a classification model.

3. The final prediction F for a new sample x is received based on the aggregation of
predictions using majority voting and can be expressed as follows:

k

F(x) = argmax} 1(Bi(x) =) ®)

where [ is the indicator function that equals 1 if B;(x) = y, and 0 if B;(x) # y.

3.3.4. Bagging (BG)

The BG algorithm is a technique used to improve ML algorithms’ predictive capacity,
accuracy, and stability (Breiman, 1996 [66]). It works by creating multiple bootstrap samples
from the original training data, and each is used to train a separate base classifier [67]. The
final prediction is made by aggregating the predictions of these individual classifiers. This
technique can avoid overfitting and acts well on strong classifiers [68]. Mathematically, the
content of this algorithm can be presented as shown below:

1. Inputa training dataset D = (x;,;),i = 1 — N, with N samples, and generate boot-
strap samples Dy, for b = 1,2,. .., B. Each bootstrap sample Dy, is created by sampling
N observations from the initial training dataset D with replacement, Dy, = (x;, Yp;)-

2. A separate model is trained on each bootstrap sample Dy, leading to the creation of a
classifier B (x) from each corresponding bootstrap sample Dj,.

3. The final prediction F for a new sample x is determined by taking the majority vote
for classification tasks.

B
F(x) = argngx ) (Fy(2) ©)

3.3.5. MultiScheme (MS)

The MS algorithm is designed for ensemble learning, combining multiple models to
improve prediction accuracy [69]. It involves weighting and combining the predictions of
different base learners to produce a final prediction [70]. The method involves the following
key steps [69]:

1. Inputa training dataset D = (x;,y;), i = 1 — N, with N samples. Let By, By, ..., By

represent the base learners, where M is the total number of base models B and B;(x)

is the prediction of the i-th base learner for an input feature x.

2. Each base learner B; is assigned a weight w; based on its error rate, with models that
perform better receiving higher weights.

log 1;6,‘

w; =

where ¢; represents the error rate of the i-th base learner on a validation set.
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3. The final ensemble prediction F(x) is made by taking a weighted sum of the base
models’ predictions.

M

F(x) = sign(Z wi.Bi(x)> (11)
i=1

where F(x) is the final ensemble prediction for a new input x, M is the total number

of base learners, and sign(z) denotes the sign function and reaches +1if z > 0 and —1

ifz<0.

3.3.6. MultiBoostAB (MB)

The MB algorithm was first proposed by Webb [71]. This algorithm is an ensemble
learning method that extends AdaBoost by incorporating the concepts of wagging (boot-
strap aggregation) and BrownBoost, making it more robust to noisy data and outliers [71].
The content of this algorithm can be described as follows:

1. Input a training dataset D = (x;,¥;),i = 1 — N, with N samples. This algorithm
begins by assigning equal weights w; to all training samples.
2.  Foreachiterationt=1,2,...,T.

Create a bootstrapped dataset D/ by sampling with replacement from the original

training dataset D.

Train a weak classifier 1 (x) on the new bootstrapped dataset D/;.

Calculate the classifier’s error ;.

£ = ZZI\L1 wi-II(\]ht(xi) 7é yl) (12)
Yz Wi

where I is the indicator function that equals 1 if h1;(x;) # y; and 0 if 7t (x;) = y;.
Based on the classifier’s error ¢, a weight, wy, is assigned to the classifier.

wtzizn(lsf) (13)

Et

The sample weights w; are updated to emphasize misclassified samples.
This process is repeated for several iterations, each adding a new weak classifier to
the ensemble.

3. The final strong classifier F(x) is determined based on a weighted combination of all
weak classifiers.

t=1

T
F(x) = sign <Z wt.ht(x)> (14)

where F(x) is the final strong classifier for a new input x, T is the total number of
boosting iterations or the total number of weak classifiers, and sign(z) denotes the
sign function and reaches +1if z > 0 and —1if z < 0.

3.3.7. Cascade Generalization (CG)

The CG algorithm was proposed by Gama and Brazdil [72] and is an ensemble learning
technique that enhances prediction accuracy by combining multiple models in a cascading
manner [72]. The core concept involves training models sequentially, where each model’s
prediction becomes an input for subsequent models [68]. The general framework of this
algorithm can be expressed as follows [72]:

1. Inputa training dataset D = (x;,y;), i = 1 — N, with N samples. This technique starts
with a base model that uses the original input features to predict the target variable.

Y = fi(x) (15)
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2. The prediction from this base model Fi(l) is then fed as an input feature into the next
model, which combines it with the original features to make a more refined prediction.

FY = f (%, EY) (16)

3. This cascading process continues through multiple levels, with each subsequent model
using the predictions of all previous models as additional features.

R A N s (17)

1

4. The final prediction is made by the last model in the cascade.

F=F

1

(18)
where F; is the final predicted output after K levels of cascading and Fl.(K) denotes the
prediction from the final with K-th level mode.

3.4. Model Validation and Performance Comparison

Estimating the prediction performance of ML models in landslide susceptibility map-
ping plays a crucial role in ensuring the reliability and usefulness of the forecast models in
real-world applications [73]. A diverse set of statistical indices is often used to evaluate the
forecasting capacity of ML models [56]. The evaluation is critical for validating the current
ML model and guiding future improvements and comparative analyses with other ML
models [70]. In the present study, a diverse set of statistical indices, including sensitivity,
specificity, accuracy (ACC), F-measure, Jaccard, Receiver Operating Characteristic (ROC)
Curve, and Area Under the ROC Curve (AUC), were employed to gauge the predictive
performance of six proposed ensemble ML models. These mentioned indices are calculated
in the following equations:

Sensitivity = TI’Z—ipFZ\I (19)
Specificity = FPj;—iNTN (20)

F — measure = % (21)
Jaccard = ﬁ (22)
ACC — TN+ TP 23)

TN+ FN+ TP+ FP

where TP, TN, FP, and FN represent the number of true positives, true negatives, false
positives, and false negatives, respectively.

