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Abstract: This paper presents an innovative deep learning framework for predicting landslides in the District of Than Uyen, Lai Chau Province, 

Vietnam, harnessing the power of Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), and the Adam Optimization 

algorithm. Given the multifaceted nature of landslide phenomena, influenced by a myriad of geographical and meteorological factors, there is a 

growing need for advanced computational strategies that can decipher complex patterns and temporal correlations. 

Our cutting-edge model employs CNNs to analyze and extract significant spatial attributes from topographical and geological data. Concurrently, 

RNNs -specifically Long Short-Term Memory (LSTM) networks - are deployed to manage time-series data, such as weather conditions and other 

temporal elements. The Adam Optimization algorithm, renowned for its superior efficiency and effective performance, is used to optimize the 

model parameters. 

The model was trained and validated using a comprehensive dataset from the Than Uyen district, comprising 114 landslide and 114 non-landslide 

locations, along with ten key influential factors: elevation, slope, curvature, aspect, relief amplitude, soil type, geology, and proximity to faults, 

roads, and rivers. The results demonstrate a noteworthy predictive accuracy, sensitivity, and specificity, with the model surpassing benchmarks in 

prediction power (PPV=93.3%, NPV=83.2%, Sen=82.3%, Spe=94.1%, Acc=88.2%, F-score=0.875, Kappa=0.765, and AUC=0.968). 

The study advances deep learning in landslide prediction, aiding proactive disaster mitigation and showing potential for application in global 

regions prone to geographical hazards. 
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I. INTRODUCTION 

Landslides, a significant geohazard, contribute to thousands 
of fatalities and inflict damage amounting to $100 million 
annually on a global scale [1,2,3]. The rise in extreme weather 
phenomena such as heavy rainfall and typhoons [4,5], 
particularly in the mountainous regions of developing nations, is 
anticipated to increase the frequency of landslides [6]. Being 
situated in Southeast Asia, one of the world's most disasterprone 
regions [7], Vietnam is particularly vulnerable. Therefore, 
accurate spatial prediction of landslides is crucial for risk 
mitigation.  

Machine learning methods have been gaining precedence 
over statistical methods in landslide susceptibility mapping, as 
suggested by various studies [8,9,10,11,12,13,14]. This 
preference stems from the expansive availability of geospatial 
data along with the evolution of machine learning and 
optimization algorithms on open-source platforms like Python 
[15] and Google TensorFlow [16]. This trend is evident when 
the task involves handling numerous influencing factors and 
limited landslide data [17].  

Ensemble modeling, which combines multiple models into a 
final comprehensive model, has enhanced the reliability of 
landslide susceptibility mapping [18,19,20,21]. Among various 
machine learning algorithms, ensemble learning stands out due 
to its unique capability of integrating multiple deep learning 
models. This method aims to enhance diverse aspects of deep 
learning, including pre-dictions and classifications, by not just 
merging the unique capabilities of individual deep learning 
models but also potentially creating a hybrid model that 
encapsulates the collective attributes of its components [21].  

To address these needs, we propose a method that we will 
validate through a case study in the Than Uyen district of the Lai 
Chau province in Vietnam, an area plagued by recurring 
landslides. We will compare our method against four benchmark 
models including Convolutional Neural Networks (CNNs) [22], 
Re-current Neural Networks (RNNs) [23], Multi-Layer 
Perceptron Neural Network (MLPNeuNet) [24], and the BBO-
DE Optimized SPAARCTree Algorithm (BBO-DE-STreeEns) 
[25]. These models were optimized with the same optimizer 
namely Adaptive Moment Estimation (Adam) [26].  

This paper is structured as follows: Section 2 reviews the 
background of the employed methods. Section 3 describes the 
study area and landslide database. Section 4 details the proposed 
ensemble learning method utilized for landslide susceptibility 
derivation. Section 5 reports the experimental results, followed 
by a discussion. The final section presents the concluding 
remarks.  

II. BACKGROUND OF METHODS USED  

In this study, we investigated the effectiveness of ensemble 
learning, a method that combines multiple deep learning models, 
aims to enhance prediction, classification, or other 
functionalities within the scope of deep learning. It not only 
amalgamates the unique capabilities of different deep learning 
models but can also create a hybrid model enriched with the 
combined features of its constituent models [25]. Choosing to 
develop such an ensemble model has several advantages over 
designing a new model entirely from the ground up:  

Efficient Data Utilization: Ensemble learning can leverage 
the knowledge gained from the constituent models, thereby 
requiring minimal data for training the combined model.  

http://www.ijarcs.info/
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Time-Efficiency: The construction of an ensemble model 
typically demands less time in comparison to the process of 
building a fresh model.  

