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RESEARCH ARTICLE

Predicting sewer structural condition using hybrid machine learning algorithms
L. V. Nguyena,b and S. Razaka

aDepartment of Ocean Operations and Civil Engineering, Norwegian University of Science and Technology, Ålesund, Norway; bDepartment of 
Geodesy, Hanoi University of Mining and Geology, Hanoi, Vietnam

ABSTRACT
Predicting the structural condition of sewer pipes plays a vital role in the predictive maintenance of sewer 
pipes and renewal plans of many water utilities. This study explores the simultaneous utilization of 
physical and environmental features of sewer pipes in sewer structural condition prediction. Three (3) 
hybrid machine learning models which are the combination of Bagging (BG), Dagging (DG), and Rotation 
Forest (RotF) ensembles with a J48 Decision Tree (J48DT) based classifier were used to predict sewer pipe 
conditions in Ålesund city, Norway. The classification performance of the machine learning models was 
evaluated using the area under the receiver operating characteristic (AUC-ROC) and the area under the 
precision-recall (AUC-PRC) curves. The RotF-J48DT model had the highest (AUC-ROC = 0.857, AUC-PRC =  
0.918) values, followed by the BG-J48DT, and the base classifier J48DT. The RotF-J48DT hybrid model 
should be considered when predicting the condition of sewer pipes in the study area.
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1. Introduction

A sewer system is an indispensable part of urban cities and 
plays a vital role in the collection and transport of wastewater 
and stormwater from residential and industrial areas to treat
ment plants. Sewer pipelines undergo different stresses during 
their lifespan, which contribute to their rapid deterioration with 
dire consequences for public health, property, and the environ
ment (Sempewo and Kyokaali 2019). Wastewater usually con
tains chemical and microbial hazards that can escape through 
cracks in sewer pipelines and contaminate surrounding soil and 
groundwater (Farkas et al. 2020).

Failures in sewer systems have been reported in Europe. For 
example, the collapse of sewer pipes due to aging was reported 
in Paris and Bordeaux (Diab 2000). According to Kuliczkowska, 
Kuliczkowski, and Parka (2022), pipe failure is the main cause of 
street pavement collapse in residential areas. Venkatesh and 
Brattebø (2012) found the condition of wastewater pipelines in 
Oslo, Norway, to be poor due to deterioration, and were not 
able to perform their engineered functions effectively. 
Although there have been recent investments in sewer net
works in Norway, some of these networks remain in poor con
dition with an annual renewal rate of 0.6% (RIF 2021). Many 
municipalities have therefore been looking for ways to intensify 
their renewal programs through the use of condition assess
ment methods, visual inspection techniques, and deterioration 
models (Fugledalen, Møller Rokstad, and Tscheikner-Gratl 
2021).

The predictive ability of the structural condition and dete
rioration models significantly depends on the input variables. 
Based on the literature, the factors affecting the structural 
condition of sewer pipes are generally divided into physical, 

environmental, and operational factors (Mohammadi, Najafi, 
Vinayak, et al. 2019; Mohammadreza Malek Mohammadi et al. 
2020). Age, diameter, material, depth, length, and slope are the 
most important physical factors (Hawari et al. 2020). The fre
quently used environmental factors are soil type, location, 
groundwater, and traffic volume (Laakso et al. 2018; 
Mohammadi, Najafi, Vinayak, et al. 2019; Mohammadreza 
Malek Mohammadi et al. 2020). Operational factors include 
preparation, cleaning, flow rate, infiltration and inflow, and 
pressure (Balekelayi and Tesfamariam 2019; Hawari et al. 
2018). A recent review by Hawari et al. (2020) indicated that 
very few studies account for some environmental factors and 
operational factors as inputs of condition assessment models. 
Deterioration is a complex process and is a result of the inter
action between several factors (Huu Dung Tran, 2007; 
Mohammadreza Malek Mohammadi et al. 2020). Therefore, 
considering more factors will provide more useful information 
in addressing sewer deterioration. One major challenge with 
this approach is the high redundancy and multicollinearity of 
features (input variables).

Reliable deterioration models enhance our understanding of 
the deterioration process and mechanism. This is critical for the 
evaluation of non-inspected pipe conditions and the forecast of 
their future state for rehabilitation strategies (Nicolas Caradot 
et al. 2017). This tool can help wastewater utilities to evaluate 
the non-inspected pipes’ conditions and forecast the future 
state of the sewer pipes. Hawari et al. (2020) showed that 
exploring the relationship between the factors affecting the 
deterioration process is fundamental in building a good dete
rioration model for sewer condition prediction. Generally, dete
rioration models for sewer condition classification can be 
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grouped into three (3) major categories namely physical, sta
tistical, and machine learning methods (Mohammadi, Najafi, 
Vinayak, et al. 2019).

