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This paper aims to introduce the ‘deforce’ framework, an open-source Python library constituted on top of
Numpy, Scikit-Learn, PyTorch, and Mealpy. This framework provides hybrid models that combine derivative-
free techniques with Cascade Forward Neural Networks (CFNNs). By inheriting from scikit-learn’s estimator,
deforce’s models ensure easy integration into existing machine learning pipelines. It also has many advantages,
including a simple installation process, a user-friendly interface, and adaptability to various user requirements.
For researchers and practitioners looking to improve CFNN performance with minimal implementation effort,

deforce offers a useful and approachable option.
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1. Motivation and overview

One particular type of neural network that usually has one hidden
layer is called a Cascade Forward Neural Network (CFNN) [1]. It differs
from other types of neural networks, such as multi-layer perceptron’s
and feed-forward neural networks, since it has additional direct connec-
tions from the input layer to the output layer [2]. This extra link enables
the network to capture any linear correlations between the input and
output. Besides, it has potential to accelerate learning and improve the
network’s ability to generalize from input to output [3]. CFNN has been
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used in a variety of applications, including rock mining process selec-
tion [4], ambient air temperature prediction [5], time series prediction
(such as financial forecasting and weather prediction), and other time-
dependent data analysis [1,6]. These applications show the CFNN’s
capacity to handle complex datasets and make accurate predictions,
making it a useful tool in a variety of scientific and engineering fields.

While Cascade Forward Neural Networks (CFNNs) offer several
advantages in terms of design and learning capabilities, they also
have certain drawbacks, particularly with their training method which
is Gradient descent algorithm. CFNNs might get stuck in local min-
ima while training when Gradient descent algorithm converges to
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a position other than the error surface’s global minimum, resulting
in inferior performance [7]. The network may undergo vanishing or
exploding gradients, particularly in networks with many layers or com-
plex structures [8]. CFNNs are more difficult to implement than regular
multilayer perceptrons. This complexity results from the increased
direct connections between layers, which must be carefully managed
during the training process [2]. The direct connections between the in-
put and all subsequent layers can result in higher computing intensity,
leading to longer training times and the demand of extra computational
resources [9]. To efficiently train CFNNs, more complicated optimiza-
tion techniques may be required. Standard optimization approaches
may be less effective due to the cascade of connections. While CFNNs
can capture complicated patterns, there is a risk of overfitting the
training data, which could limit the model’s capacity to generalize to
new, unseen data [10]. Furthermore, the selection of hyperparameters
has an impact on CFNN performance. Finding the best setup can be a
difficult and time-consuming task [11].

Recently, a class of methods called derivative-free optimization
(DFO) has been introduced for the purpose of optimizing neural net-
works. These are gradient-free optimization techniques which do not
require gradient knowledge and hence they are beneficial when deriva-
tives are not accessible or cannot be computed easily [12]. They prove
particularly valuable for black-box optimization situations where the
objective function is represented by a simulation or oracle that does
not supply derivative information [13]. Examples include direct search
approaches [14], model-based strategies [15], and global optimization
algorithms [16]. The most widely used of these are global optimization
algorithms, particularly metaheuristic algorithm [17]. They can be
adopted to improve CFNNs in the following ways:

» Network Training (Weights Optimization): Metaheuristics can
determine the best set of weights for a CFNN by more effectively
navigating the search space than traditional approaches. They
can avoid local minima, a major problem with gradient de-
scent algorithms, by using exploration schemes within the search
space [18]. This could improve the network’s generalizability and
overall performance.

Hyperparameter Optimization: The efficacy of CFNNs is strongly
dependent on hyperparameter selection, which includes variables
such as the number of neurons, learning rate, and activation
functions. Metaheuristics can automate hyperparameter tweaking
by successfully scanning the hyperparameter space to find the
best combination for performance [19]. This may considerably
minimize the time and effort required for manual tuning.

