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Abstract. This research focuses on the challenge of comprehensively identifying 

Sa Huynh glass jewelry in Vietnamese archaeology based on new SEM gemo-

logical analysis. We propose the implementation of a system, called Recognition 

Automatic System for Sa Huynh Glasses (RAS-SHG), motivated by the unique 

conditions in archaeology, that aims to employ evolving continuous learning al-

gorithms on our Sa Huynh Culture archaeological databases. This research de-

velops new evolving continuous learning algorithms, so called Evolving with 

Klinkenberg’s Idea (EKI) algorithms, based on a combination of different classic 

machine learning algorithms with the "sliding windows" approach and Klinken-

berg’s optimized window size. We compare these algorithms to select the most 

suitable model that aligns with the performance requirements of the Sa Huynh 

Culture archaeological dataset. This Recognition Automatic System for Sa 

Huynh Glasses (RAS-SHG) has been developed to accurately distinguish be-

tween Sa Huynh and non-Sa Huynh glass ornaments and is now utilized at the 

Vietnam Institute of Archaeology and the UNESCO Centre for researching and 

preserving Vietnamese antiquities.  

Keywords: Sa Huynh antique glass identification, Vietnamese glass classifica-

tion, machine learning in archaeology, evolving machine learning, continuous 

machine learning. 

1 Introduction 

Ancient Vietnamese glass artifacts, such as those from the Dong Son, Sa Huynh, and 

Oc Eo cultures, have been extensively traded throughout history, leading to their wide 

distribution in Vietnam and across the world. However, in private antiquities collec-

tions, misclassification and confusion of these ancient jewels are pervasive and intri-

cate. The Sa Huynh culture, in particular, faces the challenge of jewelry being sold 

under different names, and artifacts from other cultures, such as Dong Son and Oc Eo, 

being mislabeled as Sa Huynh. To address this issue, this paper employs a combination 

of gemological methods and evolving continuous learning algorithms to analyze the 
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unique identification characteristics of Sa Huynh glass jewelry. The background of this 

study is rooted in the complexity of classification studies in archaeology, stemming 

from the unique characteristics of stream data in the field. Here, data gradually accu-

mulates over time as new discoveries emerge from excavations. The significance of this 

research lies in enhancing a recently published system by integrating additional learn-

ing methods through evolving approaches. This research question poses significant 

challenges due to data scarcity, which can be attributed to several main factors of real-

life scenarios encountered in archaeological investigations make it.  

In this research, we present our study through three main sections. Firstly, we pro-

vide an interdisciplinary overview of the intersection of evolving continuous learning 

applied for identification of antique artifacts by using gemological analysis, for setting 

the context of archaeology. Next, we offer comprehensive insights into our archaeology 

dataset, the gemological measuring equipment, and the experimental procedures 

adopted. Subsequently, we outline our Evolving with Klinkenberg’s Idea (EKI) learn-

ing algorithms, our evaluation metrics, and our experimental protocols, followed by a 

detailed discussion of the results obtained. Ultimately, we conclude by emphasizing the 

significance and value of our findings in advancing the identification of Sa Huynh glass 

jewelry. 

2 State-of-Art  

2.1 Identification of Antique Glass artifacts by Gemological Analysis 

The investigation of ancient glass through gemological methods commenced in the 

1990s, with significant contributions made by J. Henderson's work on Roman glass in 

England [1]. Gemological analysis involves categorizing ancient glass artifacts based 

on their distinctive characteristics and composition-related components [2, 3]. Catego-

rizing ancient glass artifacts into distinct groups may appear simplistic at first glance; 

however, this approach does not fully meet the requirements of modern research. Upon 

closer examination, each group of ancient glass can be further subdivided into smaller 

subgroups, displaying unique variations despite sharing common characteristics within 

the broader category. The complexity of this classification becomes particularly appar-

ent when different types of glass are produced within the same cultural tradition but in 

different regions, leading to significant archaeological variations. From a gemological 

standpoint, these subtle differences might not be discernible using rudimentary mathe-

matical tools. In the present era, the application of artificial intelligence technologies 

for the classification, appraisal, assessment, and judgment of antiquities, archaeological 

sites, and cultural heritages has experienced considerable popularity. Notably, studies 

conducted by Bickler on antique porcelain [13], Jones on the classification of ancient 

plants [14], and Ngo Ho on the categorization and evaluation of ancient documents [15, 

16, 17] have contributed to this trend. As a consequence, some Vietnamese researches 

have been progressively establishing the initial automatic identification systems for Vi-

etnamese antiquities, leveraging advanced technologies [18, 19].  