The physical models (or deterministic models) utilize only 
the physical properties and mechanics of sewer pipes to deter
mine the extent of deterioration (Hawari et al. 2020; Tscheikner- 
Gratl et al. 2019). Several physical deterioration models have 
been reported in the literature. These include power function 
models (M. I. C. H. E. A. L. L. Doleac, Lackey, and Bratton 1980) 
and linear function models (Randall-Smith, Oliphant, and 
Russell 1992) to determine corrosion pit depth, UtilNets for 
reliability-based life prediction of buried grey cast iron in 
water mains (Hadzilacos et al. 2000), and ExtCorr for external 
corrosion estimation (Hawari et al. 2020). Hawari et al. (2020) 
argued that physical models are best suited for determining 
specific processes such as corrosion but are too simple to 
reflect a complex process such as deterioration. Additionally, 
suitable data types for physical modeling of deterioration are 
scarce and difficult to curate (E. V. Ana and Bauwens 2010). 
Some studies have proposed statistical models as an economic 
alternative to the physical models (Rajani and Kleiner 2001; 
Tscheikner-Gratl et al. 2019) to overcome some of the 
drawbacks.

Statistical models describe historical failure data’s probabil
istic nature as a random variable and estimate the best output 
(state) based on the condition of given data (Mohammadi, 
Najafi, Vinayak, et al. 2019). These statistical models include 
regression models (Bakry et al. 2016; Ngandu, Tesfamariam, 
and Asce 2019; Kabir et al. 2018; Mohammadrza Malek 
Mohammadi et al. 2019; Sempewo and Kyokaali 2019), 
Markov chains (Sempewo and Kyokaali 2019), cohort survival 
models (Nicolas Caradot et al. 2017), discriminant analysis 
(Vladeanu, Matthews, and Asce 2019; Alsaqqar, Hussein 
Khudair, and Karim Jbbar 2017), probabilistic models (Kleiner 
and Rajani 2001), and integrated methods (Kabir et al. 2018; 
Altarabsheh, Ventresca, and Kandil 2018; Hawari et al. 2016). 
Regression models are flexible and simple models for predict
ing the condition of sewer pipes that enhance interpretability 
vs explainability, however, the accuracy of these models can 
sometimes be low. Markov chains on the other hand create 
complex and chronological models with appreciable accuracy 
but determining the transitional probability matrix has always 
been a difficult challenge (Hawari et al. 2020). Additionally, the 
underlying assumption of normality is difficult to validate (Huu 
Dung Tran, 2007; Mohammadi, Najafi, Vinayak, et al. 2019). 
Machine learning (ML) models have been proposed as distribu
tion-free alternatives to statistical models. These models 
include random forest (N. Caradot et al. 2018; Laakso et al. 
2018; Vitorino et al. 2014), support vector machine (SVM) 
(Harvey and Arthur McBean 2014; H. D. Tran and Ng 2010), 
decision tree (Harvey and Arthur McBean 2014; Syachrani 
et al. 2013), or artificial neural network (El-Abbasy et al. 2014; 
H. D. Tran, Perera, and Ng 2009). These models explore the 
complex non-linear relationship between inputs and outputs 
(Hawari et al. 2020; Tsai, Miao-Ling, and Lin 2018).

Several previous studies have applied ML algorithms to 
study the sewer deterioration process. For example, 
Multinomial Logistic Regression and Artificial Neural Network 
models were developed to predict sanitary sewer pipes 

condition in a study by Atambo, Najafi, and Kaushal (2022), or 
Yin et al. (2020) used linear regression and a neural network to 
construct neighborhood-level and individual-level prediction 
models, respectively. However, a common point of these stu
dies is that they only used single ML algorithms to construct 
sewer deterioration models, and hybrid ML models were not 
considered. Moreover, Tizmaghz, van Zyl, and Henning (2022) 
showed that each classification system exist weaknesses and no 
algorithm is perfect for all cases. Hence, finding a suitable sewer 
deterioration assessment model should be considered.

Many studies have shown that hybrid machine learning and 
metaheuristic algorithms are better than single ML methods 
because they enhance the capability of individual weak base 
algorithms to develop higher accuracy prediction models 
(Shirzadi et al. 2018, 2019). For instance, hybrid ensemble mod
els outperformed a base classifier in the mapping of the 
groundwater potential zones or environmental hazards 
(Phong et al. 2021; Shahabi et al. 2020). The application of 
these kinds of hybrid ensemble ML models in the water field 
is still limited and seldom utilized, especially in predicting the 
structural condition of the sewage system.