Derivative-free optimization (DFO) offers several benefits, including the
absence of the necessity for gradient information. This makes it ideal
for optimizing CFNNs when the gradient is difficult to compute or not
available. DFOs can optimize complex CFNN landscapes by avoiding
local minima and finding global optima [20]. They are flexible and
can handle a variety of optimization problems, including discontinu-
ous, non-differentiable, and multimodal functions [21]. Additionally,
many DFO algorithms can operate in parallel [22], allowing for expe-
dited computation by distributing the search process among multiple
processors. However, DFO algorithms have various limitations, such
as: DFOs can be more computationally expensive than gradient-based
approaches, particularly for high-dimensional problems, making CFNN
optimization time-consuming. DFOs’ convergence rate can be slower
than gradient-based approaches, resulting in longer training times for
CFNNs [23]. DFOs frequently have numerous hyperparameters that
must be adjusted. Finding the proper settings can be a difficult un-
dertaking that requires significant testing and fine-tuning [24]. As
the size and complexity of the CFNN increase, DFOs’ efficiency in
identifying high-quality solutions may decline, providing scalability
issues for the optimization process [25]. In overall, while DFOs provide
a viable alternative to standard gradient-based optimization approaches
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for CFNNs, particularly in scenarios when gradient information is lack-
ing or unfounded, they also pose computational resource and efficiency
difficulties. The choice between DFOs and gradient-based approaches
for optimizing CFNNs should be made depending on the problem’s
specific requirements and constraints.

To the best of the author knowledge, there is currently no frame-
work that offers CFNNs (Cascade feedforward neural networks) models
and hybrid models that combine DFO (Derivative-free optimization)
approaches with CFNNs, despite the facts that they are frequently
utilized and have been around for a long time. In this paper, we
propose a framework named ’deforce’ which offers both standard
CFNN models (trained by Gradient descent algorithms) and hybrid
CFNN models (trained by DFO methods). Moreover, we introduce
an autonomous hyperparameter adjustment mechanism for CFNNs.
By adding four additional classes (predictive models): CfnRegressor,
CfnClassifier, DfoCfnRegressor, and DfoCfnClassifier to the Scikit-Learn
package, deforce expands its capabilities. These models improve learn-
ing capacity and predictive accuracy, making them very helpful in
regression and classification problems. They serve as beneficial tools
for scholars and data scientists that want to explore data more using
CFNN-based models.

2. Software structure

Based on Python’s OOP architecture, classes, and modules, we
designed and constructed the compact structure of the proposed deforce
library, as shown Fig. 1. The figure shows the fundamental components
of modules, packages, and classes that make up proposed estimators
(predictive models). In this form, a rhombus shape indicates a package
that contains rectangle-shaped sub-modules. Within these sub-modules,
proposed classes are indicated by ellipses.

The toolkit package includes several important modules: The acti-
vators module provides activation functions for CFNN networks. The
scalers module defines methods and classes for data scaling. The val-
idators module handles parameter validation and evaluation for model
inputs. The preprocessor modules perform data preparation functions,
besides, it contains a Data class that can be used for reading and loading
data. The metrics module provides evaluation metrics taken from the
PerMetrics [26] library. These modules provide important auxiliary
functions that will be utilized throughout the library.

The model package consists of five core modules: base_cfn_torch
and gd_cfn, which provide CfnRegressor and CfnClassifier classes for
regression and classification using Gradient-based CFNN models. These
modules are created on top of the PyTorch and Skorch libraries to take
advantage of PyTorch’s Gradient-based optimizers. base_cfn_numpy and
dfo_cfn are intended to provide DfoCfnRegressor and DfoCfnClassifier
classes, respectively, which provide hybrid models for regression and
classification issues combining derivative-free optimizers and CFNN
networks. These modules are built on the Numpy and Mealpy libraries,
and they make use of Mealpy’s Derivative Free Algorithms. Finally, the
dfo_tune_cfn module features the DfoTuneCfn class, which allows users
to tune the parameters of standard CFNN networks using derivative-free
techniques.

This hierarchical design seeks to encapsulate capabilities into
reusable modules and classes, leveraging existing libraries to provide
efficient solutions for a variety of machine learning applications within
the deforce library.

3. Software functionalities

As stated above, this library provides standard CFNN models
(gradient-based models). Furthermore, we offer DFO methods com-
bined with CFNNs for two distinct purposes, namely: network training
(weights optimization) and hyperparameter optimization. As a result,
in this section, we will discuss the key features of three types of models:
standard neural networks, hybrid neural networks with DFO for weight
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Fig. 1. The structure overview of ‘deforce‘ framework.

optimization, and hybrid neural networks with DFO for hyperparameter
optimization.

