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ABSTRACT Assessment of sewer condition is one of the critical steps in asset management and support
investment decisions; therefore, condition assessment models with high accuracy are important that can
help utility managers and other authorities correctly assess the current condition of the sewage network
and effectively initiate maintenance and rehabilitation strategies. The main objective of this research is to
assess the potential application of machine learning (ML) algorithms for predicting the condition of sewer
pipes with a case study in Ålesund city, Norway. Nine physical factors (i.e., age, diameter, depth, slope,
length, pipe type, material, pipe form, and connection type) and ten environmental factors (i.e., rainfall,
geology, landslide area, building area, population, land cover, groundwater, traffic volume, distance to road,
and soil type) were used to assess the sewer conditions employing seventeen ML models. After processing
the sewer inspections, 1159 of 1449 individual pipelines were used to train the sewer condition model. The
performance of MLmodels was validated using the 290 remaining inspected sewer pipes. The area under the
Receiver Operating Characteristic (AUC-ROC) curve and accuracy (ACC) showed that the Random Forest
(AUC-ROC = 77.6% and ACC = 78.3%) is a sensitive model for predicting the condition of sewer pipes in
the study area. Based on the Random Forest model, maps of predicted conditions of sewers were generated
that may be useful for utilities and water managers to establish future sewer system maintenance strategies.

INDEX TERMS Geographic information system, machine learning, predictive maintenance, sewer network,
sewer condition assessment.

I. INTRODUCTION
The collection, transport, treatment, and discharge of
stormwater, and wastewater are the main roles of sewage
networks in urban areas [1]. Stormwater and wastewater col-
lection systems play a critical role in minimizing the negative
effects of floods during heavy rainfall events and protecting
the environment from contamination [2]. However, due to
intrinsic and extrinsic factors, sewer networks are subjected
to deterioration, breakages, and collapse during their lifespan
with dire consequences for infrastructure, the environment,
and public health [3].

The associate editor coordinating the review of this manuscript and
approving it for publication was Wei Liu.

Studies have shown an increasing rate of breakages and
collapse of sewer networks as a corollary of limited rehabil-
itation investments, climate change, and rapid urbanization
[2]. By 2040, investment needs for water infrastructure in
Norway have been previously estimated at e28 billion [4],
and this amount was recently raised to e32 billion [5]. Con-
sequently, maintenance strategies are being implemented to
increase the life cycle of the sewer network and reduce the
expenditure on replacement and rehabilitation [6]. To achieve
this, condition models for the prediction of sewer conditions
can be valuable tools to support the maintenance, rehabil-
itation and to investment decision strategies for the sewer
network [7].

For condition modeling of sewer pipes, a determination
of contributing factors of sewer conditions is important.
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According to a review, factors influencing sewer conditions
can be categorized into: physical (e.g., age, diameter, and
length), environmental (e.g., rainfall, soil type, and ground-
water), and operational factors (e.g., sediment level, flow
rate, and infiltration) [8]. Besides, the roles of the afore-
mentioned factors on the model prediction reliability are not
equal; therefore, assessing the significance of the contributing
factors is a pivotal task that may enhance the predictive ability
of the models [9].

Geographic Information System (GIS) can play an impor-
tant role in data management, modeling, and visualization
in condition assessment. GIS can be applied to store, man-
age, calculate, visualize, and analyze spatial and non-spatial
information and data on the contributing factors of sewer
conditions in different layers [10]. Based on theGIS database,
prediction models of the future condition of sewer pipes can
be autonomously constructed and updated.

Condition models can be classified into physical, statisti-
cal, and machine learning [11], [12], [13], [14]. In the phys-
ical models, parameters related to conditions of the sewer
pipes (e.g., material, diameter, type of effluent, etc.,) are
employed to fit mathematical equations to the sewer’s status
[15]. Therefore, these models are effective for sewer network
analysis during the construction period and initial operational
phases. However, the scarcity of data needed for the simula-
tion of deterioration mechanisms is one of the limitations of
these models [13].

Sewer deterioration is a complex process affected by
many factors, therefore statistical models are likely to have
more advantages compared to the physical models in terms
of calculating speed and straightforward function form
when the monitoring time-series data is long enough [16].
Successful applications of statistical models in sewer dete-
rioration assessment have been reported in the literature [17],
[18], [19], [20]. These models are based on some assump-
tions that need to be satisfied to achieve highly accurate
performance [13]. However, these assumptions are gener-
ally difficult to achieve with the deterioration process. For
example, the distance between consecutive conditions is
constant or the sewer status in each condition should be a
normal distribution [8]. According to Zamanian, et al. [21],
sewer deterioration is a non-linear process, and it is diffi-
cult for statistical models to predict this process with high
accuracy.

Machine learning (ML) models can capture the linear
and non-linear relationships between input factors and sewer
condition state, even if these relationships are unclear or
when data is incomplete [22]. Additionally, these models can
effectively deal with different types of inputs and outputs,
including numeric, nominal, or categorical [23]; therefore,
they are applied in various studies involving sewer condition
prediction [14], [24]. However, the accuracy of deterioration
prediction models usingML algorithms needs to be improved
by increasing the number of input factors and inspections or
using an adequately distributed dataset [6].

Although different ML algorithms are used to model the
condition of sewer pipes, their accuracies are dissimilar due
to different characteristics in the study area, data quality, vari-
ation, and randomness between studies and used algorithms
[25]. As a result, no MLmodel is the best for modeling sewer
conditions in all areas. Besides, a comprehensive compari-
son between different types of ML models for modeling the
condition of sewer pipelines is still missing. This study is an
attempt to partially fill this gap in the literature by exploring
and verifying the potential application of ML algorithms for
sewer condition assessment. The significance of input factors
was briefly analyzed to provide helpful information for water
engineers/managers in prioritizing significant factors of the
sewer condition in maintenance strategies in Ålesund city,
Norway.

II. THE STUDY AREA AND GIS DATABASE
A. DESCRIPTION OF THE STUDY AREA
The sewer network of Ålesund, a coastal city located in the
west of Norway, was used in this study. The city has an
area of approximately 607.3 km2 and lies between latitudes
of 6◦05’08’’ N and 6◦40’56’’ N, and between longitudes of
62◦25’07’’ E and 62◦30’37’’ E (FIGURE 1).