The main objective of this study is to develop hybrid ensem
ble models for predicting the structural condition of sewer 
pipes using the physical and environmental factors affecting 
the deterioration process in Ålesund city, Norway. The hybrid 
ML model with higher performance (compared to the original 
ML model) can effectively support local water engineers, water 
managers, and relevant agencies in optimizing predictive main
tenance strategies. Moreover, feature selection analysis in this 
study defines the most significant factors affecting sewer dete
rioration that provide useful information for local water agen
cies to prioritize their maintenance strategies. This study 
explores several hybrid ML models for predicting the condition 
of sewer pipelines. Specifically, the J48 Decision Tree (J48DT) 
algorithm is utilized as a base classifier and then combined with 
ensemble techniques namely Bagging (BG), Dagging (DG), and 
Rotation Forest (RotF) to develop hybrid ML models, namely 
BG-J48DT, DG-J48DT, and RotF-J48DT, for predicting the struc
tural condition of sewer pipe in Ålesund city, Norway. 
Appropriate and suitable models for structural condition 
assessment will go a long way to help authorities and munici
palities optimize maintenance strategies, reduce expenses, and 
strengthen the performance of the sewer network.

2. Materials and methods

2.1. Study area

The data used for this study were collected from the sewer 
network in Ålesund city, Norway. This city is located between 
longitudes 6°05’E and 6°42’E and latitudes 62°25’N and 62°32’E 
with an area of 633.6 km2. The geographic location of the sewer 
network in Ålesund city is shown in Figure 1.

2.2. Data used

The sewer network consists of about 33,090 pipes with a total 
length of 760.4 km comprising concrete and polyvinyl chloride 
(PVC) as the main pipe materials. The condition of pipes was 
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monitored by using the Closed-Circuit Television (CCTV) 
approach and damaged scores were assigned for sewer pipes 
to reflect their status (Nicolas Caradot et al. 2020; Bairaktaris 
et al. 2007). The status of sewer pipes was classified into five 
damaged classes based on the damage score obtained from 
the CCTV as shown in Table 1 (Haugen and Viak 2018). These 
damage classes were further grouped into three (3) aggregated 
classes namely good condition (class 1 or class 2), intermediate 
condition (class 3), and bad condition (class 4 or class 5). 
Previous studies have utilized these aggerated classes in 
sewer condition assessment since it facilitates comprehension 
of sewer condition states (Nicolas Caradot et al. 2020; 
Mohammadi, Najafi, Tabesh, et al.). 

Sewer pipes without full properties in terms of physical or 
environmental values were eliminated from the database, this 
data was then compared to inspected data to select sewer 
pipes for training and validating models. As a result, a total of 
1,335 inspected pipes were used in this study (Figure 2a). These 
data were curated via the CCTV method from 2012 to 2020. The 
physical attributes of the pipes of the selected pipes include 
age, diameter, depth, length, slope, pipe type, network type, 
pipe form, connection type, and material as shown in Table 2. 
The environmental factors considered for modeling the sewer 
pipe conditional process were calculated from auxiliary geos
patial data. Detailed information is provided in Figure 3. These 
data were converted to pixels of 5 m × 5 m to prepare data for 
analyzing process. The map of rainfall is interpolated from 
monthly average precipitation from 9 weather stations within 
the Ålesund municipality using the inverse distance weighting 
method in ArcGIS Pro software.

2.3. Condition assessment

2.3.1. Boruta feature selection method
Condition assessment models of sewer pipes use multiple fac
tors/features as independent variables. The current and future 
condition of any sewer pipe is a function of physical, environ
mental, and operational factors. Therefore, choosing significant 
factors before modeling is essential in reducing multicollinear
ity and redundancy amongst features. Many feature selection 
techniques have been proposed in the literature to assess the 
importance of independent variables. These feature selection 
methods include filter, wrapper, and embedded methods 
(Chandrashekar and Sahin 2014).

The Boruta algorithm, which is a wrapper method built 
around the Random Forest model, is a good candidate for deal
ing with both regression and classification problems (Kursa and 
Rudnicki 2010). Many studies used the Boruta for feature selec
tion and showed that this algorithm is an effective method to 
reduce the dimensionality of the data set (Nanda et al. 2021; 
Bhavan and Aggarwal 2018). This algorithm distinguishes rele
vant variables or features into important, tentative, and unim
portant categories based on a comparison of input variables’ 
importance with output performance using a randomly per
muted method. The main idea of the Boruta algorithm is to 
randomly create a copy of data, then classify the combination of 
copied versions with the original data. Then an iterative proce
dure is applied until every feature is classified as either impor
tant (accepted) or unimportant (rejected). The key steps for 
implementing the Boruta method are represented in Figure 4.

