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Fractal-Based Evaluation of the Spatial Relationship 
Between Conditioning Factors and the Distribution 
of Landslides (a Case Study in Tinh Tuc, Cao Bang 
Province, Vietnam) 

Binh Van Duong, Igor K. Fomenko, and Kien Trung Nguyen 

Abstract 

This paper presents the assessment results of the spatial 
relationship between past landslides and four landslide 
factors in Tinh Tuc town, Cao Bang province, Vietnam, 
including distance to roads, distance to faults, distance to 
drainage, and distance to geological boundaries. The frac-
tal dimension values were determined using fractal 
analyses on three sets of raw data, including the number 
of landslides, landslide density, and landslide relative 
density. Using a combination of the frequency ratio 
(FR) method and the fractal method, landslide susceptibil-
ity maps were produced to determine which raw data set 
more properly analyzes the role of factors in the develop-
ment of the landslide process. Assessment results using 
the receiver operating characteristic (ROC) method indi-
cate that the fractal analysis of the raw data sets success-
fully determines the spatial relationship between 
conditioning factors and landslides in the study area. In 
addition, relationship analyses using datasets based on 
landslide density provide more optimal outcomes. The 
authors also suggest integrating the fractal method with 
other quantitative assessment methods to improve the 
accuracy of landslide prediction in Vietnam and 
worldwide. 
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1 Introduction 

The challenge of ensuring the sustainable development of 
residential communities in the context of rapid urbanization 
is crucial for developing countries, including Vietnam. With 
75% of the territory comprised of mountainous terrain, the 
frequency of sediment-related natural hazards has increased 
in recent years (Lan Huong et al. 2022). Consequently, it is 
necessary to identify hazard zones by producing integrated 
maps based on the current situation and available materials. 
These maps include data on the spatial distribution of hazard 
zones and their temporal evolution. These data are essential 
for evaluating potential risks, long-term territorial planning, 
and land use planning. 

Compared to other sediment-related disasters, landslides 
are prevalent in Vietnam, particularly in the northern moun-
tainous regions, and negatively impact the sustainable devel-
opment of local communities (Thanh Thi Pham et al. 2020). 
Therefore, numerous studies on landslides have been 
conducted in these regions (Bien et al. 2022; Hung et al. 
2017). According to previous studies, most landslides were 
triggered by precipitation, and the increase in landslide fre-
quency has been associated with human activities (e.g., road 
construction) (Do et al. 2022; Tien Bui et al. 2017). When 
developing models for predicting landslides, determining the 
relationship between conditioning factors and the distribution 
of landslides is crucial (Liao et al. 2022). The evaluation 
results may validate the correctness of the selection of analy-
sis factors and play a significant role in the performance of 
the prediction models. 

This paper presents the results of the fractal-based evalua-
tion of the spatial relationship between conditioning factors

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-44296-4_13&domain=pdf
mailto:duongvanbinh@humg.edu.vn
https://doi.org/10.1007/978-3-031-44296-4_13#DOI


and the distribution of landslides in Tinh Tuc town, Cao Bang 
province, Vietnam. The spatial relationship was evaluated 
using three raw data sets, including the number of landslides, 
relative landslide density, and landslide density. By produc-
ing landslide susceptibility zonation maps, this study deter-
mined that all three data sets are suitable for assessing the 
relationship between landslide occurrences and conditioning 
factors. In addition, this study determined that the prediction 
model based on relative landslide density and landslide den-
sity provided a higher performance in analyzing the relation-
ship between landslides and conditioning factors. 
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2 Study Area 

Cao Bang province (6690 km2 ; 22° 21’ N to 23° 07′ N and 
105° 16′ E to 106° 50′ E), which is located in the northeast-
ern mountainous region of Vietnam (Fig. 1), has experienced 
numerous natural disasters in recent years, especially 
landslides, due to the influence of various natural, environ-
mental, and social conditions. Nguyen Binh is a mountainous 
district in the southern portion of Cao Bang province that is 

determined to be one of the areas with a very high likelihood 
of landslides (VIGMR 2017). 