In previous works [18, 19] on Vietnamese Oc Eo antique glass, the research em-

ployed a neural network artificial intelligence system that applied MLP functioning: 



Ngo-Ho Anh-Khoi, Pham Van-Trieu, Trinh The-Luc and Tran Van-Thien 83 

 

ISBN: 978-604-80-9774-5 CITA 2024 

extracting feature sets from the scanning electron microscope (SEM) system, compris-

ing 36 features, the system trained the neural networks for recognition, comparing and 

selecting the most suitable network. The selected network for this application encom-

passed 36 input values, 120 hidden layer neurons, and one output layer neuron. Through 

the training process, the research obtained a set of networks optimized for identifica-

tion. During the identification process, the application continuously gathers user-en-

tered data, extracts features, and feeds them to the network for further identification. 

Consequently, the outcomes and efficiency progressively improve through continuous 

learning, leading to enhanced accuracy in the final results. The attributes of the ana-

lyzed rays are chosen based on characteristic properties, vectorized, and transformed 

into a 36-dimensional vector {x1, x2, ..., x36}. Although the research have established a 

system MLP that constructs a single network for specimen recognition, its capability 

can be expanded to handle multiple types of specimens concurrently. The neuron set 

comprises three layers: the input value layer, the hidden neuron layer, and the output 

neuron layer. Two sets of neuron weights correspond to the links from the input layer 

to the hidden layer and from the hidden layer to the output layer. In consideration of 

the attributes of artifact identification, the system opted for the feedforward neural net-

work architecture combined with the error backpropagation algorithm as the network 

architecture type. However, this method is adapted only for a static environment based 

on the hypothesis that all data is collected and labeled correctly throughout the entire 

archaeological process. 

The complexity of classification studies in archaeology is underscored by the fact 

that previous research data, such as gemological analyses, can be significantly different 

labelling, rendering earlier studies irrelevant for subsequent categorization efforts. 

These challenges also extend to data science disciplines, particularly concerning the 

phenomenon known as "concept drift", which will be elaborated upon in the following 

sections.  

2.2 Evolving Continuous Approaches in Concept Drift 

In this research, our primary objective is to enhance a recently published system by 

integrating additional learning methods through the utilization of evolving approaches. 

Our inspiration stems from the unique characteristics of stream data in the field of ar-

chaeology, where data is gradually accumulated over time as new discoveries emerge 

from excavations. This presents significant challenges due to data scarcity, which can 

be attributed to some main factors. The real-life scenarios of archaeological investiga-

tions make it difficult to find artifacts, and conducting experimental excavations for 

feature extraction can be prohibitively expensive. Consequently, data is acquired spo-

radically and in limited quantities. So on, the field of archaeology occasionally experi-

ences reclassification of artifacts initially assigned to a particular group based on new 

data and discoveries. The classification of artifacts into specific categories relies on 

various interdisciplinary factors, some of which can be unexpected. As explained in the 

preceding section, this poses challenges for data science disciplines, particularly con-

cerning the phenomenon known as "concept drift", which will be explored further here. 
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Therefore, the required system must demonstrate their effectiveness under these unique 

circumstances of archaeology. 