For a detailed description of the Boruta algorithm, readers 
are referred to (Kursa and Rudnicki 2010; Nanda et al. 2021). The 
Boruta method ranks the importance of each feature thereby 
eliminating unimportant factors and reducing multicollinearity 
before developing the sewer condition model.

2.3.2. Hybrid ensemble models
2.3.2.1. J48 decision tree classifier base model. A decision 
tree is a classification model that comprises a root, decision 

Figure 1. The sewer network in the study area.

Table 1. The condition classes of pipe.

Damage Class Damage Score State Aggregated Class

Class 1 0–5 Very Good Good Condition
Class 2 6–10 Good
Class 3 11–20 Intermediate Intermediate Condition
Class 4 21–50 Bad Bad Condition
Class 5 >50 Very bad
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nodes, leaf nodes, and branches (Bui et al. 2014). In a decision 
tree structure, one of the attributes represents a decision node 
and the class value is represented by a leaf node (Sahu and 
Mehtre 2015). The minimum number of instances per leaf and 
the confidence factor are two important user-defined para
meters for building a decision tree classifier. A typical decision 
tree classifier is constructed in two steps: building and pruning. 
In the building step, the parameters influencing the classifica
tion accuracy of the decision tree are determined. In the prun
ing step, Laplace smoothing is used for probabilistic estimates 
of the leaves (Bui et al. 2014). Depending on the accuracy and 
efficiency desired, different algorithms can be used to generate 
decision trees. These dominant algorithms include Best First 

Tree (BFTree), Classification and Regression Trees (CART), 
Alternating Decision Tree (AD Tree), ID3, J48, and C4.5. 
A study by Lim, Loh, and Shih (2000) showed that the C4.5 
family of algorithms represents the fastest algorithm for build
ing decision trees with good accuracy. The J48 algorithm, 
which is slightly modified C4.5 in WEKA, is used in this study 
for building the decision tree base model. The steps for imple
menting the J48 Decision Tree (J48DT) are presented in 
Figure 5.

In Figure 5, Entropy Zð Þ denotes the entropy of each attribute, 
and Gain Z;Að Þ denotes the information gain of each split (Hilal 
et al. 2021); Z and A are represented the dataset and attributes, 
respectively; n and m are the number of partitions of A and the 

Figure 2. The maps of (a) Training and testing samples; (b) Condition class distribution.

Table 2. Input factors for building structural condition model for sewer pipe.

Physical factors Type Min Max Mean Environmental factors Spatial Resolution GIS Data Type

Age Numeric 1 104 32.31 Rainfall - Point
Diameter Numeric 110 1000 251.07 Geology 1:50,000 Polygon
Depth Numeric −7.81 −0.01 −1.82 Landslide Area 1:5,000 Polygon
Length Numeric 1.00 177.85 37.54 Population 250m × 250m GRID
Slope Numeric −10.58 32.28 2.74 Land Cover 5m × 5m GRID
Pipe Type Categorical - - - Building Area 1:5,000 Polygon
Network Type Categorical - - - Groundwater Level - Point
Pipe Form Categorical - - - Traffic Volume 5m × 5m GRID
Connection Categorical - - - Distance to Road 5m × 5m GRID
Material Categorical - - - Soil Type 1:50,000 Polygon
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Figure 3. The maps of environment-related factors.
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number of classes respectively; Zi and Pi represent the number 
of cases on partition i and the proportion of Zi to Z, respectively.

2.3.2.2. Bagging ensemble. Bagging (Bootstrap Aggreg 
ating) was proposed by Breiman (1996) to raise the stability of 
models significantly classification problems by improving accu
racy and reducing variance. There are three main steps imple
mented in this model:

● Creating multiple datasets: new sewer pipe points are 
created by randomly selecting samples with replacement 
(e.g. the individual sewer data points can be chosen more 
than one time) from the original training dataset.

● Building multiple J48DT classifiers: the J48DT algorithm is 
used to independently train using random subsets from 

the previous step. Each J48DT will predict sewer condition 
status from the subset.

● Combining classifier: the sewer condition status predic
tions of all the individual J48DT classifiers are combined to 
give a better classifier, usually with less variance com
pared to before. Finally, the final sewer condition status 
is defined using a plurality vote of those predictions from 
the J48DT models.

● The concept of the bagging ensemble method is shown in 
Figure 6.

2.3.2.3. Dagging ensemble. Ting and Witten (1997) pro
posed Dagging (Disjoint Aggregating) method to create ran
dom training subsets from the original training dataset using 

Figure 4. Framework for implementing the Boruta feature selection method.

Figure 5. J48 Decision Tree overview.
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the disjoint sampling method (instead of the bootstrap sam
pling) without replacement.

The main steps for implementing the dagging ensemble are 
described as follows:

● New sewer pipe points are randomly created from the 
original training dataset without replacement (e.g. the 
individual sewer data points can be chosen only one time).