Fig. 1 Location of study area 

Tinh Tuc town is 18 km from the center of Nguyen Binh 
district and is situated on National Highway 34, which 
connects Cao Bang province and Ha Giang province 
(Fig. 1). The study area covers a total of 66.76 km2 , including 
Tinh Tuc town and its surroundings. The elevation of the 
study area ranges from 434 m in the valley to 1876 m in the 
mountainous terrain, where Phia Oac peak reaches 1932 m 
(Kien et al. 2021). The studied territory is characterized by 
geological formations and complexes composed of igneous 
and sedimentary rocks dated from the Paleozoic to the Qua-
ternary period. The weathering process has contributed to the 
growth of two main types of weathering crust in the 
study area: ferosialite (86%) and sialferite (14%). In 2020, a 
failure volume of 2500 m3 was recorded at Highway 34, Km 
192 + 500, on the 3–4 m-thick weathering crust formed from 
the rocks of the Song Hien formation (Fig. 2a). Another 
landslide occurred in 2016 at Km 200 + 300 on Highway 
34. The weathering crust, with a thickness between 3 and 
4 m, formed from the Cao Bang Complex rocks, has pro-
duced a sliding mass with a volume of 50,000 m3 (Fig. 2b).



g

g

Heavy rainfall in a short period of time or prolonged rainfall 
events have been identified as the trigger of landslides in the 
study area. 
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Fig. 2 Landslides at the national highway 34 km 192 + 500 (a), and at Km 200 + 300 (b). Photo by T. K. Nguyen 

3 Evaluation of the Spatial Relationship 
Between Conditioning Factors 
and the Distribution of Landslides 

3.1 Methods 

Mandelbrot (1967), who initially introduced the fractal the-
ory in his study of the British coastline, determined that the 
degree of complication of a geographic curve may be 
characterized by a “dimension” D. Since then, the fractal 
method has been improved and extensively utilized in numer-
ous fields of research, including medicine (Tanabe et al. 
2020), muscle activity patterns during locomotion (Santuz 
and Akay 2020), materials science (Paun et al. 2022), the 
characterization of absorption capacity, porosity, and surface 
area (Elejalde-Cadena and Moreno 2021), natural hazards 
(Cello and Malamud 2006), etc. 

In the landslide susceptibility study, the fractal method is 
employed to determine the weights of the conditioning 
factors, therefore indicating the role of each conditioning 
factor in the occurrence of landslides in the studied territory. 
The method may be characterized as a power law described 
by Eq. (1): 

p rð Þ /  C:r-D ð1Þ 

where r is the feature measured scale, p is the measured value 
under the corresponding scale r, C is a constant value, and 
D is the fractal dimension (Hu et al. 2020). Fractal analyses 
provide a raw data set (P) based on several variables, such as 
the number of landslides, relative landslide density, and 

landslide density. The cumulative sum (S) values are then 
determined using the formula (2): 

Pf g= P1,P2, . . . ,Pnf g  

S1f g= P1,P1 þ P2, . . . ,P1 þ P2 þ . . .þ Pnf  

S2f g= S11, S11 þ S12, . . . , S11 þ . . .  þ S1nf . . . . . . . . .  ð2Þ 

The fractal analysis then constructs the (S, r) graphs and 
performs a linear fitting to determine the D value for each 
condition factor. By using the formula (3), the weight of each 
landslide conditioning factor (Wi) is calculated: 

Wi =Di= 
n 

i= 1 
Di ð3Þ 

In this study, the Frequency ratio (FR) was integrated with 
the Fractal method to produce partition landslide susceptibil-
ity zonation (LSZ) maps to examine the efficacy of spatial 
relationship evaluation using different raw data sets. The FR 
method evaluates the relationship between the distribution of 
landslides and the subclasses of conditioning factors (Wang 
et al. 2020) based on the formula (4): 