Due to the limitations of traditional learning methods, evolving continuous learning 

methods become more relevant and intriguing for addressing this problem. Given the 

specific context of archaeology and the comprehensive state-of-the-art review of evolv-

ing learning methods as extensively studied in [15], we recognize that the system can 

effectively utilize lightweight methods based on data selection approaches due to the 

limited samples obtained from archaeological excavations. This ensures that critical 

information is not lost due to the generalization concept employed by many evolving 

methods. To achieve this, we propose employing a simple "sliding windows" approach, 

akin to the FLORA method [23]. This principle involves updating the model at each 

moment 't' using the most recent training data, defined by a "sliding windows" of a 

predetermined size (either based on time scale or the number of data points). This ap-

proach can involve either batch retraining using the selected data within the "sliding 

windows" or updating the model if an online learning method allows for it. Typically, 

these methods consist of three steps [23], see Fig.1: 1. Detecting concept changes using 

statistical tests on different windows; 2. If a change is observed, selecting representative 

and recent examples to adapt the models; 3.Updating the models. Recently, several re-

searchers have explored the adaptation of "concept drift" using "sliding windows" tech-

niques [20], [21], [22], all aiming to capitalize on its advantages. 

 
Fig. 1. Sliding windows algorithms, following [28]. 

The window size in the evolving approaches is determined a priori by the user, and 

each window overlaps the previous one by sharing a batch of data. At each step, a new 

model is learned, representing an updated set of classes. The key challenge in these 

approaches lies in determining the appropriate window size. While many methods use 

a fixed-size window tailored to specific real-world problems, there are approaches that 

aim to automatically detect the optimal size of the analysis window. For example, in 

[24] with ADWIN (ADaptive WINdow), the author tests a range of window sizes by 

dividing each window into sub-windows of minimal size. If these sub-windows exhibit 

significantly different distributions, a statistically significant size is considered suitable. 

In [25], the authors propose utilizing two models at each step, trained with different 

window sizes: S (a predefined standard size) and 2S. The smaller window with size S 

is employed to detect new concept spaces using a statistical test, while the larger win-

dow with size 2S is used to update the model when a new concept space is detected. In 

[26] with OLIN (On Line Information Network), the authors suggest dynamically ad-

justing the window size based on the performance achieved on a validation dataset. The 

new data is divided into two parts: one for training and the other for validation. Multiple 

windows with varying sizes are independently applied for learning and testing, and the 
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size that yields the best result on the validation data is chosen for the current step. How-

ever, the effective implementation of this approach requires conducting learning phases 

on sufficiently large batches of data. Finally, in [27], Klinkenberg’s paper employs a 

consecutive increment of window sizes. At each step, the performance (in terms of error 

rate) is calculated for different window sizes, and the size that yields the best perfor-

mance is selected (e.g., size No1 represents the last batch, size No2 represents the last 

two batches, size No3 represents the last three batches, and so on). In this study, we will 

explore evolving approaches based on Klinkenberg's idea [27], applied to our archaeo-

logical dataset, to dynamically detect the best window size for analysis. Hence, it is 

essential for the algorithms utilized in the experiments to demonstrate their efficacy 

within these exceptional conditions. Considering the specific context of archaeology, 

as explained previously, we recognize the potential effectiveness of employing light-

weight methods that leverage data selection approaches. This is particularly important 

due to the limited number of samples obtained from archaeological excavations. The 

underlying rationale is straightforward: we can exercise control over information loss 

by managing the "density" of learning data within the selected optimal size. Utilizing 

Klinkenberg's methods, with a simple parameter 'n' representing the size of the batches, 

allows us to control the loss of valuable information caused by the generalization con-

cept commonly employed in various evolving techniques.  

Consequently, we develop nine new evolving continuous machine learning algo-

rithms, by applying the "sliding windows" approach with the incorporation of Klinken-

berg's idea for dynamically detecting the optimal window size on nine classic algo-

rithms [4, 5, 6, 7, 8, 9, 10, 11, 12], so called Evolving with Klinkenberg’s Idea (EKI) 

algorithms. This research will compare the performance of these EKI algorithms on the 

archaeological dataset to explore the effectiveness of these methodologies under the 

evolving data conditions encountered in Sa Huynh Culture archaeological datasets. 