● Prediction of sewer status condition from each subset is 
obtained using the J48DT classifier.

● The plurality vote is used to aggregate results from the 
individual predictions obtained from each J48DT classifier, 
and the final sewer condition status is defined for each 
sewer data point.

2.3.2.4. Rotation forest ensemble. Rotation Forest (RotF) 
was firstly introduced by Rodriguez, Kuncheva, and Alonso 
(2006) based on the idea of a random forest algorithm to 
improve the diversity and accuracy of the base classifier. In 
this method, the base classifiers (decision trees) are indepen
dently built and trained using the whole training dataset in 
a rotated feature space. Hyperplanes parallel to the feature axes 
are used to create classification regions while training decision 
trees and the final sewer condition status is computed based on 
the largest confidence for each status (Kuncheva and Rodríguez 
2007).

Assume x ¼ xi; x2; . . . ; xm½ �
T is a vector that contains m 

factors of sewer pipes, y ¼ y1; y2; . . . ; yn½ �
T represents sewer 

condition status vector where yi is the sewer condition (i.e. 

good condition, intermediate condition, and bad condition) 
of the ith sewer pipe and n is the number of inspected 
sewer pipes in the training dataset. Let K and F be the 
number of subsets and feature set of classifiers 
D1;D2; . . . ;DL in the ensemble (L is the number of classifiers 
in the ensemble), respectively, and X is the objects in the 
training dataset. Rodriguez, Kuncheva, and Alonso (2006) 
introduced steps for constructing the training dataset for 
classifier Di as follows:

● For each classifier in the ensemble, randomly split the 
feature set F into K subsets: 
Fi;j i ¼ 1; 2; . . . ; L; ; j ¼ 1; 2; . . . ; Kð Þ.

● For each subset Fi;j , let Xi;j be the dataset X for the 
feature and eliminate from Xi;j a random subset of 
classes, and randomly select a bootstrap sample from 
Xi;j of size 75% of the data count. Run Principal 
Component Analysis (PCA) on the M ¼ m=K features 
and the selected subset of X . Store the coefficients of 

the principal components a1
i;j; a2

i;j; . . . ; aMj
i;j .

● Arrange the obtained vector with coefficients in a spare 
‘rotation’ matrix Ri: 

Figure 6. The framework of the Bagging ensemble method.
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● Rearrange the columns to match the order of features in 
F for constructing a rotation matrix Ra

i and build classifier 
Di using the training set created by XRa

i ; y
� �

.
● Calculate the confidence of each class from the input 

x (μj xð Þ) by the average combination method and 
assign x to the class with the largest confidence: 

The process for the RotF method is shown in Figure 7.

2.4. Model performance assessment

The performance of a classification model is usually evaluated 
using different metrics such as accuracy, sensitivity, specificity, 
F1-score, Matthew’s Correlation Coefficient (MCC), Geometric 
Mean (GM), or graphical assessment methods e.g. receiver 
operating characteristics and/or precision-recall curves. The 
above-mentioned metrics are derived from a confusion matrix 

(Tharwat 2021). This matrix is the basic component for calculat
ing model performance assessment metrics in binary classifica
tion problems and multi-class classification problems.

2.4.1. Confusion matrix
The confusion matrix is an n� n matrix whose elements Cij 

correspond to the number of classes in grade i that are pre
dicted to be in grade i; j 2 1; . . . ; nf gð Þ; n is the number of 
classes. Table 3 shows the confusion matrix for a multi-class 
classification problem with 3 classes. Elements on the diagonal 
of the confusion matrix represent the number of samples that 
are correctly classified. Off-diagonal elements are the number 
of a sample that are incorrectly predicted.

Based on the confusion matrix, various model performance 
metrics including false negative (FN), false positive (FP), true 
positive (TP), and true negative (TN) can be computed as fol
lows (Tharwat 2021): 

Figure 7. The framework of the rotation forest method.

Table 3. The confusion matrix for 3-class classification.

Predicted Class

Good Condition Intermediate Condition Bad Condition

Actual Class Good Condition C11 C12 C13
Intermediate Condition C21 C22 C23
Bad Condition C31 C32 C33
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● Accuracy (Acc): This metric is defined as a ratio between 
the number of correctly classified samples and the total 
number of samples. It is one of the most used measures 
for assessing classification performance. Based on the 
confusion matrix, the accuracy of the classification 
model is calculated as follows: 

● F1-score: This metric represents the harmonic mean of 
precision and recall, the value of 1 represents the highest 
classification performance and the value of 0 is the worst. 

