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The application of back propagation neural network for predicting 
production flow rate of oil wells in Hai Su Trang field, Vietnam
Zastosowanie sieci neuronowych z propagacją wsteczną do prognozowania wskaźnika 
wydobycia ropy w odwiertach naftowych na złożu Hai Su Trang w Wietnamie

Hong Duong Vu, Tien Hung Nguyen, Minh Hoa Nguyen

Hanoi University of Mining and Geology

ABSTRACT: Oil production flow rate prediction is a critical aspect of oil and gas exploitation operations. Currently, flow rate forecasting 
is often estimated using theoretical or empirical models. Theoretical models tend to provide predictions with a wide range of errors and 
require extensive input data. On the other hand, empirical models have limitations due to restricted data. The objective of this article is 
to develop a correlation for highly accurate forecasting of the production flow rate. In order to achieve this goal, this study applies an 
artificial neural network (ANN) for flow rate prediction. The backpropagation algorithm and the tansig function are selected in this study 
as a learning algorithm to forecast flow rate. The study considered 262 datasets collected from six wells in the Hai Su Trang field, Cuu 
Long basin used in the ANN model, with 70% for training, 15% for testing, and the remaining 15% for validation. This article evaluates 
the ability of ANN model to predict flow rate with different numbers of neuron. The predicted results obtained from the ANN model 
with eight neurons and backpropagation algorithm achieved high predictability when compared to empirical methods and multivariate 
regression model, with a strong correlation coefficient of 0.97 and a low RMSE of 32.54 bbl/d. Therefore, the developed ANN models 
have been shown to be an effective tool in production flow rate forecasting in oilfields.
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STRESZCZENIE: Prognozowanie wskaźnika wydobycia ropy naftowej jest krytycznym aspektem eksploatacji złóż ropy naftowej i gazu 
ziemnego. Obecnie prognozowanie wydajności przypływu jest często szacowane przy użyciu modeli teoretycznych lub empirycznych. 
Modele teoretyczne zazwyczaj generują prognozy z wieloma błędami i wymagają obszernych danych wejściowych. Z drugiej strony, 
modele empiryczne wykazują ograniczenia ze względu na ograniczoną ilość danych. Celem tego artykułu jest opracowanie korelacji dla 
bardzo dokładnego prognozowania wskaźnika wydobycia ropy. W tym celu w badaniu zastosowano sztuczną sieć neuronową (ANN). 
Algorytm wstecznej propagacji i funkcja tansig zostały wybrane w tym badaniu jako algorytm uczenia się do prognozowania wskaźni-
ka wydobycia ropy. W badaniu uwzględniono 262 zestawy danych zebranych z sześciu odwiertów eksploatacyjnych na złożu Hai Su 
Trang w basenie Cuu Long, które wykorzystano w modelu ANN, z czego 70% do szkolenia, 15% do testowania, a pozostałe 15% do 
walidacji. W niniejszym artykule oceniono zdolność modelu ANN do przewidywania wskaźnika wydobycia ropy przy różnej liczbie 
neuronów w warstwie. Przewidywane wyniki uzyskane z modelu ANN z ośmioma neuronami w warstwie i algorytmem wstecznej 
propagacji wykazały dużą przewidywalność w porównaniu z metodami empirycznymi i wielowymiarowym modelem regresji, z silnym 
współczynnikiem korelacji wynoszącym 0,97 i niskim RMSE wynoszącym 32,54 bbl/d. Dlatego też opracowane modele ANN okazały 
się skutecznym narzędziem w prognozowaniu wskaźnika wydobycia ropy naftowej ze złóż.