Ålesund city is in an area heavily influenced by ocean
currents with cold, rainy winters and cool summers. The
variation in temperatures throughout the year is 13.6 ◦C with
average temperatures of the coldest month (February) and
the warmest month (August) being −0.6 ◦C and 13.0 ◦C,
respectively [26]. The city is also located in a high rainfall
density region with an average rainfall of 2100 mm per year.
The average rainfall in the driest month (May) and the wettest
month (December) are 104 mm and 230 mm, respectively.
Along with the general trend of climate change, the weather
in the city is affected by unavoidable fluctuations in tem-
perature, precipitation, and extreme weather events that put
pressure on the sewer network system [27], [28].

B. GENERAL DESCRIPTION OF DATA USED
Based on the literature [29] and data availability, a total of
ten physical factors (i.e., age, diameter, depth, slope, length,
pipe type, material, network type, pipe form, and connection
type) and ten environmental factors (i.e., rainfall, geology,
landslide area, building area, population, land cover, ground-
water, traffic volume, distance to road, and soil type) were
considered in this study. It should be stated that operational
factors including, but not limited to, flow rate, blockages,
infiltration, or inflows were not considered because of data
unavailability at the time of this study.

1) PHYSICAL FACTORS
Physical factors of sewer pipe networks are elements that
relate to the pipeline’s physical characteristics and compo-
nents. These factors are considered indispensable for pipe
deterioration rate or remaining useful life [30]. Data on
the physical characteristics of pipes are generally recorded,
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FIGURE 1. The sewer network in the study area.

updated, and managed by water utilities and/or relevant agen-
cies. In this study, the physical factors were provided in the
tabular datasets by the Department of Water and Sewage of
Ålesund in 2021. Eight physical factors (i.e., age, diameter,
length, pipe type, material, network type, pipe form, and
connection type) are available in the dataset, the remaining
factors (i.e., depth and slope) are obtained from Digital Ele-
vation Model (DEM) with pixels of 5 m × 5 m using a GIS
tool. An overview of the physical factors used in this study
is shown in FIGURE 2. The number on top of the bar chart
represents the number of sewer pipes corresponding to pipe
type.

The age of sewer pipes was considered one of the most
significant factors affecting the sewer condition process [8].
This factor immediately affects the pipe deterioration after the
sewer is installed, and the aging speed is quicker during the
operation [31]. In this study, the age of the sewer pipes was
calculated as the difference between the installation year and
the inspection year. The oldest sewer pipelines were installed
in the 1900s and the newest pipes were replaced/set up in
2020 (FIGURE 2a).

The influence of material on the sewer condition process
of sewer pipes is well established in previous studies [3], [6],
[32]. For example, although concrete pipes are significantly
resistant to abrasion, they are vulnerable to the corrosive
action of hydrogen sulfide [33]. The materials of the sewer
pipes are shown in FIGURE 2b.

Pipe diameters affect the deterioration process. For
instance, larger pipes are less affected by deterioration com-
pared to smaller ones [17]. Detailed information on sewer
pipes according to their diameter is shown in FIGURE 2c.
Pipes in shallow depths are more vulnerable than the deeper
ones because of stresses from surface load, road traffic,
illegal connection, tree root intrusion, or road maintenance/

construction activities [34]. The depths of the sewer pipes
were unavailable in the database and were therefore com-
puted as the distance from the ground surface to the mid-point
of the pipes (FIGURE 2d). The height of the ground surface
was interpolated from the DEM.

The sewer pipe slope directly relates to water flow that
mainly causes corrosion, sediment deposition, and clogging
in the sewer pipes. For example, flat concrete pipes are more
vulnerable due to hydrogen sulfide gas emissions because
wastewater in these pipes cannot drain speedily [32]. The
information on pipe slope was not available in the dataset
and was computed as the difference between the inverted
elevation of the start and end manholes using the GIS tool
(FIGURE 2e). The start and end manholes were classified
based on the flow direction of each pipe. When water flows
from the start point to the endpoint, the slope value is positive
when the start point is higher than the endpoint and vice
versa.

The sewer network in the study area consists of three
different types: wastewater, stormwater, and combined pipes.
The effect of pipe type on pipe condition has been established
in previous studies. For instance, combined sewers are more
likely to be deteriorated than sanitary pipes due to high
potential infiltration and exfiltration during rainfall events
[35]. Pipe length was shown as one of the factors affect-
ing sewer conditions where pipes with long lengths had a
higher probability of failure than shorter ones, and the failures
often occurred at the connection positions [36]. Therefore,
connection type was considered a factor for constructing the
sewer condition model in this study. Some types of sewer
connections are shown in FIGURE 2f. The sewer network
with different forms and types can deteriorate differently. For
example, clay pipes with circular shapes were easily prone to
fractures [32]. Therefore, different pipe forms (FIGURE 2g)
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FIGURE 2. The physical characteristics of the sewage network.

and network types (FIGURE 2h) were considered in this
study.

The sewer network in the study area contains about
31293 wastewater, stormwater, and combined pipelines with
a total length of 703.0 km.After combiningwith the inspected
data, a total of 1449 individual pipelines were used to model
the sewer condition status. A summary of statistical indexes
of physical variables is represented in TABLE 1.

2) ENVIRONMENTAL FACTORS
Environmental factors used in this study are mainly extrinsic
elements that relate to the relative geo-location of the sewers.
The data have been collected from many sources with differ-
ent formats and spatial resolutions (TABLE 2). It is worth
noting that TABLE 2 shows the original spatial resolution
of the environmental factors, and these data were processed
to transfer them into the same coordinate system, format,
and spatial resolution. In this study, post-processed data were

TABLE 1. Summary of physical variables.

re-sampled to the same spatial resolution (5 m × 5 m) and
transformed into a grid spatial database before running ML
models.

Rainfall results in rising groundwater which leads sewer
pipes to deteriorate more quickly [35]. In this study, rainfall
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TABLE 2. Summary of the environmental factors used in this analysis.