3 Archaeological Sa Huynh Dataset  

The Oc Eo, Sa Huynh, and Dong Son specimens employed in this study have been 

exhibited in multiple national exhibitions, authorized by the National Appraisal Coun-

cil, and sourced from the UNESCO Center for Research and Conservation of Vietnam-

ese Antiquities. The gemological characteristics of these ancient specimens were ex-

tracted using the gemological Scanning Electron Microscope (SEM) technique, which 

has been previously described in our studies [2, 3, 18, 19] and conducted by Hanoi 

University of Mining and Geology. 

In summary, this technique relies on Energy Dispersive X-ray Spectroscopy (EDXS) 

or Wavelength Dispersive X-ray Spectroscopy (WDXS) analysis to determine the 

chemical composition of solids. During this analysis, X-ray spectra are recorded when 

the solid interacts with radiation, typically high-energy electron beams in electron mi-

croscopes. The SEM machine, combined with the EDS exploitation machine (Model: 

Quanta 450; Manufacturer: FEI-USA), was utilized in this study to facilitate the phys-

ical technique. The results of the SEM technique provide 10 values for each chemistry 

element. The effective reflectance (Net Int) indicates the reflectance of the electron 

beam, while Weight and Atomic Mass (%) and Atoms (%) represent the composition 
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of the specimen. The Kratio value signifies the ratio of the reflected electron density, 

and R represents the resolution in microns after determining the reflected electron den-

sity. To calibrate the elemental composition, the spectrum of the standard sample is 

compared with the spectrum of the measured sample. Calibrating values, such as Z 

(atomic calibration), A (absorption correction), and F (fluorescence calibration), are 

utilized to ensure accuracy and account for specific factors. 

 

Fig. 2. The result of SEM method. 

In this specific experiment, the antique Sa Huynh glass specimens comprise eight 

chemical elements: Calcium (Ca), Potassium (K), Iron (Fe), Sodium (Na), Magnesium 

(Mg), Aluminium (Al), Silicon (Si), and Oxygen (O), see Fig.2. The location and num-

ber of analytical processing times are crucial for accurate identification. Due to the 

costliness of each analysis shot, only necessary positions are analyzed to avoid data 

redundancy. Hence, specific conditions are followed in our measurements: based on 

the sample quality, each sample is analyzed five times at different locations on the 

specimen. By selecting distinct sites for analysis, we aim to achieve maximum varia-

tion. Homogeneous samples may require fewer analyses, while larger samples may un-

dergo fewer shots. For Sa Huynh specimens, we analyze four different specimen, with 

five shots at each specimen. For other non-Sa Huynh antique specimens, we analyze 

one position in each specimen with five shots or less, depending on the specificity of 

the artifacts. Currently, our dataset is exclusively comprised of specimens obtained 

from the UNESCO Center for Researching and Conservating of Vietnamese Antiqui-

ties. 

 In summary, the archaeological dataset comprises a total of 108 samples, with 19 

attributed to the Sa Huynh culture and the remaining assigned to other cultures and 

antique imitations. These samples collectively exhibit 40 characteristics, including 

eight chemical elements: Calcium (Ca), Potassium (K), Iron (Fe), Sodium (Na), Mag-

nesium (Mg), Aluminium (Al), Silicon (Si), and Oxygen (O), each characterized by 

five indications ('W,' 'R,' 'Z,' 'A,' and 'F'). Due to the small size of the dataset, it has 

been decided to skip any normalization procedures before classification to avoid poten-

tial distortion of the inherent class structure within the data. 
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4 Experiments and Discussion 

The algorithms employed in this study were implemented using version 0.24.2 of the 

scikit-learn library, in conjunction with the "sliding windows" technique and Klinken-

berg’s optimized window size method, developed in Python. The implementation was 

processed in a streaming manner, utilizing mini "sliding windows" that encompassed 

the last n samples. We initiated the process with n = 1, corresponding to classic online 

learning, and progressively increased n > 1 to represent batch learning. For each evolv-

ing algorithms, we selected only the best results of n for comparison with other 

Evolving with Klinkenberg’s Idea (EKI) algorithms. The nine Evolving with Klinken-

berg’s Idea (EKI) algorithms developed in this research are EKI k-Neighbors Classifier, 

EKI Extra Tree Classifier, EKI Adaboost, EKI Bernoulli Naive Bayes Classifier, EKI 

Random Forest Classifier, EKI MLP Classifier, EKI Decision Tree Classifier, EKI Bag-

ging Classifier, and EKI Gaussian Naive Bayes Classifier. The EKI classifier 

algorithms has the complexity of O(n−m) where n is the current number of data batches 

and m is the best_no_of_data_batch.  