Słowa kluczowe: sztuczna sieć neuronowa, algorytm wstecznej propagacji, przewidywanie wskaźnika wydobycia ropy, metoda regresji 
wielozmiennej, gazodźwig.
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Acronym’s explanation

Q – Production flow rate [STB/day]
D64 – Choke size [inch]
Pwh – Wellhead pressure [kPag]
GLR – Gas/liquid ratio [SCF/STB]

BS&W – Basic sediment and water [%]
Qglift – Injected gas-lift rate [MMSCFd]
Pglift – Injected gas-lift pressure [kPag]
ANN – Artificial Neural Network 
R2 – Correlation coefficient 
RMSE – Root Mean Square Error



07/2024

409

07/2024

409

Introduction

Estimating oil production flow rates is crucial for effec-
tive oil and gas operations. It enables planning for drilling, 
repairs, and interventions required to guarantee and maintain 
production, as well as to prompt monitoring of the well sta-
tus. The inability to predict the rate of oil production can lead 
to challenges in estimating the lifespan and profitability of 
a hydrocarbon producing facility. Due to numerous produc-
tion characteristics and field conditions, including wellhead 
pressure, choke size, gas/oil ratio, water cut, gas injection 
rate, and gas injection pressure, developing a flow forecasting 
model for well exploitation is a difficult and demanding task. 
Various theoretical and practical strategies have been devised 
to address this complexity. 

The first theoretical investigation of multiphase flow through 
chokes was provided by Tangren et al. in 1949. Their method 
was only effective when the liquid was in the continuous phase. 
In accordance with Tangren's methodology, Gilbert (1954) 
created an empirical correlation using production well-test 
data and analyzed 268 data sets from Ten Section Kern County 
Oil fields of California for various choke sizes, ranging from 
6/18 to 64/64 inches, to forecast production rates under critical 
flow conditions.

The equation is given by:

 Q P S
aR
wh

b

c=
⋅

 (1)

where:
Q – critical-flow liquid rate (Stock tank barrel per day),
Pwh –wellhead pressure [psia],
S – choke size (1/64 inch),
R –gas/liquid ratio (Standard cubic feet/Stock tank barrel),
a, b and c –empirical constants.

Several studies developed similar relations with differ-
ent empirical constants for different fields (Baxendell, 1958; 
Ros, 1960; Achong, 1961). These relations are summarized 
in Table 1. 

Al-Attar and Abdul-Majeed (1988) collected data from 
over 150 wells from East Baghdad oil field (Iraq). This dataset 
includes parameters such as gas/liquid ratio, wellhead pressure, 
choke size, production rate, and API oil gravity. The researchers 
conducted a sensitivity study to determine the best correlation 
for estimating production rates. With an average inaccuracy of 
6.19%, their results showed that Gilbert's correlation provided 
a relatively accurate prediction of wellhead rates. 

Al-Attar (2008) used 97 datasets from three wells of gas-
condensate reservoir in the Middle East with different choke 
sizes to develop an algorithm for estimating choke performance 
under subcritical conditions.

Osman and Doka (1990) proposed a correlation for calculat-
ing flow rates through chokes using the least square approach 
for gas condensate reservoirs located in the Middle East.

Beiranvand et al. (2012) developed a new formula for pre-
dicting liquid flow rates, incorporating a parameter not included 
in the Gilbert’s correlation: free water, sediment, and emulsion.
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where:
BS&W – basic sediment and water [%],
a, b, c and d – coefficients calculated based on sufficient 

data for a specific reservoir with a = 0.0382, b = 2.151,  
c = 0.5154, and d = 0.5297.

Espinoza (2015) developed a modified empirical correla-
tion to estimate and anticipate liquid rates in oilfields with 
constant water-cut and naturally flowing wells. This method, 
which builds on modified correlations by Gilbert and Ros, 
relies on choke size, upstream wellhead pressure, and oil-gas 
ratio. Additionally, a new empirical coefficient was added to 
align historical production rate data from the studied field in 
the Caspian Sea. This coefficient must be recalculated with 
each new test.

Ghorbani et al. (2018) proposed an equation, which proved 
to be more successful than other models by other authors. 
Using 182 datasets from the Reshadat oil field on Lavan Island, 
Ghorbani et al. (2018) developed and proposed new coef-
ficients, contrasting Beiranvand's method using coefficients 
a, b, c, and d.

The aforementioned empirical models are limited by the 
restricted data used in the studies and often require multi-
ple parameter settings when flow conditional change. These 
models lack accuracy when applied to other fields and are not 
commonly used.

In order to address the flaws and limitations of both theoreti-
cal and empirical correlation methodologies, several researchers 
have recently employed artificial neural network (ANN) to 
forecast oil and gas production rates. Table 2 presents previous 
studies on using ANN to forecast liquid flow rates.