Sensitivity and specificity reveal the model’s ability to correctly identify landslide-
prone and non-landslide areas, respectively. Sensitivity measures how well the model
identifies true positives, while specificity assesses the model’s accuracy in recognizing true
negatives [74]. The Area Under the Curve (AUC) of the Receiver Operating Characteris-
tic (ROC) Curve provides a comprehensive measure of a model’s ability to discriminate
between landslide-prone and non-landslide areas [73]. It reflects how well the model distin-
guishes between the two classes across all thresholds, with a higher AUC value indicating
better performance. Specifically, an AUC between 0.5 and 0.6 reflects very poor perfor-
mance, 0.6 to 0.7 indicates poor performance, 0.7 to 0.8 represents moderate performance,
0.8 to 0.9 denotes good performance, and 0.9 to 1.0 signifies excellent performance [56].
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3.5. Experimental Procedure

This study applied the Waikato Environment for Knowledge Analysis (WEKA) soft-
ware version 3.9.6 to create landslide susceptibility models. Weka is a popular open-source
software tool designed to provide a comprehensive suite of tools for data analysis and
predictive modelling. The input data consisted of a landslide inventory dataset, which
included landslide locations marked with a value of 1 (LS = 1, indicating a confirmed
landslide) and corresponding non-landslide points marked with a value of 0 (LS = 0, indi-
cating non-landslide sites). The dataset was divided into a training set (70%, approximately
1240 sites for each type) and a testing set (30%, approximately 531 sites for each type) to
serve as input data for ML training. Fifteen predictor variables were extracted for these
points: altitude, slope angle, aspect, curvature, terrain roughness, TWI, rainfall, hydroge-
ology, geology, geomorphology, drainage density, land cover, road density, distance from
rivers, distance from roads, and road network. All input data were converted into the CSV
format to ensure consistency in attributes across the training and testing datasets. The
training and testing datasets were then uploaded into Weka’s Explorer interface for model
building. The target variable in this model represents the predicted landslide susceptibility,
expressed as a value ranging from 0 to 1. This value indicates the probability of a landslide
occurring at each specific point within the study area. A value closer to 0 suggests a low
likelihood of a landslide, while a value approaching 1 indicates a higher probability of
landslide occurrence.

In this study, seven ML algorithms were employed to develop six ML ensemble mod-
els, namely Decorate-UltraBoost (DCUB), Dagging-UltraBoost (DGUB), Bagging-UltraBoost
(BGUB), MultiScheme-UltraBoost (MSUB), Cascade Generalization-UltraBoost (CGUB),
and MultiBoostAB-UltraBoost (MBUB) for landslide susceptibility mapping. The Ultra-
Boost model served as the base classifier, and the Decorate, Dagging, Bagging, MultiScheme,
Cascade Generalization, and MultiBoostAB models acted as meta-classifiers. The parameter
settings for each ML algorithm in the WEKA software are described in Table 2.

Table 2. Parameter settings for each ML model in WEKA software.

ML Algorithms

Parameter Settings

Decorate-UltraBoost

classifiers.UltraBoost -S 1 -B “classifiers.Decorate -E 15 -R 1.0 -S 1 -1 50 -W classifiers.SysFor
--L10-N60-G0.3-50.3-C 0.25” -B “classifiers.RotationForest -G 3 -H 3 -P 50 -S 1
-num-slots 1 -1 10 -W classifiers. RandomTree -- -K 0 -M 1.0 -V 0.001 -S 1”

MultiSearch-UltraBoost

classifiers.UltraBoost -S 1 -B “classifiers.MultiSearch -E CC -class-label 1 -S 1 -W
classifiers.SysFor -- -L 10 -N 60 -G 0.3 -5 0.3 -C 0.25” -B “classifiers.RotationForest -G 3 -H 3
-P 50 -S 1 -num-slots 1 -I 10 -W classifiers. RandomTree -- -K 0 -M 1.0 -V 0.001 -S 1”

Dagging-UltraBoost

classifiers.UltraBoost -S 1 -B “classifiers.Dagging -F 10 -S 1 -W classifiers.SysFor -- -L 10 -N
60 -G 0.3-50.3-C 0.25” -B “classifiers.RotationForest -G 3 -H 3 -P 50 -S 1 -num-slots 1 -1 10
-W classifiers.RandomTree -- -K 0 -M 1.0 -V 0.001 -S 1”

Bagging-UltraBoost

classifiers.UltraBoost -S 1 -B “classifiers.Bagging -P 100 -S 1 -num-slots 1 -1 10 -W
classifiers.SysFor -- -L 10 -N 60 -G 0.3 -5 0.3 -C 0.25” -B “classifiers.RotationForest -G 3 -H 3
-P 50 -S 1 -num-slots 1 -I 10 -W classifiers. RandomTree -- -K 0 -M 1.0 -V 0.001 -S 1”

CascadeGeneralization-UltraBoost

classifiers.UltraBoost -S 1 -B “classifiers.CascadeGeneralization -U -L -C -X 5 -M
\"classifiers.SysFor -L 10 -N 60 -G 0.3 -5 0.3 -C 0.25\” -S 1 -num-slots 1 -B
\”classifiers.SysFor -L 10 -N 60 -G 0.3 -S 0.3 -C 0.25\"”” -B “classifiers.RotationForest -G 3 -H
3-P50-S1-num-slots 1 -1 10 -W classifiers.RandomTree -- -K 0 -M 1.0 -V 0.001 -S 1”