The dataset was partitioned into a training dataset (70%) and a testing dataset (30%) 

with the classic cross-validation. For each experiment, the positions of the data in the 

training and testing datasets were randomly assigned, a process repeated 10 times. Fur-

thermore, the training dataset was shuffled randomly 10 times, generating diverse sce-

narios of stream learning to evaluate the adaptability of the model to evolving data. As 

a result, each learning method with each parameter variation underwent 100 random 

experiments, ultimately leading to the collection of final comparison data. The achieved 

results were averaged to ensure the reliability and generalizability of the experiments. 

To evaluate the performance of binary classifiers, especially in the presence of class 

imbalance, all attained results were based on Balanced Accuracy (BA). The formula of 

Balanced Accuracy (BA) is as follows: Balanced Accuracy (BA) = 1/2 (Specificity + 

Precision). In situations characterized by highly imbalanced data, where one class sig-

nificantly outweighs the other (e.g., 1 data point in group A, 999 data points in group 

B), conventional accuracy calculations become unreliable. In such cases, metrics like 

the Area Under the Curve (AUC) and Balanced Accuracy (BA) are preferred. Balanced 

Accuracy (BA) is a fundamental metric used to assess the performance of binary clas-

sifiers when dealing with imbalanced classes, especially in comparison tasks [15, 16, 

17], providing a simpler, more realistic, and optimal assessment of classification.  

In general, all evaluated methods demonstrated favorable performance, with the av-

erage Balanced Accuracy exceeding 80% for each method, and most of them achieving 

close to or above 90% accuracy (with the exception of EKI Gaussian Naive Bayes Clas-

sifier). The rankings based on Balanced Accuracy are as follows: EKI k-Neighbors 

Classifier (91.92%), EKI Extra Tree Classifier (89.57%), EKI Adaboost (88.93%), EKI 

Bernoulli Naive Bayes Classifier (88.53%), EKI Random Forest Classifier (88.10%), 

EKI MLP Classifier (88.04%), EKI Decision Tree Classifier (87.66%), EKI Bagging 

Classifier (87.02%), and EKI Gaussian Naive Bayes Classifier (83.47%). Notably, En-

semble Learning’s EKI methods, such as EKI Random Forest Classifier, EKI Adaboost, 

EKI Extra Tree Classifier, and EKI Bagging Classifier, achieved similarly good results, 

with an average accuracy of around 88%. It is essential to highlight that the Balanced 
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Accuracy of the last step is not consistent with the Average results due to the influence 

of weaknesses in the initial steps. Focusing solely on the Average of the final steps, 

certain methods with weaker performance, such as EKI Gaussian Naive Bayes Classi-

fier, still achieved remarkably good results compared to other methods, as well as the 

Naive Bayes family, like EKI Bernoulli Naive Bayes (which attained 89.59% compared 

to EKI Gaussian Naive Bayes’s 89.70% in the last 20 steps). Therefore, on the whole, 

the tested methods showed relatively minor differences in performance, except for the 

unexpectedly superior performance of the EKI k-Neighbors Classifier, indicating a sub-

stantial and easily distinguishable difference between Sa Huynh glass and other types 

of glass. In terms of overall results, the EKI k-Neighbors Classifier displayed the best 

performance, although the EKI Extra Tree Classifier also proved to be the top-perform-

ing method among all Ensemble Learning’s EKI techniques in our experiments.  

Table 1. Table of experiment results. 