Table 1. Summary of empirical constants for different correlations
Tabela 1. Zestawienie stałych empirycznych dla różnych korelacji

Correlation
Empirical constant

a b c

Gilbert 0.10000 1.89 0.546

Baxendell 0.10460 1.93 0.546

Ros 0.57400 2.00 0.500

Achong 0.26178 1.88 0.650
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In order to estimate surface oil rates, Liu et al. (2011) pre-
sented a neural network model based on the backpropagation 
technique. The neural network comprises ten neurons and one 
hidden layer. The input neurons include well numbers, well 
coordinates, cumulative production, the derivative of cumula-
tive production, shut-in time, average distance to surrounding 
wells, average cumulative production of surrounding wells, 
and cumulative production days. The output layer has one 
neuron representing the cumulative production at time t + 1. 
The results demonstrate that the model can forecast the flow 
rate for a brief period.

Alakeely and Horne (2021) proposed a methodical analysis 
comparing the use of deep learning algorithms and Gilbert 
correlation for liquid flow prediction problems. Their research 
introduced a novel approach and illustrated its applicability 
to actual field data for predicting well liquid and multiphase 
constrained production flow rates using wellhead surface 
measurements. 

These studies highlight the superiority of ANN in predicting 
production flow rates globally. ANN models provide highly 
accurate results in forecasting production flow rates. 

In this study, the authors propose applying an ANN with 
a backpropagation algorithm to improve the prediction of 
production flow rates of gas-lift oil wells at Hai Su Trang 
Field, Cuu Long basin (Vietnam). The forecast results will 
be compared with experimental equations of other published 
authors to evaluate the superiority of the ANN model.

Field description

The Hai Su Trang Field is situated in the south-central region 
of block 15-2/01, nestled within the oil-rich Cuu Long basin, 
offshore Vietnam. Located approximately 120 km east of Vung 
Tau, the field features numerous stacked oil reservoirs in the 
Lower Miocene and the upper segment of the Upper Oligocene. 

Table 2. Several machine learning applications for forecasting oil flow rate
Tabela 2. Przykłady zastosowań uczenia maszynowego do prognozowania wskaźnika wydobycia ropy naftowej

Authors Machine learning method R2 RMSE/MSE/AAPE
Hasanvand and Berneti (2015) ANN 0.96 1254

Gorjaei et al. (2015) Least squares support vector machine-fuzzy logic 0.976 0.8

Al Ajmi et al. (2015) Fuzzy logic 0.94 1392

Choubineh et al. (2017) ANN 0.947 1227

Ghorbani et al. (2018) Genetic algorithm and Excel’s solver optimizer 0.997 303.1–562.52

Khan et al. (2018) Support vector machine (SVM) and ANN 0.96-0.99 2.5618–3.7496

Barjouei et al. (2021) Deep learning, 0.9969 196

Ibrahim et al. (2021) Random forests and SVM 0.94–0.98 1.3–1.8

Azim (2022) ANN 0.96 0.02

Kaleem et al. (2023) Extra trees, Random Forest, Gradient Boosting, Decision trees… >0.97 >60.873

Figure 1. Location of the study area (red rectangle)
Rysunek 1. Lokalizacja obszaru badań (czerwony prostokąt)
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The prevalent lithostratigraphic framework primarily com-
prises a sandstone clastic system, shaped by a fluvio-deltaic 
complex channel system and lacustrine deposits. The Miocene 
oil reservoirs exhibit commendable quality, with effective 
porosity ranging between 14–24% and permeability spanning 
10–1000 millidarcies [mD]. Testing outcomes from the HST1 
well have verified the Miocene reservoir’s exceptional quality. 
Hai Su Trang field discovered oil in September 2006 from well  
HST-1X and began operations in mid-2013, with production 
rates from the first three wells (HST 1P, 2P and 3P) reaching 
13,000 barrels per day. After more than 10 years of exploitation, 
the current production rate is approximately 2,960 barrels per 
day [bbl/d], and this number is rapidly decreasing. Production 
wells at Hai Su Trang Field are nearing the final stage with 
an average water cut of up to 86%. Therefore, it is necessary 
to assess and forecasts of oil flow rates in the near future to 
create effective exploitation plans as well as propose solutions 
to enhance oil recovery and restore production in this field.