TABLE 3. The hydrological stations used for rainfall interpolation.

data were obtained from annual average rainfall over several
years at nine weather stations near the study area. Detailed
information about these stations is shown in TABLE 3.
A rainfall map was generated using data at the aforemen-
tioned stations, and the Inverse Distance Weighting (IDW)
method, which is the most common spatial interpolation
method [37], was used to interpolate rainfall values in the
study area (FIGURE 3a).

The geological characteristics around a sewer pipe can
affect its condition processes. For instance, it has been shown
that changes in geological structures affect infiltration and
groundwater in coastal urban areas, resulting in sewer deteri-
oration [38]. Additionally, hydraulic conductivity in different
geological types can affect sewer deterioration differently
[39]. FIGURE 3b shows the geological map used as input in
sewer condition assessment.

Landslide has been implicated in sewer network because
of failures caused by road subsidence [40]. Similarly, sewer
pipes under building areas are more vulnerable to deterio-
ration than those found in non-built areas [8]. In this study,
landslide and building areas were considered as input factors
for constructing sewer condition models (FIGURE 3c).

Population density is considered a critical factor for sewer
deterioration. For example, a large population may lead to
a huge volume of wastewater discharge into the wastewater

collection network, resulting in the deterioration of the sys-
tem [21]. In this study, a population map was prepared based
on the statistical data received from the Norwegian Mapping
Authority (FIGURE 3d). Land cover affects soil infiltration
rate, evapotranspiration, or surface runoff and has been con-
sidered a variable in water quality change that has a strong
correlation with the current condition of sewer pipes [41].
In this study, five classes of land cover, which were obtained
from the Sentinel-2 images level 1C by using the object-based
classification [42], were used (FIGURE 3e).

Groundwater is considered an essential factor that influ-
ences sewer pipes [38], because groundwater at or above
sewer pipes leads to water infiltration into the pipe, facili-
tating the deterioration processes. In addition, the availability
of groundwater around the sewer pipe can destabilize the soil
around the sewers leading to failures or collapses. In this
study, a groundwater map was prepared using the IDW
method and 31 drills data around the study area (FIGURE 3f).

Road traffic has been shown to have an impact on the
deterioration process of sewers. Studies have shown that the
condition of sewers located under roads as well as those
in close proximity to roads are significantly affected [36].
In this study, traffic volumewas calculated from the statistical
data provided by the Norwegian Public Roads Administration
(FIGURE 3g). There is no universal guideline for selecting
the distance to road in modeling the sewer deterioration pro-
cess. For instance, while Ahmadi, et al. [43] only considered
pipes located under roads, the ratio of pipe length along the
road was counted in the study by Yin, et al. [6]. Remarkably,
Laakso, et al. [9] emphasized the pipes close to the tree
(about 5 m) had a higher deteriorated degree compared to
further ones, and the pipes far from roads will suffer from less
influence compared to near ones. By using a similar approach
for road distance, we consider a 5m-range road distance for
the first road class; therefore, larger distances can be accepted
for classifying further pipes into different road classes. In this
study, five ordinal road classes were used based on the road’s
buffers of 0-5 m, 5-10 m, 10-20 m, 20-50 m, and >50 m
(FIGURE 3h).

Soil type is one of the significant factors in the deterioration
models because it affects runoff generation and groundwater
and the influence of soil on sewers with larger sizes or buried
deeper is more significant than the others [44]. In this study,
14 soil classes were used to construct the sewer condition
models (FIGURE 3i).

III. BACKGROUND TO MACHINE LEARNING
ALGORITHMS USED
Many ML algorithms have been proposed and applied not
only in the water sector but also in other fields [7], [8], [9],
[23], [45]. In this study, the following classification-based
ML methods were selected based on their popular applica-
tions in classification problems.

A. CLASSIFICATION AND REGRESSION TREE
Classification And Regression Tree (CART) was first pro-
posed by Breiman, et al. [46] to solve regression and
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FIGURE 3. The environmental factors used in this study.
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classification problems based on tree-based structures. In this
method, the sewer dataset (also called the root node) was
divided into binary values (good or bad condition) at each
node using a series of recursive binary splits based on eval-
uating every possible predictor [47]. Finally, the predicted
sewer’s status was defined based on the most commonly
occurring class of the node. The CART was selected in this
study because this algorithm provided the largest informa-
tion on the sewer status at each decision node using the
input sewer factors [48]. This algorithm was used as a base
classifier while constructing the ensemble techniques (e.g.,
AdaBoost or Gradient Tree Boosting).

B. RANDOM FOREST
Random Forest (RF) was developed by Breiman [49] to
significantly improve classification accuracy by creating an
ensemble of trees and letting them vote for the most pop-
ular class. In the RF model, the sewer input dataset was
randomly split into classification trees, and the model was
trained through bagging or bootstrap aggregating. The final
sewer’s condition status was obtained by aggregating the
prediction from each tree. The RF model was applied for this
study using the bootstrap technique to control the sub-sample
size and get the average prediction from sub-decision
trees to improve the predictive accuracy and control
over-fitting.

C. ADABOOST CLASSIFICATION
AdaBoost method, which was introduced by Freund and
Schapire [50], uses an adaptive re-sampling technique for
controlling bias and variance to improve predictive perfor-
mance. The AdaBoost randomly selects subsets from the
sewer dataset; these subsets were assigned equal weights to
implement a classifier for each iteration. The misclassified
cases in the previous iteration will be reassigned with higher
weights while the weights are kept for the correctly classi-
fied cases. A new normalized training subset is created, and
a new iteration process continues. The iterative process is
terminated if specific stopping criteria are satisfied, and the
final sewer’s status is the product of the weighted sum of all
ensemble predictions.

D. GRADIENT TREE BOOSTING
Gradient boosting introduced by Friedman [51] sequen-
tially fits a parameterized function (base learner) to pseudo
residuals by least squares at each iteration using additive
models. In Gradient Tree Boosting (GTB), a decision tree
was used as a base learner. In the GTB model, a sub-
set of the sewer dataset is randomly generated (without
replacement) for each iteration. After that, this subsample
is used in place for the full sample to fit the base classi-
fier and update the model at the current iteration. The final
sewer’s condition status is obtained by minimizing the loss of
function.