Evolving with Klinkenberg’s Idea  (EKI) Al-

gorithms with its best n 

Average 

(%) 

Last Step 

(%) 

Std 

(%) 

EKI k-Neighbors Classifier (n=74) 91,92 96,57 4,71 

EKI Extra Tree Classifier (n=69) 89,57 95,63 3,23 

EKI Adaboost Classifier (n=69) 88,93 88,64 3,33 

EKI Bernoulli NB Classifier (n=73) 88,53 89,59 6,31 

EKI Random Forest Classifier (n=71) 88,10 89,33 3,02 

EKI MLP Classifier (n=74) 88,04 94,05 5,11 

EKI Decision Tree Classifier (n=55) 87,60 91,94 5,39 

EKI Bagging Classifier (n=74) 87,02 87,77 3,70 

EKI Gaussian NB Classifier (n=71) 83,47 89,70 3,09 

 

Upon examining the results, it is important to note the differences in rankings between 

the data from all steps and the data from the last 20 steps (see Table 2 and Table 3). The 

methods can be categorized into three main groups: Group 1 includes EKI k-Neighbors 

Classifier, Group 2 consists of all Ensemble Learning’s EKI methods, and Group 3 

encompasses the remaining EKI methods. The substantial superiority of the EKI k-

Neighbors Classifier over the methods in Group 2 (Ensemble Learning’s EKI methods), 

which are generally strong classifiers, suggests that the Sa Huynh data is quite uniform 

in range. This characteristic enables the EKI k-Neighbors Classifier to perform favora-

bly compared to Group 2, regardless of the distribution of non-Sa Huynh data. Group 

2 obtained weaker results due to the impact of the diverse distribution of non-Sa Huynh 

data, where each weak classifier within the Ensemble Learning’s EKI methods lacks 

sufficient detail to accurately classify non-Sa Huynh data, although they accurately 

classify Sa Huynh data (resulting in a significantly higher False Positive rate compared 

to the True Negative rate). Consequently, the Ensemble Learning’s EKI methods, 

which rank based on voting from multiple weak classifiers, provide inaccurate results 

overall. The EKI Multi-layer Perceptron (MLP) did not achieve satisfactory results due 
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to the limited number of Sa Huynh data and the excessive diversity in non-Sa Huynh 

data, which led to insufficient details for accurate classification, consistent with its the-

ory. Keep in mind that all deep learning algorithms, which have been very trendy 

recently and are based on the neuron-network concept, share the characteristic of 

sensitivity to limited data. Regarding the Naive Bayes’s EKI family, which includes 

EKI Gaussian Naive Bayes Classifier and EKI Bernoulli Naive Bayes, there seems to 

be a difference in the Average (table 1); however, both methods have comparable ca-

pabilities in the last steps. The uniformity of Sa Huynh data also explains why the EKI 

Decision Tree Classifier outperforms Naive Bayes’s EKI (in the last 20 steps). The 

natural structure of the Decision Tree Classifier allows it to achieve good results by 

correctly classifying one class in one branch of the tree, which naturally results in the 

accurate classification of the other class. In contrast, for Naive Bayes, both classes must 

have similar predictions to achieve accurate results, as the probability of one class de-

pends on the presence of the other class.  

Table 2. Table of experiment results (in 20 last steps). 

Evolving with Klinkenberg’s Idea  (EKI) Algo-

rithms (in 20 last steps) 

Average 

(%) 

Last Step 

(%) 

Std 

(%) 

EKI k-Neighbors Classifier 96,50 96,57 0,14 

EKI Extra Tree Classifier 92,86 95,63 1,79 

EKI Decision Tree Classifier 90,36 91,94 1,13 

EKI Adaboost Classifier 89,90 88,64 0,80 

EKI Random Forest Classifier 89,61 89,33 0,30 

EKI Bernoulli NB Classifier 89,59 89,59 0,00 

EKI MLP Classifier 88,99 94,05 2,92 

EKI Bagging Classifier 88,79 87,77 0,42 

EKI Gaussian NB Classifier 83,72 89,70 2,62 

 

Observing the plotted learning progression of the methods, four main groups can be 

identified. After an initial period, the groups stabilize, with most of them achieving 

stability around step 20 (except for EKI MLP Classifier), with results hovering upper 

than 80%. Subsequently, the groups gradually diverge and distinctly separate into four 

groups: One group steadily increases and reaches high levels of stability, becoming one 

of the most effective methods (EKI k-Neighbors Classifier); One group shows very 

unstable progress (EKI Extra Tree Classifier, EKI MLP Classifier, EKI Decision Tree); 

One group decreases in performance (EKI Gaussian NB Classifier, EKI Adaboost); the 

rest maintain stability. 