MultiBoostAB-UltraBoost

classifiers.UltraBoost -S 1 -B “classifiers.MultiBoostAB -C 3-P 100-S 1 -1 10 -W
classifiers.SysFor -- -L 10 -N 60 -G 0.3 -S 0.3 -C 0.25” -B “classifiers.RotationForest -G 3 -H 3
-P 50 -S 1 -num-slots 1 -1 10 -W classifiers.RandomTree -- -K 0 -M 1.0 -V 0.001 -S 1”

Remarks: S: set the random seed; B: base classifier; E: number of iterations; R: ratio of artificial examples;
I: iterations for boosting; W: base learner; L: iterations; N: instances per iteration; G: gradient; S: split threshold;
C: confidence; H: hidden layers; P: percentage; num-slots: CPU slots; K: attributes; M: minimum instances;
V: variance; class label: label; F: folds; U: multi-layer; X: maximum layers.
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4. Data and Methods Used for Landslide Exposure, Vulnerability, and Adaptive
Capacity Maps
4.1. Data for Risk Assessment
4.1.1. Exposure Indicators

Humanes, infrastructure, and agriculture are the main criteria for evaluating exposure
(Table 3). Population density is a crucial indicator in landslide exposure analysis for human
criteria because it directly correlates with the concentration of human lives and valuable
assets within a specific area [75].

Table 3. Exposure, vulnerability, and adaptive capacity indicators for risk assessment.

Components Main Criteria Sub-Criteria Unit Sources
Human (E1) Population density (E1-1) Person/km?
Residential land area (E2-1) ha District statistical yearbooks in 2022
Exposure (E) Infrastructure (E2) Length of roads (E2‘-2) km
Number of large primary and Per 1000 pupil The website of Son La province
secondary schools (E2-3) (available at
Agricultural land area (E3-1) ha https:/ /data.sonla.gov.vn/list-data,

Agriculture (E3)

d on 1 October 2024
Aquaculture land area (E3-2) ha accessed on L Lctober )

Percentage of children under 6
years old (V1-1)

Percentage of elderly people
over 60 years old (V1-2) General Department of Natural

Percentage of females between o Disaster Prevention in 2020
17 and 59 years old (V1-3) °

%

Population (V1) %o

Vulnerability (V)

Percentage of unsolid

houses (V2-1) K

Infrastructure (V2)

Birth rate (V3-1) Per 1000 people
Demographics (V3) District statistical yearbooks in 2022
Death rate (V3-2) Per 1000 people
Number of medical facilities in .
Healthcare (AC1) each commune (ACI-1) piece
District statistical yearbooks in 2022
Asphalt road density (AC2-1) EEZ/
Number of high schools, . .
Adaptive Capacity (AC)  Infrastructure (AC2) ulislerzirﬁ(;s, ;%1 dsc 0018 Per 1000 students The website of Son La province

(available at
colleges (AC2-2) https:/ /data.sonla.gov.vn/list-data,
Number of enterprises (AC2-3)  Per 1000 people accessed on 1 October 2024)

Percentage of population aged o General Department of Natural
o

Population (AC3) 17-59 (AC3-1) Disaster Prevention in 2022

For infrastructure criteria, residential land area, the length of roads, and a number of
large primary and secondary schools are sub-criteria. The percentage of residential land
area highlights the extent of human settlements that landslides could directly affect [76].
This indicator quantifies land use and reflects the spaces where local communities live,
work, and build their lives [77]. The presence of primary and secondary schools in areas
susceptible to landslides significantly contributes to the overall exposure of a community to
such natural hazards [78]. These educational institutions are critical components of commu-
nity infrastructure, often accommodating large numbers of children who are particularly
vulnerable during a landslide [79]. Road networks are vital infrastructure for daily life and
are essential routes for evacuation and emergency response [80]. The disruption of road
networks due to landslides can have catastrophic effects on accessibility and emergency
management, amplifying the overall exposure of the area [81].
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For agriculture criteria, agricultural land area and aquaculture land area are sub-
criteria. In the Son La province, the livelihoods of the local community are closely related
to farming and aquaculture activities [38]. Agriculture is not just a source of food for the
whole province but also a livelihood for many generations relying on the land for their daily
needs [82]. Similarly, aquaculture plays a vital role in the livelihoods of those living near
rivers and reservoirs, where fish farming is a significant source of food and income [83].

4.1.2. Vulnerability Indicators

Population, infrastructure, and demographics are the main criteria for evaluating
vulnerability (Table 3). For population criteria, the percentage of children under 6 years old,
the percentage of older people over 60 years old, and the percentage of females between 17
and 59 years old are sub-criteria. Children, elders, and females are particularly vulnerable
to the adverse impacts of landslide events due to potential mobility limitations, health
issues, and increased dependence on social networks [84]. Children and elderly individuals
are particularly vulnerable during landslides due to their unique physical and health-
related needs [85]. Females aged 17-59 are often responsible for household management
and childcare, making them especially vulnerable during landslides [86].

For infrastructure criteria, the percentage of unsolid houses is a sub-criteria. The study
area contains two housing types: solid houses, built with robust concrete or brick, and
unsolid houses, made from less durable wood or bamboo [87]. Unsolid houses highlight
the quality and stability of housing structures, as poorly constructed or unstable homes are
more susceptible to damage from landslides, exacerbating the risks faced by residents [38].