E. HISTOGRAM-BASED GRADIENT BOOSTING
Histogram-based Gradient Boosting (HGB) introduced by
Guryanov [52] is a modification of the GTB and can increase
the learning process and the model’s prediction performance.
This method divides the sewer training dataset into bins
and constructs a histogram of feature values during the
training phase. After every split decision tree, values of
accumulated predictions of the sewer status are updated
based on the deducted linear coefficient of split nodes. The
iteration process is stopped when the stopping condition
(e.g., the limit of tree depth or the number of leaves in
the tree) is reached. Then, the sewer’s condition status is
defined using the best split points based on the feature
histograms [53].

F. EXTREMELY RANDOMIZED TREES
Extremely Randomized Trees (ERT) is proposed by
Geurts, et al. [54]; this algorithm splits nodes by making
a small number of randomly chosen splits-points from the
sewer dataset for each of the selected sewer condition sta-
tus without re-sampling the dataset when building a tree.
By using this approach, decision trees generated are entirely
randomized whose structures are independent of the sewer’s
status. The sewer’s status predicted by the single tree is
aggregated to yield the final sewer’s condition.

G. GAUSSIAN PROCESS
Gaussian Process (GP) model was introduced by Rasmussen
[55] for classification and regression problems that gener-
alize the Gaussian probability distribution. In the case of
sewer condition status prediction, the sewer condition was
transferred into {−1,+1}, a latent function f was used to
predict the class membership probability for a new test
pipe. The value of the function f was then mapped into the
[0, 1] interval using the probit function [56], where values
of 0 and 1 denote the good and bad conditions of sewer
pipes, respectively. Williams and Barber [57] introduced to
use of Laplace’s method for Gaussian approximation to the
posterior over the latent function values. In this study, a
Laplace method was applied to find a Gaussian approxi-
mation to the posterior because of its simplicity, scalability,
and accuracy [58]. The predictive distribution of the sewer’s
status can be calculated by getting the weights of all possible
predictions by their calculated posterior distribution [59]:

p
(
y∗ = 1|x∗,X, y

)
=

∫
∗

f
8
(
f ∗
)
p
(
f ∗|x∗,X, y

)
df ∗ (1)

where X = [x1, . . . ,xn]T and y = [y1, . . . ,yn]T are vectors
containing factors and sewer condition status, respectively;
n is the number of sewer inspections; y∗ and x∗ are pre-
dicted sewer condition status and vector-containing factors
of one sewer pipe, respectively; f ∗ and 8(.) are variables
corresponding to the test point x∗ and the probit function,
respectively.
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H. GAUSSIAN NAIVE BAYES
The Gaussian Naive Bayes (GNB) classifies sewer status
(good or bad condition) based on an assumption of having
a Gaussian distribution on input factors using the Naive
Bayes method [60]. The sewer status can be predicted using
the Gaussian probability density function by substituting the
parameters with the new input values [61]:

p (xi|y) =
1√
2πσ 2

y

e
−
(xi−µy)

2

2σ2y (2)

where σy and µy are the variance and mean of the feature ith,
respectively; class y contains sewer condition status (good or
bad condition).

I. BERNOULLI NAIVE BAYES
The Bernoulli Naive Bayes (BNB) classifies sewer status
based on the Bayes theorem using sewer input data that are
distributed according to multivariate Bernoulli distributions.
The sewer status predicted by BNB is made based on the rule
as follows [48]:

P (xi|y) = P (i|y) xi + (1− P (i|y)) (1− xi) (3)

where P (xi|y) is the likelihood of the features, xi is the vector
of the input factor the feature ith, and y is sewer class (good
or bad condition).

J. K-NEAREST NEIGHBORS
K-nearest neighbor (KNN) rule was first introduced by Cover
and Hart [62] for classification problems. In the KNNmodel,
the weight function is used to assess the degree of contribu-
tion of the nearer neighbors to the fit; the nearest neighbors
are computed using search algorithms, the number of nearest
neighbors is found using the grid-search method, and the
distance metric is used to calculate the distance of one test
observation from all the observations of the training dataset
and find the nearest neighbors.

For sewer condition prediction, the distance from the sewer
pipe xi in the test dataset of each sample in the training
dataset is computed. The topK points, which have the closest
distance to xi, are stored, and the status probability of sewer
xi is computed as follows [7]:

P (y = D,X = x i) =
1
K

∑
j∈A

I
(
yj = D

)
(4)

where I
(
yj = D

)
equals 1 if the instance yj is in class D,

otherwise, it equals 0, A is the dataset that contains K points,
and D is the sewer status class (good or bad condition).

K. LOGISTIC REGRESSION
The logistic Regression (LR) model predicts the probability
of the sewer condition status based on their relationship
with input factors. The assumption of a linear relationship
between factors and sewer condition status is unnecessary
because this model uses the linear relationship between the

logit of the input factors and the sewer status. The maximum
likelihood method is generally used to estimate the intercept
and coefficients based on the factors and sewer conditions.
This method maximizes the probability of the sewer status
given the fitted regression coefficients [63]. Although LR
was designed for regression problems, this method was com-
monly used for classification problems (especially for binary
classification) [64], [65].

L. RIDGE CLASSIFICATION
The Ridge regression method was introduced by Hoerl and
Kennard [66] for solving the multicollinearity problem of
covariates in samples. This method assumes that samples
from each sewer condition class belong to a linear sub-
space, and a new test sample can be represented as a linear
combination of class-specific training samples [67]. Ridge
Classification (RC) algorithm is developed based on the
Ridge regression, it converts the condition status of sewer
pipes into [−1,+1] and solves the problem as a regression
task, minimizing the size of the coefficients by imposing a
penalty, and the sewer condition class is assigned based on
the highest value of the prediction result.

M. MULTI-LAYER PERCEPTRON NEURAL NETWORK
Multi-layer Perceptron Neural Network (MLP) is a fully
connected class of feedforward Artificial Neural Networks
(ANN). This network has three sequential layers: the input
layer, the hidden layer, and the output layer. The number
of neurons in the input layer equals the number of factors,
two neurons in the output layer represent the expected sewer
status (good or bad condition), and the number of hidden
layers and hidden neurons is generally found by trial and
error [68].