Materials and Methodology

The Back Propagation Neural Network (BPNN) is a layered, 
forward-propagating artificial neural network that uses the 
backpropagation method for learning. Recognized as a preva-

lent network structure, the BPNN was chosen in this research 
to predict production flow rates of gas-lift oil wells at Hai Su 
Trang Field in the Cuu Long basin (Vietnam). The model was 
further refined using Genetic Algorithms (GA) to optimize 
the network setup. The construction process of the model 
encompasses three primary stages: data gathering, network 
model development and refinement, and performance evalua-
tion of the refined networks. The entire BPNN framework was 
developed and fine-tuned using the network tools available in 
MATLAB software version 2021.

In this study, 262 datasets were collected from six wells 
in the Hai Su Trang Field. The available parameters included 
production flow rate (Q), choke size (D64), wellhead pressure 
(Pwh), gas liquid ratio (GLR), basic sediment and water (BS&W), 
injected gas-lift rate (Qglift), injected gas-lift pressure (Pglift), as 
detailed in Table 3.

The dataset, spanning from 2019 to 2020, was divided 
into three parts:
• 70% of the data was allocated for training the model;
• 15% was used for testing the model;
• 15% was reserved for validation purposes.

When constructing a model, it is essential to purify the data 
sample to accurately reflect the issue at hand. Occasionally, 
a dataset may include extreme values that deviate significantly 
from the anticipated range and differ from the rest of the data. 

Table 3. Data of 6 study wells
Tabela 3. Dane uzyskane z sześciu odwiertów eksploatacyjnych

Parameters First dataset (2019–2020) Second dataset (2021)
Number of samples 234 28

Production flow rate [STB/day]

minimum value       92.95     195.04
maximum value   1059.73     897.35

mean value     547.02     534.77
standard deviation     276.60     242.00

Choke size [inch]

minimum value     103.15     136.80
maximum value     140.52     161.49

mean value   101.76     151.75
standard deviation      16.30       10.05

Wellhead pressure [kPag]

minimum value   2381.47   2571.38
maximum value   3531.01   3144.18

mean value   2960.38   2903.65
standard deviation     159.35     152.03

Gas liquid ratio [SCF/STB]

minimum value     143.63     398.27
maximum value     890.05     890.65

mean value     524.94     599.91
standard deviation     141.27     157.19

Basic sediment and water [%]

minimum value        76.68       79.99
maximum value        98.23       97.74

mean value        87.58       91.11
standard deviation         6.48         5.07



NAFTA-GAZ

412

NAFTA-GAZ

412

Such values are known as outliers. Often, the performance of 
machine learning models and the overall model proficiency can 
be enhanced by recognizing and potentially eliminating these 
outliers. An outlier is a data point that stands out markedly 

from other observations. It could arise from measurement vari-
ability or potentially signal an error in the metering equipment. 
Identifying outliers is critical as they can negatively affect the 
Artificial Neural Network (ANN) model’s efficacy, leading 

cont. Table 3/cd. Tabela 3

Parameters First dataset (2019–2020) Second dataset (2021)
Number of samples 234 28

Injected gas-lift rate [MMSCFd]

minimum value         1.48         1.90
maximum value         4.11         4.27

mean value         2.86         3.26
standard deviation         0.54         1.01

Injected gas-lift pressure [kPag]

minimum value   9092.64   9488.96
maximum value 12594.80 11752.09

mean value 10984.33 10728.26
standard deviation     620.76     603.32

Figure 2. Correlation coefficient R2 between production parameters and production flow rate
Rysunek 2. Współczynnik korelacji R2 pomiędzy parametrami wydobycia a wskaźnikiem wydobycia ropy
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to overfitting or inadequate generalization. To purify the data 
for training and to confirm the reliability of the ANN model’s 
outcomes, pinpointing outliers is imperative. In this research, 
the z-score method is employed to detect outliers. The z-score 
is calculated using the following equation:
 z = (X – μ)/σ (3)
where:
X – individual data point,
μ – average value derived from the participants’ results for 

the analyte,
σ – standard deviation of the dataset.