It is important to note that, as mentioned above, the main classes
in this library inherit from the scikit-learn Estimator class. Therefore,
they all include the necessary functions, such as fit() for training the
model and predict() for predicting values. As a result, the following
code examples will only show how users can define a model type. The
way to use the model is the same as any other algorithm in the scikit-
learn library. Users can apply all models from the “deforce” library to
the data they have. The only requirement is that their data must be
in supervised learning format, meaning it has features and labels. This
is our biggest advantage, a library that defines a general CFNN-based
models that can be applied to different regression and classification
problems.

3.1. Standard CFNN models (Gradient descent-based models)

To use traditional CFNN models, users can import two classes,
CfnRegressor and CfnClassifier, and then initialize the corresponding
object. Listing 1 illustrates the syntax for importing and initializing
the object. The most notable parameter is ‘optimizer, which is used
to select various gradient descent-based algorithms available from the
PyTorch library,' such as Adam optimizer, Adamax optimizer, RMSprop
optimizer, etc.

3.2. Hybrid weight-optimized DFO-CFNN models

The hybrid models, in which derivate free optimization (DFO)
techniques are used instead of gradient descent procedures to train
the CFNN models, are referred to as “hybrid weight-optimized DFO-
CFNN models”. Similar to the standard CFNN models, users need to
import two classes, DfoCfnRegressor and DfoCfnClassifier. Listing 2
presents the code snippet to achieve this. It is worth mentioning that
the ‘optimizer’ parameter reflects the DFO algorithm available from
the Mealpy library,?> such as genetic algorithm, whale optimization,

1 https://pytorch.org/docs/stable/optim.html
2 https://github.com/thieu1995/mealpy

particle swarm optimization, and so on. As can be seen, although
these are different models, the parameter settings are quite similar
and straightforward. All the important logic has been implemented
internally to make the simplest possible interface for users.

3.3. Hybrid hyperparameter-optimized DFO-CFNN models

In this scenario, we refer to these hybrid models as ‘“hybrid
hyperparameter-optimized DFO-CFNN models” since the parameters of
CFNN models are optimized using Derivative free optimization (DFO)
techniques. Gradient descent algorithms are still used to train the CFNN
model during the parameter optimization process. Users have to invoke
a class named DfoTuneCfn, as shown in Listing 3. It is vital to note
that users must use variables from the Mealpy library, such as String-
Var, IntegerVar, and MixedSetVar, to specify boundaries for CFNN
model hyperparameters such as hidden_size, actl_name, act2 name,
max_epochs, batch_size, optimizer, etc. These bounds represent the
possible values for the parameters, and the DFO algorithm’s task is to
decide which set of values produces the best-performing model.

4. Impact of proposed software

To the best of our knowledge, the ‘deforce’ library is the first open-
source library that provides both standard CFNN models (gradient-
based models) and hybrid CFNN models (derivative-free models). Our
proposed ‘deforce’ library can be used to address the research questions
listed below.

+ Optimization of neural network architectures: How can hybrid
models that combine derivative-free optimization approaches
with Cascade Forward Neural Networks (CFNNs) improve classic
gradient-based methods?

Performance improvement in regression and classification: What
are the advantages of adopting hybrid CFNN models in regression
and classification applications over traditional machine learn-
ing models? How do hybrid CFNN models perform on various
benchmark datasets and metrics?
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from deforce import CfnRegressor, CfnClassifier

model = CfnRegressor (hidden size=20, actl name="relu", act2 name="tanh",
obj name="MSE", max epochs=500, batch size=4,
optimizer="SGD", optimizer paras=None,
verbose=True, seed=42)

model = CfnClassifier (hidden size=50, actl name="elu", act2 name="sigmoid",

obj name="BCEL", max epochs=500, batch size=16,
optimizer="SGD", optimizer paras=None,
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verbose=True, seed=42)

Listing 1: Snippet code to import and define the traditional CFNN models

from deforce import DfoCfnRegressor, DfoCfnClassifier

opt paras = {"name": "GA",

"epoch": 250,
model = DfoCfnRegressor (hidden size=10,
actl name="tanh",

"pop_size": 30}

obj name="MSE",

act2 name="sigmoid",

optimizer="BaseGA", optimizer paras=opt paras,

verbose=True,

opt paras = {"name": "WOA",

"epoch": 100,
model = DfoCfnClassifier (hidden size=20,

seed=42)

"pop_size": 30}
obj name="NPV",

actl name="tanh", act2 name="sigmoid",
optimizer="0OriginalWOA", optimizer paras=opt paras,

verbose=True,

seed=42)

Listing 2: Snippet code to import and define the hybrid weight-optimized DFO-CFNN models

Scalability and benchmarking: How scalable are hybrid CFNN
models for large-scale datasets? What benchmarks may be set
up using the ‘deforce’ package to standardize the evaluation of
CFNN-based models?