For demographic criteria, birth rate and death rate are sub-criteria. Birth and death
rates represent demographic aspects that are crucial in assessing human vulnerability to
landslides, as they provide insights into the population’s capacity to stand and recover
from such events [85].

4.1.3. Adaptive Capacity Indicators

Healthcare, infrastructure, and population are the main criteria for evaluating adaptive
capacity (Table 3). Adaptive capacity signifies the adaptability of humans and organizations
to apply skills and resources to overcome the adverse impacts of landslide events [88]. The
number of medical facilities in each commune is the sub-criteria of healthcare criteria. The
number of medical facilities in each commune reflects the availability and accessibility
of healthcare services, which is vital for addressing injuries, illnesses, and emergencies
resulting from landslides [89].

Asphalt road density, the percentage of solid houses, and number of high schools, uni-
versities, colleges, and enterprises per 1000 people are sub-criteria for infrastructure criteria.
Asphalt road density is important in transportation infrastructure resilience, facilitating
evacuation efforts and emergency response operations in landslide-affected areas [90].
Solid houses can protect human lives from the risk of injury and ensure displacement for
local communities [87]. The presence of high schools, universities, and colleges plays a
crucial role in enhancing the community’s resilience and preparedness for landslides [78].
Furthermore, these educational institutions can contribute to community awareness and
education about landslide risks through workshops and training courses, helping to en-
hance the overall knowledge and preparedness of the local population [91]. Enterprises
contribute to building community resilience by generating employment opportunities,
fostering economic stability, and supporting infrastructure development [92].

The percentage of the population aged 17-59 is a sub-criteria of population criteria
since labour resources serve the main roles in disaster preparedness, response, and recovery
efforts, facilitating the restoration of livelihoods after landslide events [93].
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4.2. Weighting Method
4.2.1. Iyengar-Sudarshan Method

Factors often denote various degrees of influence on landslide risk, so determining
each factor’s weight is important [94]. This study applied the Iyengar-Sudarshan technique
to identify the weight of landslide exposure, vulnerability, and adaptive capacity. This
technique was introduced by Iyengar and Sudarshan [30] to create a combined index
from multivariate data. This method has found widespread application in determining
multi-criteria weights in risk assessments. According to this, the weights for each main
criterion and each sub-criterion in landslide risk assessment are determined using the
following equations:

C
Wpg = ———— (24)
V”r(ypq)
-1
y o ! 25)
C= -
g=1 ,/Var(ypq)
18 .
Var = 5 Zl(l/pq ~ V) (26)
p:
1 &
Y = p Zlypq (27)
p:

where w), represents the weight assigned to the p'" sub-criterion in each component
(landslide exposure, landslide vulnerability, and landslide adaptive capacity); v, indicates
the standardized value; C denotes a normalizing constant;p=1,2,...,,Pandg=1,2,...,
Q are the standardized values; Q denotes the indicators that contribute to landslide risk;
Var represents the variance in the corresponding indicators to the landslide risk; and ¥, is
considered as the result of a linear combination of y,.

Finally, the composite weighted values of each factor (exposure, vulnerability, and
adaptive capacity) are calculated according to the following equation:

Sh_1 WpqYpg
W v,ac) = % (28)

where W denotes the composite weighted value of exposure (E), vulnerability (V), and
adaptive capacity (AC); P represents the total number of criteria in each component; and
wpq indicates the criterion weight.

4.2.2. Factor Normalization

These input data include relevant criteria or parameters indicating landslide exposure,
vulnerability, and adaptive capacity. They were collected from field surveys, statistical
records, and remote sensing resources. Because the measurement units of each parameter
are different, normalization needs to be conducted to standardize all these values on a
scale ranging from 0 to 1. After gathering and processing the input data within the GIS
application, they were standardized from 0 to 1 using the approach proposed by Connor
and Hiroki [95]. The content of this method is outlined as follows:

 Xpg— MinX,
Y11= MaxX,, — MinX,,

(29)

_ MaxXy; — Xpg
TP MaxX,y — MinX

(30)
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Distance trom the road;

where vy, represents the standardized value of the g parameter in the pth region; Xpq denotes
the starting value g in each criterion p'; and MaxXy,, MinXy, correspond to the maximum
and minimum values of the indicator for sub-criteria g within criteria p".

Suppose a positive relationship exists between the parameters and the risk elements.
In this case, Equation (29) is employed for normalization, while if a negative relationship
exists between the indicators and the vulnerability components, Equation (30) is utilized
to standardize the indicator. Subsequently, these indicators were integrated into Iyengar
and Sudarshan’s method to calculate weights and create a combined index to assess
landslide risk.

5. Methodology Flowchart

The research methodology is structured around three stages: (1) modelling land-
slide susceptibility, (2) collecting landslide exposure, vulnerability, and adaptive capacity
indicators, and (3) producing a landslide risk map. The methodological approach of
this research is represented in Figure 6. In the initial step, we utilized six ML ensemble
models of Decorate-UltraBoost (DCUB), Dagging-UltraBoost (DGUB), Bagging-UltraBoost
(BGUB), MultiScheme-UltraBoost (MSUB), Cascade Generalization-UltraBoost (CGUB),
and MultiBoostAB-UltraBoost (MBUB) to model landslide susceptibility. The landslide
susceptibility map that demonstrated the highest accuracy through validation was selected
as the landslide hazard map. The second step focused on developing landslide exposure,
vulnerability, and adaptive capacity maps by gathering a range of socio-economic and
physical indicators. The Iyengar-Sudarshan method was used to identify the weights of
these indicators, resulting in maps that illustrate landslide exposure, vulnerability, and
adaptive capacity. Finally, the landslide hazard, exposure, vulnerability, and adaptive
capacity maps with their respective weights were integrated for spatial analysis to build a
landslide risk map for the study area.