As per Tripathy et al. (2013), the z-score method is applied 
to identify outliers. A data point is generally classified as an 
outlier if its z-score exceeds +3 or falls below -3. Fortunately, 
in the dataset used in this study, after analysis, only 2 outliers 
appeared in the wellhead pressure parameter data. The other 
data points all met the requirements to be used as a training 
data set for the ANN model.

The precision and computational efficiency of an ANN 
model’s forecasts hinge on the choice of input variables. 
Theoretical research by the aforementioned scholars sug-
gests that the initial six input factors (referenced in Table 3) 
influence the production flow rate output. To corroborate this, 
literature reviews typically lean on the correlation coefficient 
R2 to gauge the effect of these inputs on the output (illustrated 
in Figure 2). This process facilitates the precise determination 
of inputs for the ANN model’s training.

The observed correlation coefficients between the produc-
tion parameters and the production flow rate are all below 0.6. 
This implies that for crafting an ANN model with high accuracy 
in predicting production flow rates, a broad array of input pa-
rameters covering diverse aspects is essential. Consequently, all 
production parameters should be considered as inputs, deemed 
to contribute uniformly to the predictive model.

ANN model development  
for forecasting oil production flow rates

Prior to utilizing the specified parameters, it is essential to 
normalize them within a range from 0 to 1 using the normali-
zation formula:

 X X X
X XNor =

−
−

min

max min

 (4)

where:
X – observed value present in the dataset,
XNor – normalized data,
Xmin – the minimum value in the dataset,
Xmax – the maximum value in the dataset.

An ANN is a computational construct that mimics the signal 
transmission of biological neurons. It is composed of numerous 
neural units linked together to process data. A standard ANN 
typically includes three layers: Input, Hidden, and Output:
•  Input layer: This is where the information enters the ANN. 

The input node categorizes and analyzes the data before 
forwarding it to the subsequent layer;

•  Hidden layer: Data moves from the input layer to the hidden 
layer(s). An ANN may contain one or several hidden layers, 
each processing the data received from the preceding layer 
before sending it on;

•  Output layer: This layer delivers the final processed data 
results from the ANN. It can consist of one or multiple 
nodes.
For predicting the production flow rate in gas-lift wells, this 

study’s ANN model employs the backpropagation algorithm 
(Marfo and Kporxah, 2020). The production parameters are 
inputs for network training, with the production flow rate as the 
output. The neural network operates through two phases: for-
ward and backward propagation. The forward phase transmits 
signals through neurons to compute output targets, while the 
backward phase generates an error vector between the actual 
and target values. This error is used to adjust the network’s 
weighted connections. The process continues until the error 
reaches a set minimum threshold or a certain number of cycles 
is completed. Consequently, the neural network incrementally 
adjusts its output to more closely match the intended target 
output. This process of convergence is a fundamental aspect 
of the network’s learning and adaptation capabilities.

Figure 3. Structure of ANN
Rysunek 3. Struktura ANN

The quantity of neurons within the hidden layer is a crucial 
factor influencing both the precision and computation duration 
for ANN model predictions. Selecting the appropriate number of 
neurons is vital for generating precise forecasts that align with 
expected outcomes. To avert the risk of overfitting, which can 
occur with too many neurons, careful consideration is required. 
The findings from various models with different neuron counts 
in the hidden layer are presented in Table 4. An analysis of 
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the correlation coefficient (R2) and Root Mean Square Error 
(RMSE) from Table 4 and Figure 4 indicates that increasing 
the neuron count in the hidden layer from 4 to 7 enhances the 
model’s accuracy. However, further increasing the count from 
7 to 10 does not yield significant improvements and may even 
lead to reduced accuracy, as seen in the 10-neuron model. 
Consequently, the researchers recommend using 8 neurons 
in the hidden layer for the ANN that predicts production flow 
rates in gas-lift wells at the Hai Su Trang field, as this number 
simplifies the model while preserving high forecasting accuracy.