Application-specific predictive modeling: How might hybrid
CFNN models be used in mining, construction, bioinformatics,
and astrophysics to increase prediction accuracy and robustness?
What specific benefits do hybrid CFNN models bring to predictive
maintenance, resource allocation, and decision-making processes?
Comparative analysis of optimization algorithms: How do differ-
ent derivative-free optimization techniques perform when used
to train CFNN models? Which metaheuristic algorithms perform
better on various datasets and problem domains?

Adaptability and flexibility of machine learning solutions: How
can the ‘deforce’ library’s customization and flexibility be used to
provide flexible machine learning solutions adapted to specific re-
search or industry requirements? What are the practical problems
and solutions for incorporating ‘Deforce’ into existing machine
learning pipelines?

Cross-disciplinary applications: How might hybrid CFNN models
be used to extract new insights from complicated datasets in
interdisciplinary fields of research like social sciences and envi-
ronmental studies? How effective are hybrid CFNN models for
assessing and predicting behaviors in non-traditional machine
learning domains?

In summary, the proposed library has the potential to alter the machine
learning community by improving research capacities, encouraging
innovation, and facilitating the practical deployment of CFNN-based
models across a wide range of fields.

In our research endeavor, deforce plays a significant role in the
utilization and construction of CFNN-based models to generate effi-
cient predictive models. Two exemplary cases depicted in the research
documents are supported by the deforce library.

» The research investigates the relationship between production
parameters, ore grades, and mine life when estimating mining
capital costs (MCC) for open pit mining projects [7].

The research discusses the difficulty of working with soft soils,
particularly clay layers, during building. Soft soils threaten the
safety and stability of foundations and structures, demanding
advanced soil treatment techniques before construction can be-
gin. We employ CFNN-based models to analyze and predict clay
compressibility behavior, which is critical for assuring the efficacy
and safety of construction operations on soft soils [27].

Furthermore, we believe that the proposal of deforce library will bring
significant value and usefulness to other research groups, not only
our group. Many recent publications use CFNN-based models, includ-
ing [28-32]. This is also reflected in the download count on PyPI,
where the deforce library has surpassed 1,000 downloads despite its re-
cent released. In the future, we intend to enhance this library by includ-
ing additional Derivative Free Optimization algorithms from various
subgroups of DFO, rather than only global optimization (metaheuris-
tics). Additionally, we aim to develop compatibility with different
neural network types beyond CFNNs.
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# Import libraries

from mealpy import StringVar, IntegerV
from deforce import DfoTuneCfn

# Define boundary for hyperparameter o
my bounds = [

M

ar,

£
Bing,
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ixedSetVar

IntegerVar (1b=5, ub=21, name="hidden size"),

StringVar (valid sets=("relu",
llgelu",
"sigmoid"),
StringVar (valid sets=("relu",

"elu

"gelu", "elu
"sigmoid"),
IntegerVar (1b=700, ub=1000,

"leaky relu", "celu", "prelu",
", "selu", "rrelu", "tanh",
name="actl name"),

"leaky relu", "celu", "prelu",
", "selu", "rrelu", "tanh",
name="act2 name"),

name="max epochs"),

MixedSetVar (valid sets=((8, 16, 32, 64)), name="batch size"),
StringVar (valid sets=("Adadelta", "Adagrad", "Adam", "Adamax",
"Adamw", "ASGD", "LBFGS", "NAdam", "RAdam",
"RMSprop", "Rprop", "SGD"), name="optimizer"),
1
# Define Derivative free optimizes ram rs
opt paras = {"name": "WOA", "epoch": 10, "pop size": 20}
# Define the Hybrid hyperparameter-optimized DFO-CF model
model = DfoTuneCfn (problem type="regression", cv=3, scoring="MSE",

bounds=my bounds,
optimizer="Original

WOA",

optimizer paras=opt paras,

verbose=True, seed=

42)

Listing 3: Snippet code to import and define the Hybrid hyperparameter-optimized DFO-CFNN models
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