● Geometric Mean (GM): This metric is the root of the 
product of class-wise sensitivity. For multi-class problems, 
this metric is a higher root of the product of the sensitivity 
of each class. It is most often used for evaluating the 
performance of classification with imbalanced data. The 
equation for calculating GM is described as follows: 

● Matthew’s Correlation Coefficient (MCC): This metric 
represents the correlation between the predicted and 
actual classifications. The coefficient of + 1 and −1 repre
sents perfect and bad predictions, respectively. The value 

of zero represents a random prediction. The below equa
tion describes the MCC formula for multiclassification: 

2.4.2. Receiver operating characteristic
The Receiver Operating Characteristic (ROC) curve represents 
the relationship between sensitivity and specificity (Tharwat 
2021). Each point in the ROC curve is generated by changing 
the threshold on the confidence score. The AUC-ROC is 
a threshold-independent metric that calculates the area under 
the ROC curve. The AUC-ROC score is in the range of zero to one 
and the ROC curve that has a larger AUC-ROC value will have 
better classification performance with the same class. Table 4 
shows the success rate based on the AUC-ROC (Kritikos and 
Davies 2015).

2.4.3. Precision-recall curve
The Precision-Recall curve (PRC) represents the relationship 
between recall and precision. The PRC has been considered an 
alternative to the Receiver Operating Characteristics (ROC) curve 
for classification problems that have a large skew in the class 
distribution (Davis and Goadrich 2006). The AUC-PRC is 
a threshold-independent metric that calculates the area under 
the PRC curve.

2.5. Structural condition modeling framework

The data processing procedure for assessing sewer pipe status 
can be divided into several steps: 1) Collecting and pre- 
processing data, 2) Splitting data into training and testing 
data sets, 3) Building hybrid ML models, and 4) Validating and 
selecting structural conditions models. The flowchart for this 
procedure is shown in Figure 8.

To build and validate the structural condition models, the 
data was split into training, cross-validation, and testing data
sets. The ratio for splitting training and testing datasets 
depends on the quantum of data available and the objectives 
of the study. In this study, we randomly split the dataset with 
a ratio of 70% for the training dataset and cross-validation (934 
samples) and 30% for the testing dataset (401 samples) respec
tively. In the training and cross-validation dataset, the number 
of sewer pipes in good condition, intermediate condition, and 

Table 4. The model performance is based on the AROC values (Kritikos and 
Davies, 2015.).

AUC-ROC value Model performance

<0.7 Poor
0.7–0.8 Satisfactory
0.8–0.9 Good
0.9–1.0 Excellent

Figure 8. The framework for modeling the structural condition of sewer pipes.
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bad condition are 574, 70, and 290 samples, respectively. The 
test dataset consists of 248 samples in good condition, 33 
samples in intermediate condition, and 120 samples in bad 
condition.

A base classifier was created based on every sample dataset 
and several classifiers were obtained based on the training 
dataset. Finally, the outputs of individual classifiers are amalga
mated via the voting process. The hybrid models use the J48 
algorithm as the base classifier. In an attempt to avoid the 
subjective character of the hybrid models, the user-defined 
parameters (ninst) and nconfð Þ of the base classifier were not 
varied when applying ensembles. The optimal values for the 
user-defined parameters (ninst) and nconfð Þ were found using 
a grid search with 10-fold cross-validation. The best values for 

ninstð Þ and nconfð Þ are found as 2.0 and 0.25, respectively.

3. Results and discussions

3.1. Feature selection using the Boruta method

The importance of the features (variables) utilized in this study 
for sewer structural condition prediction is presented in 
Figure 9. The result showed that the material was adjudged 
as the most important factor affecting the structural deteriora
tion process, followed by the age of the pipe. Six variables 
(landslide area, land cover, network type, building area, pipe 
form, and length) were unimportant for deterioration modeling 
and these factors were eliminated from the model. One tenta
tive factor (geology) and the remaining factors were used to 
develop the structural condition models for the study area.

Yin et al. (2020) only used backward direction feature selec
tion to eliminate insignificant factors and indicated that more 
advanced selection methods should be considered in the 
future to find significant factors. The significant values 
(p-value) from the logistic regression model were used to 

rank the important degree of factors in the study of Atambo, 
Najafi, and Kaushal (2022), this approach may be not an ideal 
solution in case an unbalanced dataset (Sanchez-Pinto et al. 
2018). This study partly fills the above limitation by using the 
advanced wrapper method for defining the importance of 
input factors and eliminating insignificant factors before con
structing ML models.