The EKI k-Neighbors Classifier shows consistent and good performance due to the 

uniformity of the Sa Huynh data range, see Fig.3. Most methods in the stable group 

belong to Ensemble Learning’s EKI. Among the Ensemble Learning’s EKI, EKI Ada-

boost is the only method that experiences a decrease in performance. The reason lies in 

the difference between the Boosting technique (used in EKI Adaboost) and the Bagging 
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technique (used in EKI Extra Tree Classifier, EKI Random Forest Classifier, EKI Bag-

ging Classifier) in Ensemble Learning’s EKI. Bagging technic uses bootstrap samples 

with replacement from the dataset to train each weak learner, reducing sensitivity to 

outliers. Boosting technic, on the other hand, gives more weight to misclassified in-

stances in subsequent training rounds, focusing more on them during training. Boosting 

combines multiple simple classifiers to make predictions, making it robust to overfit-

ting. However, it may focus on the diversity of the non-Sa Huynh data instead of the 

uniformity of the Sa Huynh data, leading to a decrease in performance. The instability 

of the EKI MLP Classifier can be attributed to its nature, as it is highly sensitive to 

limited data. The instability problem of decision tree classification algorithms is due to 

small changes in input training samples causing large changes in output classification 

rules, especially with limited data. The EKI Extra Tree Classifier also shows high in-

stability compared to the EKI Bagging Classifier and EKI Random Forest Classifier 

due to its nature. EKI Extra Trees randomly select values to split features and create 

child nodes, ensuring sufficient differences between individual decision trees, unlike 

bagging and random forest classifiers, which randomly select datasets. As a result, each 

weak classifier in the EKI Extra Tree Classifier is significantly affected by the diversity 

of non-Sa Huynh data, leading to different views of the uniform Sa Huynh data. This 

causes the EKI Extra Tree Classifier to become unstable from these diverse views. EKI 

Bagging and EKI Random Forest Classifiers, by randomly selecting subsets of the da-

tasets, ensure the presence of all types of diversity within the non-Sa Huynh data. As a 

result, each weak classifier observes a global view of all the diversity within the non-

Sa Huynh data, rather than just focusing on a specific subgroup within the non-Sa 

Huynh data. 

Overall, the EKI k-Neighbors Classifier, despite having a relatively high overall 

standard, outperforms all other methods with high stability and distinctively superior 

results. 

 

Fig. 3. The line graph of learning process of nine EKI’s algorithms. 
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5 Conclusion  

The study was conducted under the unique constraints of the archaeology field, which 

presents challenges due to data scarcity. This scarcity is primarily caused by the diffi-

culty in locating artifacts in real-world contexts, the high costs associated with conduct-

ing excavations for feature extraction, and the sporadic nature of data acquisition over 

time. An additional factor complicating the classification of artifacts is the possibility 

of reclassification based on new data and discoveries, as artifacts initially classified 

under a specific group belonging to a culture may be subject to revision. This paper 

presents an advanced system, called Evolving with Klinkenberg’s Idea (EKI) 

algorithms, designed specifically for the automatic identification of Sa Huynh glass 

jewelry, utilizing SEM gemological analysis parameters, to adapt this unique con-

straints of the archaeology. The study's results have been integrated into a software suite 

called the Recognition Automatic System of Sa Huynh Glass (RAS-SHG), which is 

already utilized at the Vietnam Institute of Archaeology and the UNESCO Centre for 

researching and preserving Vietnamese antiquities. 
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