Before training the MLP model, each factor (i.e., physical
and environmental factors) was assigned to each neuron and a
bias unit was added to the input layer. Then, randomly gener-
ated weights were assigned for elements in the input layer, the
weighted sums for neurons were calculated and the activation
functions were used to transfer the results to the hidden layer.
Similar processes were implemented in the hidden layer and
the results were driven to the output layer. The error (the
difference between the predicted sewer condition status and
the measured condition) was calculated and minimized at the
output layer. Finally, the derivation of the error function (loss
function) with each weight in the network was determined
and the model was updated. This was an iterative process over
multiple epochs until the ideal weights were determined and
the final sewer condition status was predicted based on these
weights.

N. SUPPORT VECTOR MACHINE
Support Vector Machine (SVM) was proposed by Cortes and
Vapnik [69] to distinctly classify the data points using a
hyperplane in N-dimensional space (N is the number of fea-
tures). In the SVM model, the sewer pipe condition status is
determined by maximizing the distance from the hyperplane
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to the data points of both good and bad conditions. The
hyperplanes can be computed as follows [70]:{

yi
(
w.∅T (xi)+ b

)
≥ 1− εi

εi ≥ 0, i = 1, 2, . . . , n
(5)

where n is the number of inspected pipes, xi ∈ Rn, yi ∈ R, x,
and y are vectors that contain input factors and sewer’s con-
dition status respectively, w is the coefficient vector, b is and
bias of the hyperplane in the feature space, ∅ is the non-linear
mapping function, and εi are positive slack variables. The
predicted condition status of the sewer pipe using the SVM is
calculated as follows [71]: f (x) = sign

(∑n

i=1
αiyiK (xi, x)+ b

)
∑n

i=1
αiyi = 0, 0 ≤ αi ≤ C,∀i = 1, 2, . . . , n

(6)

where auxiliary variables αi are Lagrange multipliers, C is
the regularization parameter, and K (x, xi)is Kernel function.

IV. THE PROPOSED METHODOLOGY FOR SEWER
CONDITION ASSESSMENT USING MACHINE LEARNING
The development of the sewer condition modeling for
the study area involved the following interlinked steps:
(1) Collecting physical characteristics and preprocessing aux-
iliary data to obtain environmental characteristics of the
sewer pipes, (2) Dividing the inspected sewer pipes into
training and validation datasets, (3) Eliminating redundant
features, (4) Constructing conditional assessment models
based on different ML algorithms, (5) Validating models’
performance and accuracy, and (6) Preparation of condi-
tion maps of sewer pipelines. This procedure is shown in
FIGURE 4.

A. GIS DATABASE
In this study, GIS was used to preprocess the environmental
factors, which were highly related to spatial information. For
instance, satellite images have been processed by GIS to cre-
ate a land-use map using supervised classification in ArcGIS
Pro software. Interpolated maps (i.e., rainfall, population, and
groundwater) were computed using spatial analysis tools in
GIS (e.g., raster calculator, interpolated function) to integrate
environmental variables into sewer pipelines. Based on the
information obtained from the GIS database, ML algorithms
were applied for spatial modeling of the conditions of the
sewer network.

Physical factors are normally recorded during the instal-
lation, operation, and maintenance of the sewer pipes. These
data are managed by the local municipality or water agencies;
therefore, these factors are easily assigned to each sewer
pipe. In this study, the tabular data of physical variables were
assigned for sewer pipe using GIS. However, environmental
factors are collected from multi-source data (TABLE 2).
Hence, environmental factors need to be aggregated for each
sewer pipe.

From a spatial perspective, pipes in the sewer network
are represented by ‘‘lines’’. However, a pipeline can cross

TABLE 4. The condition classes of pipe.

many regions with different environmental characteristics
(e.g., different land cover or soil type). Therefore, the
location of the pipe geometry center is used to assign
environmental factors. The data aggregation process is shown
in FIGURE 4.

In this study, the inspected grades were used as dependent
variables for modeling the condition of the sewer pipes. The
current conditions of the sewer pipes were assigned using
damage scores obtained through the closed-circuit television
(CCTV) method. Next, these damage scores were coded into
damage classes representing the sewer conditions. According
to Haugen and Viak [72], the conditions of sewer pipes in
Norway are classified into five-grade scales based on their
damage scores (TABLE 4).

There are different approaches for processing dependent
variables to model the conditions of sewer pipes in the litera-
ture. For example, sewers in six-grade scales were aggregated
into three grades [12]; in contrast, five grades of sewers
were kept to develop models [73]. In this study, pipes in
classes 1-2-3 were grouped into one class (good condition)
and pipes in the remaining classes were aggregated into
another class (bad condition) before building the condi-
tion models. Moreover, aggregating multi-output classes into
smaller outputs will reduce the imbalance of the classifica-
tion. The distribution of sewer classes according to age and
material is shown in FIGURE 5, the data shows a slight
imbalance in the dataset as a majority (approximately 62%)
of inspected sewer pipes in Ålesund city are in good condition
class.

After the GIS database was created, environmental factors
were converted to raster format with a grid size of 5 m× 5 m
in theWGS84-UTM32T (EPSG:32632). After that, the raster
values were assigned for each pipe based on their geograph-
ical location. Categorical factors (i.e., pipe type, network
type, pipe form, connection, geology, landslide area, land
cover, building area, road class, and soil type) were coded by
integer values. Furthermore, concrete, other, polypropylene,
and polyvinyl chloride (PVC) pipes were coded by values 0,
1, 2, 3, and 4, respectively, for correlation analysis in this
study.

B. PREPARATION OF TRAINING AND
VALIDATION DATASETS
For the model development, a total of 1449 individual
pipelines were used to train and validate the condition models
of the sewage network. There is no universal guideline for
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FIGURE 4. The framework for modeling the condition of a sewerage system.

choosing the ratio of training and validation datasets when
modeling the condition of the sewage network. For example,
a ratio of 80/20 was used for training/testing datasets [7]; in
contrast, a ratio of 75/10/15was used in another study to train,
validate, and test the model [6]. In this study, this data was
randomly divided with a ratio of 80% and 20% for training
and testing datasets, respectively.

C. FEATURE SELECTION METHODS
In general, using redundant variables not only decreases the
performance of ML models but also burdens computation.
Feature selection techniques help to reduce dimensionality
and clearly understand data [74]. Therefore, identifying and
removing less significant factors before modeling is critical
in preprocessing step [75].