In this study, the Boruta feature selection method high
lighted the material and age of the sewer pipelines as signifi
cant factors for modeling the structural condition of the pipes. 
This conclusion agrees with various studies in the literature 
(Mohammadi, Najafi, Tabesh, et al. ; Salman and Salem 2012; 
Baur and Herz 2002). For example, Mohammadi, Najafi, Tabesh, 
et al. () showed that pipe age was the most important factor, 
followed by the material and diameter of the pipe when build
ing the condition prediction model of sanitary sewer pipe by 
applying the logistic regression model. The importance and 
absolute ranking of factors depend to some extent on the 
method utilized and local conditions. For example, Najafi and 
Kulandaivel (2005) concluded the diameter of the sewer was 
the most important based on an ANN model; whereas, pipe 
material was pointed as the most important factor based on the 
Back Propagation Neural Network and Probabilistic Neural 
Network models (Khan, Zayed, and Moselhi 2010). The age of 
sewer pipes was proved as the most important based on the 
binary logistic regression model in the study by Mohammadi, 
Najafi, Tabesh, et al. ().

In Ålesund city, sewer material significantly affects deteriora
tion behaviors. Many sewer pipes in the study area are poly
vinyl chloride (PVC) and concrete (BET), and these materials 
have a strong correlation with the conditioning process. For 
instance, PVC pipes are highly resistant to acidic and alkaline 
wastes and BET pipes work well with abrasion (Mohammadreza 
Malek Mohammadi et al. 2020). Additionally, installation and 
operation procedures ensure BET pipes are less affected by 

Figure 9. Feature selection for building conditional assessment model.
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deterioration. More specifically, because of installation in con
trolled situations, BET pipes normally keep high quality and 
have good integrity. Moreover, reinforced steel in BET pipes 
makes them strong enough against structural deterioration and 
PVC pipes suffer excessively from traffic loads (Mohammadreza 
Malek Mohammadi et al. 2020), this mechanism is insignificant 
in this study as most pipes were not impacted by roads with 
high traffic volumes (Figure 3g).

The study shows the age of the pipe is an important factor in 
the deterioration process (Figure 9). This finding has been 
made in previous studies (Mohammadi, Najafi, Tabesh, et al. ; 
Khan, Zayed, and Moselhi 2010). The effect of aging on the 
condition of the sewer pipe begins immediately after the pipe 
is installed and it normally takes 44–65 years for pipes to 
change to poor condition (Laakso et al. 2018).

Although landslide directly affects the underground assets 
in general and the sewer network, it is not significant in this 
study. This can be explained by the landslide areas being small 
and the number of inspected sewer pipes in these areas not 
being significant (Figure 3c). In the same vein, the building area 
has been assessed to be a less important factor affecting the 
structural condition of sewer pipes in this study. This can be 
explained by the fact that most of the inspected pipes in the 
central area of Ålesund city were in good condition (Figure 2a) 
although found in locations of high building density (Figure 3c).

The length of the sewer pipes is considered an unimportant 
factor for this study area, this conclusion is in line with the result 
of Lubini and Fuamba (2011), in which the authors found the 
slope and length were not significant in their deterioration 
model.

3.2. Comparison of structural condition models

The predictive capability of the models for the structural con
dition of sewer pipes is assessed using the test dataset. The 
results of the statistical measures of the J48DT, BG-J48DT, DG- 
J48DT, and RotF-J48DT are represented in Table 5. Because 
there is a difference between the number of samples in the 
three output classes (class imbalance), accuracy may not be 
a reliable metric for assessing the overall classification perfor
mance (Haixiang et al. 2017). Therefore, some statistical mea
sures such as GM, MCC, F1-score, AUC-ROC, and AUC-PRC have 
been used as alternative performance assessment metrics.

The results indicate that the statistical measures including 
GM, MCC, and F-measure have the highest values for good 
condition, which is a major class in the dataset, followed by 
the bad condition class. It can be seen that the MCC value of the 
DG-J48DT models is immeasurable when predicting samples in 
an intermediate condition indicating the bad performance for 
this class.

Figure 10 shows the AUC-ROC and AUC-PRC of four devel
oped structural condition models in this study. Based on the 
definition of AUC values in Table 4, the developed ML models 
have good performance in predicting the structural condition 
of the sewer pipe in good and bad condition classes, but they 
have satisfactory performance in predicting samples in the 
intermediate condition class.