Table 4. Summary of the results of R2 and RMSE from different ANN models
Tabela 4. Zestawienie wyników R2 i RMSE z różnych modeli ANN

No.
R2 RMSE

training validation testing training validation testing

4 0.95 0.95 0.92 52.64 67.41 62.32

5 0.94 0.96 0.95 48.16 58.07 64.46

6 0.97 0.93 0.94 43.37 53.38 58.52

7 0.95 0.94 0.95 32.86 45.89 51.95

8 0.97 0.96 0.96 32.54 43.56 45.65

9 0.95 0.96 0.95 32.97 46.46 46.08

10 0.97 0.96 0.93 31.46 45.97 46.96

Figure 4. The results of R2 and RMSE from different ANN models
Rysunek 4. Wyniki R2 i RMSE z różnych modeli ANN

Results and discussions

To evaluate the effectiveness of the developed ANN models, 
the researchers conducted a comparison of the models’ predictive 
accuracy against a conventional approach, namely the multivari-
ate regression method, using the same dataset. This traditional 
method is articulated through the following equation 5:
 Ql = x1D64 + x2Pwh + x3GLR + x4BS&W +  
 x5QGlift + x6PAnnulus + y (5)
where: x1, x2, x3, x4, x5, x6 and y – empirical parameters  

(Table 5).

Table 5. Coefficients of Equation 5
Tabela 5. Współczynniki równania 5

Parameters Coefficients

Intercept (y) 1475.1878

x1       4.2219

x2       0.1416

x3       0.3083

x4   –25.5412

x5     67.6298

x6     –0.0027

The correlation coefficients, which compare the predicted 
production flow rates from the multivariate regression method 
and the ANN model against the actual production flow rate 
values, are depicted in Figure 5. Figure 5 illustrates that the 
ANN model’s predictions are more accurate than those of the 
multivariate regression model (correlation coefficient R2 of 
the ANN model is 0.9646, while the multivariate regression 
model has an R2 of approximately 0.79).

While the ANN model yields highly accurate results with 
the 2019–2020 dataset, the authors opted to further validate 
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Figure 5. Cross-plot of predicted production flow rate and actual value
Rysunek 5. Wykres krzyżowy przewidywanego wskaźnika wydobycia i wartości rzeczywistej

Figure 6. Comparison of actual production flow rate and predicted value from ANN model for HST5 well
Rysunek 6. Porównanie rzeczywistego wskaźnika wydobycia i wartości przewidywanej z modelu ANN dla odwiertu HST5

Figure 7. Comparison of actual production flow rate and predicted value from ANN model for HST6 well
Rysunek 7. Porównanie rzeczywistego wskaźnika wydobycia i wartości przewidywanej z modelu ANN dla odwiertu HST6

its efficacy and superiority for future predictions or different 
wells. To this end, they applied the ANN model to a second 
dataset from 2021, comprising 28 data points, as shown in 
Figures 6 and 7.

Despite the fact that the production histories of wells HST  5 
and HST 6 in 2021 were not part of the training dataset, the 
history matching between the ANN model’s predictions and 
the actual data shows a strong correlation.
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The predicted future production flow rates also seem to be 
in close agreement with the real data, underscoring the ANN 
model’s potential as a robust tool for predicting oil production 
flow rates beyond the initial training set.

Conclusions

This study explored the use of an ANN method to forecast 
the oil production flow rate of wells in Hai Su Trang Field, 
Vietnam. The key takeaways are:
1. The constructed ANN model, which utilizes a backpropaga-

tion algorithm and includes 8 neurons in the hidden layer, 
delivers highly accurate production flow rate predictions 
that closely mirror actual data (with an R² of 97% and a low 
RMSE of 32.54 bbl/d).

2. The ANN model has shown promise as an effective in-
strument for forecasting production flow rates in oilfields.  
It not only delivers precise predictions for the oil produc-
tion flow rate of each well but also captures the dynamic 
trends of the production flow rate over time. This confirms 
the ANN model’s accurate depiction of the correlation 
between production variables and production flow rate, 
making it a valuable asset for predicting production flow 
rates in oilfields.

3. Predicting the oil production flow rate at the HST field is 
essential for monitoring well conditions and formulating 
prompt intervention strategies to sustain and secure produc-
tion levels. Additionally, the ANN model aids in identifying 
suitable production parameters to regulate flow, preserve 
output, and enhance oil recovery processes.

4. For further refinement of the ANN model’s accuracy, it is 
necessary to incorporate additional datasets from prior years 
and to update the model with new data for ongoing training.
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