Resource Optimization: The amalgamation of models into an 
ensemble is generally less computationally intensive.  

Enhanced Performance: The resultant ensemble model 
usually exhibits higher accuracy and capabilities, surpassing the 
individual models it comprises 

A. Convolutional Neural Networks (CNNs)  

Convolutional Neural Networks (CNNs) [22] are a potent 
category of deep learning algorithms extensively used for 
diverse image and video processing tasks. These include object 
recognition, image classification, and object detection. CNNs 
are specifically designed to efficiently analyze and extract 
meaningful information from gridlike structured data, such as 
images. They leverage the convolution concept, which allows 
the network to recognize local patterns and features within the 
input data. This unique trait makes CNNs highly proficient in 
learning and identifying intricate visual patterns autonomously, 
making them an invaluable asset in computer vision 
applications.  

The core principle of CNNs involves the application of 
convolutional layers, pooling layers, and fully connected layers 
to extract pertinent features from the input data. The 
convolutional layers use adjustable filters or kernels to scan the 
input data, performing convolutions that assist in identifying 
local patterns or features. These convolutions produce feature 
maps that represent distinct facets of the input data.  

In this study, Convolutional Neural Networks (CNNs) were 
leveraged through the Conv1D layer of Keras. Specifically, the 
model incorporated two Conv1D layers, each with 64 filters and 
a kernel size of 3. Additionally, the model used the Rectified 
Linear Unit (ReLU) activation function in both Conv1D layers.  

B. Recurrent Neural Networks (RNNs)  

Recurrent Neural Networks (RNNs) [23] represent a unique 
class of artificial neural networks specifically engineered to 
process sequential or temporal data. They achieve this by 
integrating feedback connections, a feature which distinguishes 
them from traditional feedforward neural networks. In an RNN, 
connections are designed in such a way that information from 
previous time steps can be transmitted to the current time step. 
This capability allows RNNs to capture temporal dependencies 
in the data, effectively handling input sequences of different 
lengths.  

The underlying structure of RNNs allows them to remember 
or 'recollect' information from previous time steps in the 
sequence. This 'memory' is stored in hidden states, which are 
updated at each time step based on both the current input and the 
previous hidden state. Hence, the hidden state serves as a kind of 
'context' that captures the information seen by the network so far 
in the sequence.  

In the scope of this research, the authors have employed 
Recurrent Neural Networks (RNNs) using the LSTM (Long 
Short-Term Memory) layer of the Keras library. LSTMs 
represent an advanced variant of RNNs that were developed to 
address the notable issue of gradient vanishing or exploding, 
which is often encountered during the training of traditional 
RNNs. LSTMs introduce a more complex structure in the 
recurrent units, including a memory cell and several gating units, 
which collectively enable the model to learn and remember over 
long sequences and effectively tackle the challenge of long-term 
dependencies  

C. The Adam Optimizer Algorithm  

The Adam optimizer algorithm is a widely adopted 
optimization technique used in deep learning. Its name originates 
from the term Adaptive Moment Estimation (Adam) [26]. The 
algorithm is a fusion of two other optimization methods - the 
Adaptive Gradient Algorithm (AdaGrad) and the Root Mean 
Square Propagation (RMSprop). By merging the best features of 
AdaGrad and RMSprop, Adam provides an efficient way to 
adjust learning rates for different parameters during the training 
process of a neural network. This adaptive learning rate 
optimization algorithm is beneficial in accelerating convergence 
and enhancing the overall performance of the neural network.  

The key idea behind the Adam optimizer is that it computes 
adaptive learning rates for different parameters. It stores an 
exponentially decaying average of past gradients (like 
momentum) and keeps an exponentially decaying average of 
past squared gradients (similar to RMSprop). Adam then uses 
these averages to scale learning rates for each weight in the 
neural network model.  

The Adam optimizer is not just efficient but also requires 
minimal memory and computational resources, making it a 
popular choice in the field of deep learning. It's suitable for 
problems that are large in terms of data and/or parameters. The 
algorithm's ability to handle sparse gradients on noisy problems 
is also a reason why Adam is a great choice when dealing with 
neural networks. 