I Percentage of population aged 17-59;

An integrated framework of Machine Learning model
and Iyengar and Sudarshan technique

Figure 6. The proposed framework for landslide risk assessment.
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6. Results
6.1. Landslide Susceptibility Modelling
6.1.1. Multicollinearity Analysis and Factor Selection

The results of VIF and tolerance calculations for fifteen factors influencing landslides
are presented in Table 4. All these factors exhibit VIF values smaller than 10 and toler-
ance values greater than 0.1. Consequently, they are suitable for constructing landslide
susceptibility models in this study.

Table 4. Indices of multicollinearity diagnosis for independent variables.

Collinearity Statistics

Independent Variables
VIF Tolerance
Terrain roughness 1.477 0.677
Drainage density 1.279 0.782
Geomorphology 1.171 0.854
TWI 2.002 0.499
Slope 1.818 0.550
Road density 1.337 0.748
Distance from the road 1.439 0.695
Distance from the rivers 1.464 0.683
Rainfall 1.162 0.861
Land cover 1.172 0.853
Elevation 1.689 0.592
Geohydrology 1.100 0.909
Curvature 1.474 0.679
Aspect 1.009 0.992
Geology 1.123 0.891

6.1.2. Model Validation and Comparison

The validation of susceptibility models is necessary to identify the degree of effective-
ness and the applied capability of these models. This study developed six ensemble ML
models (DCUB, DGUB, BGUB, MSUB, CGUB, and MBUB) to build landslide susceptibility
maps for Son La province in Vietnam. The predictive performance of these models was
evaluated using cross-validation, with several standard quantitative indices on both the
training and validation datasets in Table 5 and Figure 7.

Table 5. The calculated metrics for assessing the model’s performance.

Sample Indices DCUB MSUB DGUB BGUB CGUB MBUB

Training TP 1188 1168 1129 1180 1153 1143
TN 1162 1050 1048 1095 896 1067
FP 77 189 191 144 343 172
FN 52 72 111 60 87 97
PPV (%) 93.91 86.07 85.53 89.12 77.07 86.92
NPV(%) 95.72 93.58 90.42 94.81 91.15 91.67
SST(%) 95.81 94.19 91.05 95.16 92.98 92.18
SPF(%) 93.79 84.75 84.58 88.38 72.32 86.12
ACC (%) 94.80 89.47 87.82 91.77 82.65 89.15
F-Measure (%) 94.85 89.95 88.20 92.04 84.28 89.47
Jaccard (%) 90.21 81.74 78.90 85.26 72.84 80.95
MCC (%) 90.13 81.08 78.56 84.86 70.72 80.62
Kappa 0.89590 0.7894 0.7563 0.8354 0.6531 0.783
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Table 5. Cont.
Sample Indices DCUB MSUB DGUB BGUB CGUB MBUB
Validating TP 445 463 418 445 476 438
TN 388 343 367 351 314 375
FP 144 189 165 181 218 157
EN 86 68 113 86 55 93
PPV (%) 75.55 71.01 71.70 71.09 68.59 73.61
NPV (%) 81.86 83.45 76.46 80.32 85.09 80.13
SST (%) 83.80 87.19 78.72 83.80 89.64 82.49
SPF(%) 72.93 64.47 68.98 65.98 59.02 70.49
ACC (%) 78.36 75.82 73.85 74.88 74.32 76.48
F-Measure (%) 79.46 78.28 75.04 76.92 77.71 77.80
Jaccard (%) 65.93 64.31 60.06 62.50 63.55 63.66
MCC (%) 65.89 62.39 61.19 61.79 60.03 63.77
Kappa 0.56730 0.5166 0.4770 0.4977 0.4865 0.5297

Figure 7. ROC and AUC of six ensemble ML models: (a) the training dataset and (b) the validat-
ing dataset.

Focusing on the validating sample, the DCUB model has the highest performance
metrics compared to the left model of MSUB, DGUB, BGUB, CGUB, and MBUB for speci-
ficity (72.93%), accuracy (78.36%), F-Measure (79.46%), Jaccard (65.93%), and MCC (65.89%).
The CGUB model exhibits the highest sensitivity (89.64%). Analysis of the ROC Curve
further shows that the DCUB model achieves superior performance with an AUC of 0.870,
followed by MSUB (0.849), CGUB (0.840), MBUB (0.839), BGUB (0.835), and DGUB (0.817).
The results from the validating dataset suggest that the DCUB model has the highest
predictive capabilities.

Regarding the training sample, the DCUB model achieves the highest performance
metrics compared to the remaining models (MSUB, DGUB, BGUB, CGUB, and MBUB) with
sensitivity (95.81%), specificity (93.79%), accuracy (94.80%), F-Measure (94.85%), Jaccard
(90.21%), and MCC (90.13%). Furthermore, the ROC analysis indicates that the DCUB
model has the highest AUC (0.988), followed by MBUB (0.983), BGUB (0.978), MSUB (0.974),
CGUB (0.967), and DGUB (0.956). The findings from the training dataset indicate that the
DCUB model offers the highest predictive accuracy.
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6.1.3. Landslide Hazard Mapping

Based on the results in Section 6.1.2, the DCUB model was identified as the best
predictive model for generating the landslide susceptibility map for the study area. This
map highlights how different regions are spatially prone to landslide occurrences. The
landslide hazard map was classified into five categories, including very low, low, moderate,
high, and very high levels, using the quantile technique in ArcGIS Pro 3.1.0 software
(Figure 8). The received results highlight a distinct zonal distribution pattern of landslide
susceptibility across Son La province, with areas classified as having high and very high
susceptibility predominantly situated in the Northeast, particularly in Muong La, Bac
Yen, and Phu Yen districts. Similarly, the Southwest also showed significant landslide
susceptibility, especially in Thuan Chau, Song Ma, parts of Mai Son, and Sop Cop districts.
The regions with low and very low landslide susceptibility are primarily found stretching
across the central region of the study area from west to east, covering Son La, parts of Mai
Son, and Moc Chau districts.