FRi =%LSi=%Ai ð4Þ 

where FRi is the FR value of subclass i, %LSi is the percent-
age of landslides in subclass i, and %Ai is the area percentage 
of subclass i. The calculated FR value is then normalized to 
the weight of the factor class (NFR) according to the 
formula (5): 

NFRi =FRi= 
n 

i= 1 
FRi ð5Þ
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Finally, the landslide susceptibility index (LSI) is calculated 
according to the formula (6): 

LSI = 
n 

i= 1 
NFRi ×Wi ð6Þ 

3.2 Spatial Relationship Between 
Conditioning Factors and Landslide 
Distribution 

For analyzing the spatial relationship, this study selected four 
landslide conditioning factors, including distance to roads, 
distance to faults, distance to drainage, and distance to geo-
logical boundaries. Downloaded OpenStreetMap data from 
Geofabrick was used to produce a map of the distance to 
roads in the study area (Fig. 3a). Along with a 12.5-m-
resolution digital elevation model (DEM), data on geological 

units and fault systems were provided by the Institute of 
Geological Sciences, Vietnam Academy of Science and 
Technology. Geologically, the study area has six geological 
units, including the Bac Son formation, Dong Dang forma-
tion, Song Hien formation, Quaternary deposits, Cao Bang 
complex, and Pia Oac complex. Afterward, these data were 
used to prepare additional factor maps, including distance to 
faults (Fig. 3b), distance to drainage (Fig. 3c), and distance to 
geological boundaries (Fig. 3d). Each factor was divided into 
subclasses for quantifying the relationship between condi-
tioning factors and landslide distribution. Distance to roads, 
distance to faults, and distance to geological boundaries were 
subdivided into 11 subclasses, while the distance to drainage 
was subdivided into seven classes, as shown in Table 1. 

Fig. 3 Maps of distance to roads (a), distance to faults (b), distance to drainage (c), and distance to geological boundaries (d) 

Analysis of the spatial relationship between conditioning 
factors and past landslides revealed that most landslides 
occurred within 100 m of roads and 200 m of drainage 
systems. This result demonstrates that the construction of



the road system has altered the natural slope, resulting in an 
imbalance that increases the probability of landslides. Since 
precipitation is the main trigger of landslides in the study 
area, landslides frequently occur along drainage systems, 
where soil and rock are highly saturated because of rainwater 
infiltration. However, the distribution of landslides within the 
classes of the remaining two factors is relatively equal. 
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Table 1 Spatial distribution analysis of landslides using FR method 