VOLUME 10, 2022 124247



L. V. Nguyen et al.: Comparison of ML Techniques for Condition Assessment of Sewer Network

FIGURE 5. Different classes of sewer pipes in the study area.

The feature selection techniques used can generally be
classified into three: filter, wrapper, and embedded methods.
A brief description of the methods is as follows:
• Filter methods determine an optimal subset of variables
mainly based on their statistical properties and rela-
tionship with the target variable. These methods do not
remove the multicollinearity of features because they do
not account for the interaction between variables [74].
Detailed information on the filter methods can be found
in the study by Song, et al. [76].

• Wrapper methods select a subset of features by remov-
ing and adding the subsets accordingly based on the role
of variables [77]. These methods often have higher per-
formance than filter-based methods, these approaches
however are more time-consuming [45]. Details on
some wrapper methods can be found in the study by
Nanda, et al. [78].

• Embedded methods apply the model-tuning process
to perform feature selection [77]. These methods
are a combination of the best qualities of filter
and wrapper methods in which the variable selec-
tion process and classification have been implemented
simultaneously using a learning algorithm [45]. Assess-
ment of the importance of variables using embedded
methods can be found in the study by Bhavan and
Aggarwal [79].

In this study, six feature selectionmethods (two filtermethods
including Pearson’s R (PR) and mutual information (MI),
two wrapper methods including Boruta and Stepwise Feature
Selection (SFS), and two embedded methods including Ran-
dom Forest (RF) and Recursive Feature Elimination (RFE))
were used to assess the contribution of variables to ML
models. The less important variables, which were defined by
the majority of feature selection methods, were eliminated
before constructing the MLmodels. The packages ‘‘Boruta’’,
‘‘stepAIC’’, ‘‘randomForest’’, ‘‘caret’’, and ‘‘kerlab’’ in the
R Studio software were applied to implement the feature
selection methods.

D. CONSTRUCTION OF SEWER CONDITION
ASSESSMENT MODELS
The performance of the ML models highly depends on their
hyperparameters. The typical hyperparameters of each ML
model are shown in TABLE 5. The Scikit-learn and Keras
libraries in Python were used to develop ML models in this
study.

In this study, theMLPwith a single hidden layer was inves-
tigated using the Scikit-learn library to predict the sewer sta-
tus. The log-loss function was optimized in this model using
stochastic gradient descent or Limited-memory Broyden-
Fletcher-Goldfarb-Shanno (LBFGS) method because this
method is especially appropriate for multi-variable optimiza-
tion [80]. For comparison purposes, the multi-layer ANN
architectures using the Keras library were also applied to
predict sewer status. Hence, the ANN architectures with one,
two, and three hidden layers were investigated. The Bayesian
global optimization with Gaussian processes method was
used for tuning some hyperparameters (e.g., the number
of hidden layers, the number of neurons in the hidden
layer, activation functions, and optimization functions) [81].
The ANN was built and trained using the Keras library
in Python, the early-stopping technique was used to avoid
over-fitting.

The grid-search method with 5-fold cross-validation was
selected to find the optimal values of hyperparameters. The
training dataset was randomly split into 5 equal-sized subsets
and the cross-validation process was repeated 5 times for each
of the five subsets to find the optimal solution. The optimum
values of hyperparameters of each ML model were used to
build the conditional assessment models.

E. MODEL VALIDATION
In this study, the efficiency of the developed models
was assessed using Geometric Mean (GM), Accuracy
(ACC), F-Score, Matthew’s correlation coefficient (MCC),
the area under the Receiver Operating Characteristic curve
(AUC-ROC), and the area under the Precision-Recall curve
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TABLE 5. Summary of optimal parameters used in this study.

VOLUME 10, 2022 124249



L. V. Nguyen et al.: Comparison of ML Techniques for Condition Assessment of Sewer Network

FIGURE 6. Confusion matrix for binary classification.

(AUC-PRC). These are expressed as follows (7)–(10), shown
at the bottom of the page, whereas ACC and AUC-ROC
are the most popular criteria for assessing the classification
performance of ML algorithms, GM, F-Score, MCC, and
AUC-PRC are sensitive to imbalanced datasets [82].

Other values including True Positive (TP), True Nega-
tive (TN), False Positive (FP), and False Negative (FN) are
obtained from the confusion matrix for binary classification
(FIGURE 6). The values of the confusion matrix (on the
validation dataset) for the binary classification of each ML
model are presented in FIGURE 7.

Because multiple assessment criteria were used, the
TOPSIS (Technique for Order of Preference by Similarity to
Ideal Solution) method for multiple-criteria decision-making
was applied to rank the predictive performance of ML algo-
rithms. This method proposed by Yoon and Hwang [83] is a
multi-criteria decision analysis method that is based on the
concept that the chosen alternative should have the shortest
geometric distance from the positive ideal solution and the
longest geometric distance from the negative ideal solution.
This method was widely used to compare the performance
of multiple ML algorithms using multiple criteria [84], [85].
In this study, the R package ‘‘topsis’’ introduced by Ihaka and
Gentleman [86] was used to implement the TOPSIS method.

F. GENERATION OF SEWER CONDITION MAP
In general, the input factors affecting the sewer condition
status are dynamic elements (e.g., rainfall or population).
However, some other factors can be assumed to be unchanged
over time. For example, a collapsed/damaged concrete pipe
can be replaced by a newly similar concrete pipe, and similar
things can happen with other factors such as diameter, pipe
type, or network pipe. Therefore, in this study, we assume
that there is only a fluctuation in rainfall, groundwater, and

FIGURE 7. Confusion matrix of each machine learning model.

population density during the operational period of the sewer
network while predicting future sewer condition status, the
other factors are assumed as unchanged. The reason for
choosing rainfall, groundwater, and population density as
dynamic elements is that these factors are sensitive over time.