III. STUDY AREA AND LANDSLIDE DATA  

A. Description of the Study Area  

Than Uyen district, located in southeast Lai Chau province 
in northwest Vietnam. It is positioned between longitudes 
103°35’E and 103°53’E, as well as latitudes 21°40’N and 
22°08’N, covering an area of 792.53 km2 (Fig. 1). Than Uyen 
lies within the Nam Mu river basin, which is a level-1 tributary 
of the Da River, and features medium-high mountains and 
complex terrain, with high river and stream density. It comprises 
three areas: the rugged Fansipan range to the east, low Pu San 
Cap mountains to the west, and a central valley of hills, plains, 
and mountains [27,28].  

The district experiences a monsoonal climate with distinct 
rainy (April-October) and dry (November-March) seasons, 
featuring average annual rainfall of 1800-2200 mm, 
temperatures of 22-23 °C, and around 80% humidity. The road 
network includes key routes linking to Lai Chau city and other 
provinces, but its winding roads make it landslide-prone during 
the rainy season [28].  

 

Figure 1. Location of Than Uyen district Source [25]  
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The area is tectonically active with faults leading to intense 
weathering and rock disintegration, creating unstable zones 
prone to landslides. Its geology is divided into several complexes 
based on petrological composition and stability.  

As of December 31, 2017, the population of Than Uyen 
district was 66,589, with a total of 13,838 households, out of 
which 3,340 were classified as poor. Unfortunately, some 
residents of the district have built their homes along roads, 
directly beneath roadside slopes that pose a significant risk of 
landslides [28]  

In recent times, Than Uyen has emerged as a region 
significantly impacted by natural calamities, especially 
landslides. These landslides are triggered by a complex interplay 
of natural, environmental, and societal elements. Notably, the 
development of new infrastructures like roads and urban zones 
in the region has been pinpointed as a key factor exacerbating 
landslide occurrences due to human intervention. [27,29]. 

B. Landslide Data  

1) Historical Landslides.   
The landslide inventory map of Than Uyen district (Figure 

1) stems from the "Investigation, Assessment, and Warning 
Zonation for Landslides in the Mountainous Regions of 
Vietnam" project, funded by the Vietnamese government and 
initiated by the Vietnam Institute of Geosciences and Mineral 
Resources in 2012 [27,28]. 

Using air photo interpretation, 3D relief analysis with 
1:10,000 topographical maps, satellite and radar imagery, and 
field surveys, the project identified 114 landslides in Than Uyen 
district over the past decade, primarily triggered by rainfall 
[27,28]. These landslides are concentrated along slopes adjacent 
to National Road 279 (from Sap Nguoi village to Khau Co pass), 
Provincial Road 106 (from Muong Kim to Khoen On), and 
intercommune roads linking Muong Kim to Ta Mung and Than 
Uyen to Pha Mu. No landslides triggered by earthquakes were 
observed during the study period. 

Field research and analysis revealed that landslides were 
mainly caused by heavy thunderstorms, especially when daily 
rainfall exceeded 100 mm. Such events lead to water saturation 
of the soil and rock mixture on slopes, reducing shear strength 
and causing instability. Figure 2 provides photos of a landslide 
in the study area. 

 

 

Figure 2. Two photos of the landslide on the slope wall of National Road 279, 
near the right bank of Nam Kim stream, Na Pa village, Muong Kim commune, 

Than Uyen district. Source: Vietnam Institute of Geosciences and Mineral 

Resources [29] 

2) Landslide Influencing Factors  
To analyze landslides in the study area, we considered 10 

influential factors: elevation, slope, curvature, aspect, relief 
amplitude, soil type, geology, distance to faults, distance to 
roads, and distance to rivers. These factors, known to impact 
slope stability and landslide risk [25], were mapped as follows: 

Elevation: Affects slope angle, gravitational force, climate, 
and vegetation. Derived from a DEM based on 1:50,000 
topographic maps (Figure 3a). 

Slope: Steeper slopes are more susceptible to landslides. 
Generated from the DEM (Figure 3b). 

Curvature: Indicates changes in slope angle and direction; 
higher absolute curvature areas are riskier. Generated from the 
DEM (Figure 3c). 

Aspect: Influences environmental factors like rainfall and 
soil moisture. Mapped into nine classes from the DEM (Figure 
3d). 

Relief Amplitude: Reflects gravitational potential energy. 
Created in ArcGIS Pro (Figure 3e). 

Soil Type: Affects water drainage and slope stability. Based 
on a 1:100,000 pedology map with 11 soil types (Figure 3f). 

Geology: Determines rock types and structures affecting 
stability. Derived from a 1:200,000 geology map showing 12 
units (Figure 3g). 