Figure 8. Landslide hazard map for Son La province using DCUB model.

6.2. Landslide Exposure Analysis

The indicators representing landslide exposure, vulnerability, and adaptive capac-
ity for each commune were gathered from various sources, including the 2022 statistical
yearbooks of the 11 districts within the province and the National Data Portal website
(https:/ /data.gov.vn/SitePages/Index.aspx#/index, accessed on 1 October 2024). A com-
prehensive range of datasets was employed and prepared in the ArcGIS Pro environment
to ensure a unique format to serve the landslide risk assessment, including topographic, ge-
ological, hydrological, environmental, physical, and socio-economic factors. These factors
were converted into the raster format with a spatial resolution of 30 m to ensure detailed
analysis for landslide risk assessment in the Son La province. A total of 18 indicators were
collected and categorized into three groups: exposure (E), vulnerability (V), and adaptive
capacity (AC) to estimate landslide risk.
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The landslide exposure indicators and their respective weights were calculated us-
ing the Iyengar-Sudarshan method, as outlined in Table 6. These indicators were then
aggregated using the weighted sum tool in the GIS application, and the resulting maps are
shown in Figure 9.

Table 6. Landslide exposure criteria and sub-criteria weighting using Iyengar-Sudarshan method.

Main Criteria Sub-Criteria
Components - -
Label Code Weight Label Code Weight
Human E1 0.364 Population density El-1 1.000
Residential land area E2-1 0.392
Exposure (E) Infrastructure E2 0.369 Length of roads E2-2 0-303

Number of large primary and

secondary schools £2-3 0-305

. Agricultural land area E3-1 0.503
Agriculture E3 0.266

Aquaculture land area E3-2 0.497

Figure 9. Cont.
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Figure 9. Landslide exposure maps: (A) population density, (B) the number of large primary and
secondary schools, (C) percentage of residential land area, (D) length of roads, (E) percentage of
agricultural land area, (F) percentage of aquaculture land, and (G) final landslide exposure map.

The main criteria of humans (E1) and infrastructure (E2) have relatively high weights,
suggesting that residential areas and built environments are more vulnerable to landslides.
In contrast, agriculture (E3) has a lower weight, indicating a reduced level of exposure.
From a human perspective, population density is the sole indicator and plays a critical
role. The residential land area emerges as the most significant indicator of infrastructure.
However, the length of roads and the number of large primary and secondary schools also
substantially contribute to assessing infrastructure exposure to landslides. In agriculture,
the weights for agricultural land and aquaculture land areas are nearly identical, implying
that both have a comparable impact on determining the exposure of agricultural zones
to landslides.

The final landslide exposure map reveals that districts most exposed to landslides
are located around major villages known for their tourist attractions and city centres
where provincial administrative offices are concentrated. These areas generally have high
population density and infrastructure, including Son La City, Mai Son, Yen Chau, Moc
Chau, Van Ho, Phu Yen, and parts of Thuan Chau.
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6.3. Landslide Vulnerability Analysis

The landslide vulnerability indicators and their respective weights are also calculated
using the Iyengar-Sudarshan method, as presented in Table 7. These indicators were
then combined using the weighted sum tool in the GIS environment, and the final maps
generated from this process are illustrated in Figure 10.

Table 7. Landslide vulnerability criteria and sub-criteria weighting using the Iyengar—
Sudarshan method.

Main Criteria Sub-Criteria
Components - -
Label Code Weight Label Code Weight
Percentage of children under Vi-1 0.353
6 years old
Percentage of elderly people
Population Vi 0.553 over 60 ygears old Y peop Vi-2 0.291
Vulnei/a bility Percentage of females between Vi3 0.356
V) 17 and 59 years old '
Infrastructure V2 0.146 Percentage of unsolid houses V2-1 1.000
- b Birth rate V3-1 0.465
emographics V3 0.301
grap Death rate V3-2 0.535

The population criterion (V1) has a significantly higher weight compared to the
infrastructure (V2) and demographic (V3) criteria, reflecting the importance of population
structure in determining landslide vulnerability. For the population group, the structure
of the community (children under 6 years old, elderly people over 60 years old, females
aged 17-59 years old) has a significant impact on vulnerability to landslide hazards. In the
demographic aspect, the death rate has a slightly greater influence than the birth rate in
determining vulnerability. A high death rate may reflect difficulties in living conditions and
healthcare, leading to increased vulnerability. For the infrastructure aspect, the percentage
of non-solid houses is the only indicator and plays a crucial role in representing the
significant impact of housing conditions on vulnerability.

Figure 10. Cont.
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Figure 10. Landslide vulnerability maps: (A) percentage of children under 6 years old, (B) female
ratio, (C) percentage of elderly people over 60 years old, (D) birth rate, (E) death rate, (F) percentage
of unsolid houses, and (G) final landslide vulnerability map.
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The final landslide vulnerability map indicates that districts with high vulnerability
to landslide hazards are primarily concentrated in the southeastern districts of Son La
Province, such as Bac Yen, Phu Yen, Yen Chau, parts of Moc Chau, and Van Ho. Similarly,
the western districts also have high vulnerability to landslides, including Thuan Chau,
parts of Song Ma, and Sop Cop. The north contains parts of the Quynh Nhai and Muong La
districts. These are mostly areas with a higher population structure (children under 6 years
old, elderly people over 60 years old, females aged 17-59 years old) and demographic
indicators compared to other regions in the province.