In this study, we assumed that the change in rainfall mainly
causes the change in groundwater. Hence, the groundwater
at the time t (GWL t ) was calculated using the interpolation
method:

GWL t = GWL0 +
(
Rainfallt − Rainfall0

)
(11)

where GWL0 and Rainfall0 are the groundwater and rain-
fall at the time t0, and Rainfallt is rainfall at time

GM =

√
TP

TP+ FN
×

TN
TN + FP

(7)

ACC =
TP+ TN

TP+ TN + FP+ FN
(8)

F − Score =
2TP

2TP+ FP+ FN
(9)

MCC =
TP× TN − FP× FN

√
(TP+ FP)× (TP+ FN )× (TN + FP)× (TN + FN )

(10)
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FIGURE 8. Fitting functions for rainfall interpolation.

t(t= 2022, 2042, 2072). The value of each pixel of the
groundwater map at time t was calculated in the following
steps:
• Step 1: Determining the residual value of each pixel
of the rainfall map between time t0 and t: Rainfall t −
Rainfall0. This step was implemented using the raster
calculation function in GIS software.

• Step 2: Computing the value for each pixel using for-
mula (11) to create the groundwater map at time t .

According to Worldometer [87], the annual population
change (APC) in Ålesund city is 0.62% (2020-2021). To cal-
culate the population in the years 2022, 2042, and 2072,
we assumed that the population change is directly propor-
tional to the APC. The value of pixel i in population density
maps in the years 2022, 2042, and 2072 were calculated as
follows:

Pit = Pi2018 [1+ 0.62%× (t − 2018)] (12)

where Pi2018 and Pit are the population density in the year
2018 and at the time t(t = 2022, 2042, 2072), respectively.
Rainfall at the weather stations in the years 2022, 2042, and

2072 was interpolated from historical measurements at the
corresponding stations. The logarithm function was chosen
to fit with the values. The coefficients of fitting functions and
interpolated rainfall maps were shown in FIGURE 8. Then,
maps of rainfall in the years 2022, 2042, and 2072 are cre-
ated from interpolated rainfall values using the IDWmethod.
Based on the two above steps, maps of interpolated ground-
water and population in the years 2022, 2042, and 2072 are
represented in FIGURE 9.

Predictive conditions of the sewer pipes in the future can be
visualized onmaps to provide a general overview of the status
of the sewer system in the study area. These sewer condition

FIGURE 9. Maps of interpolated rainfall, groundwater, and population in
the years 2022, 2042, and 2072.

maps can partly support utilities and water managers in deter-
mining the vulnerable regions affecting the condition of sewer
pipes. QGIS, which is open-source software for GIS analysis,
was used for data analysis and visualization.

V. RESULTS
A. ROLE OF FACTORS
As discussed in the above sections, different feature selection
methods will produce different results for scoring the impor-
tance of each factor in developing the models. Hence, various
algorithms of feature selection methods were investigated
in this study, and the final decision to eliminate important
factors was made based on the output results. Results of
feature analysis based on the filter, wrapper, and embed-
ded feature selection methods are shown in FIGURE 10,
FIGURE 11, and FIGURE 12, respectively.

In the filter methods, the correlation analysis shows that
material and age highly correlate with the sewer condition
status (FIGURE 10a).More specifically, thematerial of sewer
pipes has the highest correlation with their status (PR =
−0.54), followed by the sewer’s age (PR= 0.46), connection
type (PR = −0.35), and pipe type (PR = −0.33).

It is evident that when the sewer’s age increases, its condi-
tion deteriorates. The negative correlation of sewer material
with the condition status indicates that concrete pipes are
more durable than other pipes such as PVC pipes in the
study area. The PR correlations of depth, diameter, network
type, and distance to road are approximately equal to zero,
indicating these factors have less influence on the condition
of the pipes. The mutual information analysis shows sewer
material and age to be themost significant factors in the sewer
condition (FIGURE 10b). This analysis shows that pipe form
and network type were insignificant factors.

The feature selection analysis using the wrapper methods
is shown in FIGURE 11. The Boruta feature selection method
reveals that the material of the sewer pipe is the most impor-
tant factor for the condition assessment, followed by the age
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FIGURE 10. The filter feature selection methods: (a) PR correlation and (b) MI.

FIGURE 11. The wrapper feature selection methods: (a) Boruta and (b) SFS.

FIGURE 12. The embedded feature selection methods: (a) RF and (b) RFE.

of the sewer. Network type and length are assessed as the least
important for this analysis (FIGURE 11a). The significance

of factors for the condition assessment was assessed using the
SFS method after ten iterations. FIGURE 11b shows that the
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Akaike information criterion (AIC) value was achieved after
ten iterations (about 1070.5). All factors were used to calcu-
late AIC at the first iteration. The factors distance to road and
geology were eliminated after the first and second iterations,
respectively. Finally, material, age, diameter, slope, length,
pipe type, connection type, pipe form, groundwater, building
area, and traffic volume were accepted (FIGURE 11b).

FIGURE 12 shows the result of feature selection analysis
using the embedded methods. For the RF method, sewer
material was found to be the most significant factor, followed
by the age of the sewer. Network type, building area, and
landslide area were less significant (FIGURE 12a). Similar
results were obtained by the REF method (FIGURE 12b).

Overall, all feature selection methods show that the mate-
rial and age of sewer pipes are the most important factors.
Based on the above results, network type was eliminated
from the dataset before building the condition assessment
models because the majority of feature selection methods
assessed this variable as of less importance compared to
others.

B. HYPERPARAMETERS OPTIMIZATION
Different ML models work with different parameters to gen-
eralize different data patterns. Hyperparameter tuning is used
for optimal hyperparameters for the ideal model architec-
ture. This study used the training dataset to select the best
hyperparameters for each ML model using the grid-search
method with a 5-fold cross-validation approach. The average
accuracy was scored to define the best hyperparameters of
each model. The tuned parameters, ranges of parameters,
and their optimal values for each ML model are shown in
TABLE 5. The accuracy of theMLmodels in TABLE 5 shows
the average accuracy obtained from the grid-search method
with a 5-fold cross-validation approach using the training
dataset.

C. COMPARISON OF SEWER CONDITION MODELS
Performance prediction ofMLmodels was generally assessed
using the validation dataset based on the criteria and pre-
sented in TABLE 6.