Factor Class % class area % landslide FR NFR 

Distance to roads (m) 0–100 25.802 85.106 3.298 0.724 

100–200 16.806 10.638 0.633 0.139 

200–300 12.734 0 0 0 

300–400 9.935 0 0 0 

400–500 7.93 2.128 0.268 0.059 

500–600 5.966 2.128 0.357 0.078 

600–700 4.554 0 0 0 

700–800 3.193 0 0 0 

800–900 2.42 0 0 0 

900–1000 2.107 0 0 0 

>1000 8.553 0 0 0 

Distance to faults (m) 0–100 6.424 8.511 1.325 0.09 

100–200 5.958 12.766 2.143 0.145 

200–300 5.72 2.128 0.372 0.025 

300–400 5.528 6.383 1.155 0.078 

400–500 5.293 6.383 1.206 0.082 

500–600 5.115 4.255 0.832 0.056 

600–700 4.991 2.128 0.426 0.029 

700–800 4.847 17.021 3.512 0.238 

800–900 4.615 10.638 2.305 0.156 

900–1000 4.586 4.255 0.928 0.063 

>1000 46.922 25.532 0.544 0.037 

Distance to drainage (m) 0–100 40.8 44.681 1.095 0.309 

100–200 30.05 40.426 1.345 0.38 

200–300 18.829 10.638 0.565 0.16 

300–400 7.954 4.255 0.535 0.151 

400–500 1.814 0 0 0 

500–600 0.495 0 0 0 

600–703 0.058 0 0 0 

Distance to geological boundaries (m) 0–100 15.807 17.021 1.077 0.104 

100–200 13.883 4.255 0.306 0.03 

200–300 12.169 10.638 0.874 0.084 

300–400 11.244 12.766 1.135 0.109 

400–500 10.079 12.766 1.267 0.122 

500–600 8.266 6.383 0.772 0.074 

600–700 6.235 4.255 0.682 0.066 

700–800 4.384 4.255 0.971 0.094 

800–900 3.699 4.255 1.15 0.111 

900–1000 3.284 0 0 0 

>1000 10.95 23.404 2.137 0.206 

Figures 4, 5, and 6 represent the outcomes of the fractal-
based analysis. The Ln(S)-Ln(r) plots were linearly fitted 
with a correlation coefficient of R2 > 0.995, as indicated in 
the figures. Similar to the results of the previous study (Zuo 

and Carranza 2017), these graphs demonstrate a non-linear 
spatial relationship between the number of landslides or 
landslide density and distance to conditioning factors. By 
utilizing a data set based on the number of landslides (case 
study 1), fractal analyses have shown that the distance to 
drainage is the most influencing factor in the formation of 
landslides (D = 2.0088). However, using datasets based on 
relative landslide density (case study 2) and landslide density 
(case study 3), the analysis results indicated that the distance 
to geological boundaries has the most significant role in the 
landslide process. The remaining factors (distance to faults,
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Fig. 4 Fractal analysis using the number of landslides. Graphs of factors: distance to roads (a), distances to faults (b), distance to drainage (c), and 
distance to geological boundaries (d) 

Fig. 5 Fractal analysis using relative landslide density. Graphs of factors: distance to roads (a), distances to faults (b), distance to drainage (c), and 
distance to geological boundaries (d)



Factor

distance to drainage, and distance to roads) have a less 
significant effect on the landslide process. Based on the 
formula (3), the D values are then used to calculate the 
weighted values of the factors (W). The results of the 
calculations are presented in Table 2.
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Fig. 6 Fractal analysis using landslide density. Graphs of factors: distance to roads (a), distances to faults (b), distance to drainage (c), and distance 
to geological boundaries (d) 

Table 2 Weights of the factors calculated from fractal analysis 

Case study 1 Case study 2 Case study 3 

Di Wi Di Wi Di Wi 

Distance to roads 1.0771 0.178 1.1418 0.203 1.1419 0.203 

Distance to faults 1.4549 0.241 1.4762 0.263 1.4765 0.263 

Distance to drainage 2.0088 0.333 1.4701 0.262 1.4700 0.262 

Distance to geological boundaries 1.4984 0.248 1.5241 0.272 1.5240 0.272 

Using a hybrid fractal-frequency ratio (FFR) model, LSZ 
maps were produced to compare various data sets for spatial 
relationship analysis. This model utilizes the results of calcu-
lating factor class weights using the frequency ratio method 
and factor weights using the fractal method. The FFR1 model 
employs the analysis results of case study 1, while the FFR2 
model reflects case studies 2 and 3. A receiver operating 
characteristic (ROC) analysis was conducted to assess the 
performance of these models. 