6.4. Landslide Adaptive Capacity Analysis

The weights assigned to the landslide adaptive capacity indicators, as presented in
Table 8, were combined using the weighted sum tool in the GIS workspace. The outcomes
of this integration are visualized in Figure 11.

Table 8. Landslide adaptive capacity criteria and sub-criteria weighting using Iyengar—
Sudarshan method.

Main Criteria Sub-Criteria
Components -
Label Code Weight Label Code Weight
Healthcare AC1 0.280 Number of medical facilitiesin ¢y 1.000
each commune
Asphalt road density AC2-1 0.387
Adaptive Number of high schools,
Capacity (AC) Infrastructure AC2 0436 universities, and colleges AC22 0.353
Number of enterprises AC2-3 0.270
Population AC3 0.283 Percentage of populationaged = )3 1.000

17-59 years old

The infrastructure criterion (AC2) has a higher weight than the medical (AC1) and
population (AC3) criteria, emphasizing the importance of physical infrastructure in en-
hancing adaptive capacity to landslide hazards. Asphalt road density is significantly more
important in the infrastructure aspect than other sub-criteria. Well-developed asphalt roads
facilitate quick response and relief activities during emergencies. The number of enter-
prises reflects economic capacity, supporting resilience through resource and infrastructure
development. The number of high schools, universities, and colleges reflects community
awareness and adaptive capacity. In terms of population, the percentage of the population
aged 17-59 years old represents the working population that is actively involved in disaster
preparedness and response, making it a key factor in adaptive capacity. For the medical
aspect, the number of medical facilities in each commune is the sole indicator. It is crucial
to enhance the community’s adaptation and recovery capabilities in landslide events.

The final landslide adaptive capacity map demonstrates that the districts with higher
coping capacity are primarily located in the central and eastern parts of Son La province,
including Son La City, Yen Chau, Moc Chau, parts of Mai Son, Phu Yen, and Bac Yen. The
north contains parts of Quynh Nhai and Muong La districts. In the west and Southwest are
parts of the Thuan Chau, Song Ma, and Sop Cop districts. These areas generally have the
highest physical infrastructure in the province, as indicated by the high density of asphalt
roads, the number of enterprises, the number of high schools, universities, and colleges,
and the percentage of solid houses. Additionally, these regions also have a significantly
higher number of medical facilities in each commune and percentage of the population
aged 17-59 years old compared to other districts in Son La Province.
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Figure 11. Landslide adaptive capacity maps: (A) number of medical facilities in each commune,
(B) number of high schools, universities, and colleges, (C) asphalt road density, (D) number of
enterprises per 1000 people, (E) percentage of the population aged 17-59 years old, and (F) final
landslide adaptive capacity.
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6.5. Landslide Risk Analysis

The four component maps-landslide hazard, exposure, vulnerability, and adaptive
capacity—were normalized on a scale from 0 to 1 to maintain consistency in landslide risk
assessment. These maps were then combined with equal weights in the GIS environment
to produce the landslide risk assessment map for Son La province. The resulting map was
then divided into five categories, including very low, low, moderate, high, and very high,
by applying the quantile technique in the ArcGIS Pro software (Figure 12).

Figure 12. Landslide risk assessment map of Son La province.

The statistical analysis from the landslide risk map indicates that 5673.84 km? (40.21%)
falls into the very high-risk and high-risk regions, 2979.64 km? (21.12%) falls into the
moderate-risk region, and 5456.64 km? (38.67%) into the low-risk and very low-risk regions
(Figure 13). The landslide risk map reveals that the districts facing the highest risk are
predominantly located in the central and northeastern parts of Son La province, including
Mai Son, Phu Yen, Thuan Chau, Yen Chau, Song Ma, and Bac Yen districts. This finding
indicates that the districts with the highest risk exhibit elevated levels of landslide hazard,
exposure, and vulnerability despite varying levels of adaptive capacity. These high-risk
districts are frequently centred around urban and village areas, characterized by dense
populations, particularly among vulnerable groups such as children under 6 years old,
elderly individuals over 60 years old, and women aged 17-59. Additionally, these districts
have higher demographic metrics compared to others in the province. Meanwhile, most of
the areas in the Quynh Nhai and Muong La districts are recognized for their lower risk due
to their minimal landslide exposure. Although Son La City has a high level of landslide
exposure and vulnerability, it is located in a very low landslide susceptibility zone and has
a high adaptive capacity to landslides. Additionally, due to its relatively small area, the
landslide risk area of this district is not large.
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Figure 13. Statistics on landslide risk areas in each district within Son La province.

7. Discussion

Landslides are one of the most significant hazards with large-scale socio-economic
and environmental impacts causing dangers to sustainable socio-economic development in
mountainous areas [96]. In mountainous regions, steep terrain and unstable soil increase the
likelihood of landslides, especially during heavy rainfall or seismic activity. With climate
change exacerbating the severity and frequency of severe weather events, the likelihood of
landslides in these areas is projected to increase, presenting further difficulties for disaster
management and community resilience [97]. In Vietnam, landslide events frequently
occur in mountainous regions when heavy rainfall during the rainy season triggers slope
failures [38]. In addition to natural triggers, human activities such as deforestation, road
construction, and unregulated mining exacerbate the landslide risk across South Asia [98].
The damage to the economy and the loss of human lives from landslides are considerably
more extensive than commonly recognized [99]. The landslide risk assessment can support
local authorities and communities in proactively managing and mitigating the impacts of
landslides and contribute to safeguarding humans, the living environment, and natural
resources [100]. The current study proposed a holistic approach to assess the landslide risk
in Son La province, Vietnam, by integrating the advanced ML ensemble models and the
Iyengar-Sudarshan technique.