It can be seen in TABLE 6 that the trees-based ML models
(such as RF, AdaBoost, GTB, HGB, and ERT) have bet-
ter performance than the others. In terms of the AI model,
results show that the ANN architecture with 2 hidden layers
(GM = 0.691, F-Score= 0.613,MCC= 0.398, AUC-ROC=
0.691, AUC-PRC= 0.707, and ACC= 71.72%) outperforms
the single ANN architecture (GM= 0.684, F-Score= 0.624,
MCC = 0.365, AUC-ROC = 0.684, AUC-PRC = 0.697,
and ACC = 69.31%), and three-hidden layer ANN model
produces the worst prediction (GM = 0.648, F-Score =
0. 562, MCC = 0.304, AUC-ROC = 0.648, AUC-PRC =
0.660, and ACC = 67.24%). The RF perform better in terms
of all assessment criteria (GM = 0.776, F-Score = 0.732,
MCC = 0.549, AUC-ROC = 0.776, AUC-PRC = 0.784,
and ACC = 78.28%) indicating the most suitable condition
assessment model.

TABLE 6. Prediction performance of used machine learning models in
this analysis.

TABLE 7. The rank of machine learning models using the TOPSIS method.

The predictive performance of ML models is ranked using
the TOPSIS method and presented in TABLE 7. The result
shows that the RF is the best algorithm for modeling the
sewer condition in the study area, followed by AdaBoost
and GTB algorithms. Other algorithms are too simple (e.g.,
GNB or BNB) or too complex (e.g., ANN-3HLs) and they
likely are not able to capture essential characteristics of
the deterioration process in the sewer network in the study
area.

D. SEWER CONDITION MAPS
The maps of the condition of sewer pipes in the year 2022,
the next 20 years (2042), and the next 50 years (2072) in
Ålesund city were created. In these maps, we assume there
is no sewer pipes rehabilitation. For example, these pipes in
bad condition in 2022 will maintain their conditions in 2042.
FIGURE 13 shows the present status of the sewer network
(in 2022) constructed using the RF model. The results show
that the sewer pipes predicted in bad condition were largely
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FIGURE 13. The sewer condition map in 2022 in the study area.

in the area marked A (the left-hand side rectangle), followed
by the area marked B (the right-hand side rectangle). Due to
confidential issues, maps of the condition status of the sewer
network in the study area in the years 2042 and 2072 are
not presented in this study. Interested readers can contact the
authors to get detailed information.

FIGURE 14 shows the total length of sewers (in km) in
each condition predicted in the years 2022, 2042, and 2072.
The pie charts in the first row represent the number of pre-
dicted sewer pipes in each condition in the corresponding
years. The results show that the number of sewers in
bad condition after 50 years increased nearly two times,
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FIGURE 14. Summary of predicted classes in the study area.

from 8203 to 12988, corresponding to a total length of
204.4 km to 290.3 km. Moreover, it is worth noting that
approximately half of the sewer pipes in the study will be
in bad condition after 50 years. Maps of the sewer status
received from the sewer condition model can support utilities
and water managers in determining the spatial distribution of
sewer pipe status in the city (FIGURE 13). Also, the length of
pipes in each condition class shown in FIGURE 14 can help
in investments in maintenance strategies.

VI. DISCUSSION
Sewer pipeline condition assessment is one of the critical
steps in the water management process and a good condition
model can support decision-making and maintenance strate-
gies. In this research, the RF model was found to be more
potent in predicting the sewer status in this study area.

Although all feature selection methods showed similarity
in determining the two most important factors (material and
age) and one less important factor (network type), however,
the important degree of factors between methods is slightly
different. This is likely due to the random feature of each
method in splitting and combining subsets to optimize model
performance [88].

Due to the unavailability of rainfall data in the study
area, an interpolation map of rainfall was created from some
weather stations near the study area. However, by using the
IDW method, the accuracy of the interpolation rainfall map
can be accepted for doing research on a large scale with
annual time scales [89]. It is worth noticing that although
the future rainfall map can be constructed from the climate
projections [27], we used the linear method to interpolate
annual average rainfall values at the weather stations and a
rainfall map was created from these values. The main reason
for doing this is that we want to apply the same approach for
interpolating groundwater and population density maps.

One thing that should be paid attention to in this study is
that some maps were established based on assumptions. For
instance, the population density mapwas created based on the
statistical data in 2018 and the future population density maps
were created based on the annual average population change,
or the assumption that changing groundwater only depends
on the change of rainfall is only considered in this study.
However, the change in these factors depends on different

conditions and they should be considered in future studies.
Another limitation of this study is that no operational factors
are considered due to their unavailability at the time this study
was undertaken. These factors can be accounted for in future
studies to improve the model performance.

The final ML model has an accuracy of approximately
80%, indicating pretty good performance. This is because
the deterioration of the sewer network is a complex process
and depends on many different factors. Therefore, more pipe
inspection data and factors should be considered to strengthen
the predictive capability of the ML models.

In this study, pipematerial and pipe age are themost impor-
tant factors affecting the sewer pipe deterioration process.
This conclusion is consistent with the result of Laakso, et al.
[9] that found high-density polyethylene and reinforced
concrete pipes were more durable than other materials. Age is
a dynamic factor that immediately affects sewer deterioration
as soon as the pipes are installed and it has been proved
as the highest contributor to the deterioration process [90].
In contrast, network type (including wastewater, stormwater,
and combined) is assessed as the lowest contribution to the
model. This can be explained that most sewer pipes in the
study are the main network type (FIGURE 2h).

VII. CONCLUSION
This study applied various ML algorithms for the assessment
of sewer pipe conditions. A total of 1449 sewer pipelines
derived from CCTV inspection were used to construct and
verify the ML models. Six feature selection methods (i.e.,
filter, wrapper, and embeddedmethods) were applied to select
the significant factors affecting sewer pipe conditions. The
main conclusions from the study are:
• Sewer material is the most important factor affecting
sewer pipe’s condition status, followed by age. The
sewer network type (stormwater, wastewater, and com-
bined) was less important for the sewer condition in the
study area.

• The RF model outperformed other ML models in mod-
eling the sewer condition in the study area.

• Based on the RF model, maps of the condition of sewer
pipes for the years 2022, 2042, and 2072 in Ålesund city
were developed. These maps can be used as reference
materials or documents in developing future mainte-
nance strategies for the study area.

• The predictive performance of ML models can be
improved by using more inspected sewer pipes as input
for training ML models. Furthermore, other environ-
mental and operational factors should be considered to
improve the accuracy of the sewer condition model.
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