3.3 Model Validation 

In this study, the well-known ROC method was employed to 
assess the accuracy of the prediction maps produced by the 
two models. A ROC curve is a curve in the unit square 
formed by plotting sensitivity (or True Positive Rate—TPR) 
versus specificity (1-FPR, FPR—False Positive Rate) at dif-
ferent thresholds (Yu et al. 2021). It is widely accepted that a 
higher and more leftward-positioned ROC curve in the ROC 
space indicates better prediction performance (Metz 1978). 
Based on the landslide inventory map, which included 
47 landslides, ROC analyses were conducted to determine 
the AUC-ROC (area under the ROC curve) value.
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3.4 Results of Landslide Susceptibility Using 
Fractal-Frequency Method (FFR) 

The LSI values for the study area were calculated using 
Eq. (6) to produce landslide susceptibility index maps. The 
LSI values range from 0.006 to 0.363 (FFR1) and 0.006 to 
0.365 (FFR2). Based on the landslide susceptibility index 
(LSI) maps, we prepared the landslide susceptibility zonation 
(LSZ) maps in ArcGIS using the Jenks natural breaks classi-
fication method. The study area was divided into five land-
slide susceptibility zones: very low, low, moderate, high, and 
very high (Figs. 7 and 8). The LSZ maps produced by the two 
models have similarities when determining the spatial distri-
bution of susceptibility zones. Most high and very high 
susceptibility zones were identified at low to moderate 
elevations and are dominated by road and drainage networks. 
It has also been shown that the fault system and geological 
boundaries in the study area affect the spatial distribution of 
these zones. 

The proportion of each landslide susceptibility zone 
predicted by the two models is shown in Fig. 9. As seen in 
Fig. 9, all susceptibility zones to landslides were assessed 
similarly by all two models. The very high susceptibility zone 
predicted by the two models is 24.34 (FFR1) and 25.52% 
(FFR2). In addition, the very low landslide susceptibility 
zones assessed by these models are 17.91% and 17.66%, 
respectively. 

By using 47 past landslides in the study area, ROC curves 
depicting the performance of two models were constructed 
(Fig. 10). In Fig. 10, the AUC values and ROC curves 
indicated very good model performance in predicting the 
spatial distribution of landslides (AUC > 80%) (Swets 
1988). All models revealed a relationship between landslide 
conditioning factors and the distribution of historical 
landslides in the study area, as shown by an analysis of the 

success rate curves. Generally, the area under the curve 
(AUC) values of the success rate curves for the FFR1 and 
FFR2 models are almost identical. Simultaneously, the anal-
ysis outcomes revealed that the FFR2 model performed 
slightly better than the FFR1 model, indicating strong 
model performance and prediction accuracy. 

Fig. 7 LSZ map using FFR1 model 

Fig. 8 LSZ map using FFR2 model 

According to the study results, all three raw data sets may 
be utilized to analyze the relationship between landslides and 
conditioning factors. However, the model using landslide 
density-based data provides improved prediction perfor-
mance. This result may be explained by the fact that the 
landslide density provides a stronger spatial relationship 
between the distribution of landslides and the area of the 
factor subclasses. This difference may be defined more 
clearly if the study is conducted in a region with a significant 
number of landslides, along with conditioning factors 
selected depending on data availability, features of 
landslides, and previous studies in the study area. 

4 Conclusions 

In landslide hazard and susceptibility studies, the efficacy of 
assessing the relationship between past landslides and 
selected factors is crucial to the accuracy of the produced 
maps. Therefore, this study was conducted to determine the 
effect of several factors on the distribution of landslides in 
Tinh Tuc town, Cao Bang province, Vietnam. Three raw data 
sets were generated using the number of landslides and 
landslide density. By utilizing the frequency ratio method 
and the fractal method, the role of subclasses and factors, as 
expressed by NFR and W values, was evaluated. Afterward, 
two landslide susceptibility maps were produced based on the 
selected data sets. The similarity of the susceptibility zone 
predicted by the two models and the outcomes of the ROC



analysis revealed that the data sets are suitable for producing 
highly accurate landslide susceptibility maps. It is suggested 
to apply the fractal method in landslide susceptibility studies 
because it is possible to quantify the influence of condition-
ing factors, thereby improving the accuracy of landslide 
prediction. 
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Fig. 9 Distribution of 
susceptibility zones for each 
model 

Fig. 10 ROC curves with AUC 
values of two models 
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