The growing complexity and unpredictability of landslide hazards driven by climate
change highlight the critical need for more advanced risk assessment methods [101]. Typi-
cally, these approaches are applied separately in creating landslide risk assessments. Some
research has focused on using advanced ML hybrid models to generate landslide risk
maps based on various approaches, like combining the landslide hazard map with official
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population and building census data [12], integrating the best landslide susceptibility
model with the estimated rainfall [22], or combining pipeline vulnerability and landslide
susceptibility [23]. As far as we know, there has been no study to conduct a landslide risk
assessment that considers landslide hazard, exposure, vulnerability, and adaptive capacity
by integrating ML models and the Iyenga—Sudarshan technique.

In this study, we proposed an integrated framework combining ML models for land-
slide susceptibility with the Iyenga-Sudarshan technique in landslide risk assessments.
Landslide inventory data are crucial in susceptibility mapping since they supply a holistic
database of historical landslide events [50]. A set of 1771 landslide points was gathered
using information from the Vietnam Institute of Geosciences and Mineral Resources web-
site, field surveys, and Google Earth image analysis to provide a foundation for landslide
risk prediction. At the same time, fifteen landslide-influencing factors were selected based
on available databases that could be collected, including elevation, slope, slope direction,
curvature, terrain roughness, the Terrain Wetness Index (TWI), rainfall, stream density,
road density, distance to the road, distance to the river, hydrogeology, geology, geomor-
phology, and land cover. All landslide-influencing factors were converted to the raster
format with a spatial resolution of 30 m using the ArcGIS Pro environment. The land-
slide inventory points and fifteen landslide-affecting factors were used as input data for
ML models to build landslide susceptibility maps. Six ML ensemble models comprised
Decorate-UB, Dagging-UB, Bagging-UB, MultiScheme-UB, Cascade Generalization-UB, and
MultiBoostAB-UB and were applied to build landslide susceptibility maps. The landslide
susceptibility map that demonstrated the highest accuracy through validation was selected
as the landslide hazard map. The landslide exposure, vulnerability, and adaptive capacity
maps were developed by gathering a range of socio-economic and physical indicators.
These indicators representing landslide exposure, vulnerability, and adaptive capacity for
each commune in the study area were collected from various sources, including the 2022
statistical yearbooks of the 11 districts within the province and the National Data Portal
website (https://data.gov.vn/SitePages/Index.aspx#/index, accessed on 1 October 2024).
These indicators” weights were established using the Iyengar-Sudarshan method, which
led to the creation of maps showing their exposure, vulnerability, and ability to adapt
to landslides. Finally, the landslide hazard, exposure, vulnerability, and adaptive capac-
ity maps with their respective weights were integrated for spatial analysis to develop a
landslide risk map for the study area.

The frequency and severity of landslide events are sometimes exacerbated by human
activities such as road construction, deforestation, agricultural expansion, and construction
activities, leading to increasing landslide risk [102]. Meanwhile, a landslide risk approach
built on the combination of landslide hazard, exposure, vulnerability, and adaptive capacity
provides a holistic approach to landslide risk, accounting for not just the landslide hazard
itself but also how exposure, vulnerability, and adaptive capacity influence overall landslide
risk. The landslide risk framework proposed in this study offers an effective platform for
disaster mitigation management efforts by integrating hazards, exposure, vulnerability, and
adaptive capacity, allowing for more accurate and targeted risk evaluations. Furthermore,
this approach can be applied to areas of various scales facing different disaster risk types.

8. Conclusions

This research presents a comprehensive framework that combines cutting-edge ML
models with the Iyengar and Sudarshan approach to evaluate landslide risk in Son La
province, a mountainous region in northwestern Vietnam. This study developed six
advanced hybrid ML models—Decorate UB (DCUB), Dagging UB (DGUB), Bagging UB
(BGUB), MultiScheme UB (MSUB), Cascade Generalization UB (CGUB), and MultiBoostAB
UB (MBUB)—all leveraging UltraBoost (UB) as the foundational classifier to generate
landslide susceptibility maps. The landslide hazard map was identified by selecting the
most accurate susceptibility map through cross-validation and AUC analysis. The Iyengar—
Sudarshan method was employed to assign appropriate weights to landslide exposure,
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vulnerability, and adaptive capacity indicators. Finally, these four essential components—
landslide hazard, exposure, vulnerability, and adaptive capacity—were integrated into
a GIS platform, creating a precise and thorough landslide risk assessment map. The
obtained result is a highly detailed and reliable landslide risk assessment map, offering
a powerful tool for disaster preparedness and mitigation for mountainous provinces in
Vietnam. Although this theoretical framework can be applied to different regions in
Vietnam, the computational process is quite complex. It requires an in-depth understanding
of machine learning techniques and time-consuming calculations. Future research will focus
on monitoring and evaluating landslide developments in real time to comprehensively
assess the level of impact of landslide risks on the socio-economic aspects in Son La province.
In reality, these obtained results will provide important information in planning targeted
development, allocating resources, protecting vulnerable communities, and investing in
technical infrastructure for priority areas, such as the central and northeastern regions of
Son La province, including Mai Son, Phu Yen, Thuan Chau, Yen Chau, Song Ma, and Bac
Yen districts.
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