The results show that all three developed hybrid models 
improve classification performance compared to the base clas
sifier (the J48DT model). More specifically, for the good condi
tion class, the RotF-J48DT model have the highest classification 
performance (AUC-ROC = 0.857, AUC-PRC = 0.918), followed by 
BG-J48DT (AUC-ROC = 0.848, AUC-PRC = 0.907), DG-J48DT 
(AUC-ROC = 0.817, AUC-PRC = 0.880), and J48DT (AUC-ROC =  
0.800, AUC-PRC = 0.765). Similarly, for the bad condition class 
prediction, the RotF-J48DT (AUC-ROC = 0.829, AUC-PRC =  
0.635) is outperformed the BG-J48DT (AUC-ROC = 0.813, AUC- 
PRC = 0.574), DG-J48DT (AUC-ROC = 0.793, AUC-PRC = 0.577), 
and J48DT (AUC-ROC = 0.749, AUC-PRC = 0.522) models. All 
developed models have the lowest classification performance 
in predicting samples in the minor class (intermediate condi
tion). However, the RotF-J48DT model (AUC-ROC = 0.673, AUC- 
PRC = 0.153) is better than the DG-J48DT (AUC-ROC = 0.637, 
AUC-PRC = 0.103), BG-J48DT (AUC-ROC = 0.586, AUC-PRC =  
0.127), and J48DT (AUC-ROC = 0.522, AUC-PRC = 0.110) models. 
Additionally, in terms of weighted average values, the RotF- 
J48DT has higher values than other models indicating better 
classification performance. In conclusion, these ensemble mod
els have better predictive power than the basic model. The 
RotF-J48DT ensemble model produces the best result for pre
dicting the structural condition of sewer pipes in the study area.

Based on the area under the curve values, the hybrid 
models have higher performance compared to the base 
classifier. This conclusion is consistent with previous find
ings. For example, Miraki et al. (2019) showed that the 
novel classifier ensemble model, namely the Random 
Forest Classifier based on Random Subspace Ensemble, had 

Table 5. Statistical measures of developed hybrid models in this analysis.

Structural Condition Models Statistical Measures

Classes

ACC (%)Good Condition Intermediate Condition Bad Condition

J48DT GM 0.74 0.24 0.72
MCC 0.49 0.05 0.44 70.83
F1-score 0.81 0.09 0.61

BG-J48DT GM 0.72 0.17 0.69
MCC 0.49 0.02 0.42 71.07
F1-score 0.82 0.05 0.59

DG-J48DT GM 0.70 0.00 0.72
MCC 0.43 - 0.44 70.57
F1-score 0.80 0.00 0.61

RotF-J48DT GM 0.70 0.17 0.70
MCC 0.44 0.02 0.42 70.07
F1-score 0.80 0.05 0.60
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a higher predictive capability for groundwater potential 
mapping compared to other benchmark models. 
Additionally, the findings of Chen et al. (2019) indicated 
that two ensemble frameworks, namely Random subspace, 
and Bagging, produce a higher predictive performance than 
the base classifier, namely Reduced-error pruning trees. 
A similar conclusion was illustrated in the study by Phong 
et al. (2021) which shows the RealAdaBoost, Bagging, and 
Rotation Forest ensembles outperformed the functional tree 
base classifier.

Finally, the structural condition models developed in this 
study had a lower capability in predicting samples in the inter
mediate condition class (Figure 10). This can be explained that 
this is the minor class in the dataset (about 7.7% in the total of 
957 training samples). Several studies have transformed the 
multi-classification problems into binary classification problems 
by clustering samples in classes 1–3 into one class (good con
dition) and the remaining samples into another class (bad 
condition) to improve classification performance 
(Mohammadi, Najafi, Tabesh, et al. ; E. Ana et al. 2009). In our 
study, we try to keep the basic characteristic of classes by 
converting five-grade scales into three-grade scales. This still 
allows water managers to correctly assess the importance of 
each class (pipes in class 1 and class 2 are good conditions, and 
pipes in class 4 and class 5 are bad conditions) and improves 
the classification performance of the structural condition 
models.

4. Conclusions

In this study, three ML hybrid models namely BG-J48DT, DG- 
J48DT, and RotF-J48DT based on the J48DT base classifier were 
investigated to predict the structural condition of sewer pipes 
in Ålesund city, Norway. The importance of input factors for 
modeling was assessed by applying the Boruta feature selec
tion technique.

The results show that the material of sewer pipes is the most 
important factor affecting the structural condition of sewer 
pipes in the study area, followed by the age of the pipes. The 
landslide area, land cover, network type, building area, pipe 
form, and length of sewer pipe have the least influence on the 
structural condition in the study area.

Many model performance assessment measures including 
GM, MCC, F-Measure, AUC-ROC and AUC-PRC curves were used 
to evaluate the classification performance of the developed 
models. The three ensemble models have shown better predic
tion capability compared to the J48DT base classifier. The RotF- 
J48DT ensemble model is better at predicting all three condi
tion classes comparing the remaining other ML models.

Although the ensemble models perform more effectively 
than the base classifier in predicting the structural condition 
of sewer pipes, the accuracy of these models is still limited 
(about 70%). Therefore, other ML models need to be investi
gated to improve classification performance and accuracy.

Figure 10. The AUC values of the developed models: (a) AUC-ROC, (b) AUC-PRC.
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