Distance to Faults: Categorized distances from 0-200m to 
>1000m from a 1:200,000 scale map (Figure 3h). 

Distance to Roads: Categorized distances from 0-40m to 
>120m from 1:50,000 scale maps (Figure 3i). 

Distance to Rivers: Categorized distances from 0-40m to 
>120m from 1:10,000 scale maps (Figure 3j). 

These maps collectively provide a comprehensive 
assessment of factors influencing landslide risk in the area.

  

Figure 3. Landslide influencing factors: (a) Elevation; (b) Slope; (c) 

Curvature; (d) Aspect; (e) Relief amplitude; (f) Soil type; (g) Geology; (h) 

Distance to fault; (i) Distance to road; and (j) Distance to river. Source [25]  

C. The proposed ensemble learning model for Landslide 

prediction  

The flowchart for the proposed CNNs-RNNs method for 
landslide susceptibility mapping is illustrated in Fig. 4. To derive 
the landslide inventory and influencing factors, multisource 
geospatial data were processed using ArcGIS Pro 2.8 and stored 
in a landslide database in file geodatabase format. The 
influencing factors were converted to a 20m×20m grid cell and 
normalized within the range of [0.001–0.999]. The CNNs-RNNs 
model was implemented by the authors in Python.  

1) The Landslide Database 
The study encompassed 114 distinct landslide locations, 

which were randomly segmented into two groups: a training set 
with 80 cells, constituting 70% of the total, and a validation set 
of 34 cells of the remaining. All landslide cells were assigned a 
value of '1'. To prevent bias due to unequal distribution of 
landslide and non-landslide data, an equivalent number of grid 
cells were randomly selected from non-landslide areas. These 
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cells were assigned a value of '0' and integrated into the training 
and validation datasets. As a result, both the training and 
validation sets had an even distribution of 160 and 68 samples 
respectively, ensuring a balanced number of landslide and 
nonlandslide pixels within each set. The training set was 
employed to develop the landslide models, and the validation set 
was utilized to assess their accuracy and reliability.   

 

 

Figure 4. The flowchart of the proposed CNNS-RNNs ensemble model for 

landslide susceptible mapping 

To construct the landslide database, values for the ten 
influencing factors were extracted for each pixel in the dataset. 
The database comprises a dependent variable (label) and ten 
independent variables. Of the independent variables, six were 
categorical in nature: aspect, soil type, geology, distance to road, 
distance to river, and distance to fault. The remaining four 
independent variables were continuous: elevation, slope, 
curvature, and relief amplitude. 

2) Evaluation of Performance  
Assessing model performance is crucial for ensuring 

accuracy and generalizability [30, 31, 32]. We evaluated our 
model using both training and validation datasets. The training 
set measures data fitting, while the validation set assesses 
predictive power. 

We employed multiple metrics to evaluate the landslide 
model's classification ability, including the receiver operating 
characteristic (ROC) curve and the area under the ROC curve 
(AUC). These metrics provide an overall measure of predictive 
accuracy and allow for model comparisons, reflecting specificity 
and sensitivity. 

For this binary classification problem (landslide vs. non-
landslide) [33], we calculated the following metrics: True 
Positive (TP), False Negative (FN), True Negative (TN), and 
False Positive (FP) [33]. Additional metrics included Positive 
Predictive Value (PPV), Negative Predictive Value (NPV), 
Sensitivity (True Positive Rate, TPR), Specificity (Spe), False 
Positive Rate (FPR), Accuracy (Acc), F1 Score, and Cohen's 
Kappa Coefficient [33]. These metrics helped identify the best-
performing model. 

The ROC curve graphically represents classifier 
performance across different thresholds, plotting FPR on the x-
axis and TPR on the y-axis [33]. The AUC measures 
performance across thresholds, with values ranging from 0.5 
(poor) to 1.0 (excellent) [33]. In landslide modeling, AUC is a 
standard technique for evaluating overall model performance. 
According to Peterson et al. [34], AUC values between 0.5 and 
0.6 indicate very poor performance, 0.6 to 0.7 poor, 0.7 to 0.8 
moderate, 0.8 to 0.9 good, and 0.9 to 1.0 very good performance. 
Thus, AUC serves as a valuable indicator of predictive accuracy, 
helping to optimize classification thresholds. 

3) Benchmark Models and Comparison  
To demonstrate the efficacy of the proposed landslide 

susceptibility model, we compared its performance to that of 
benchmark classification algorithms. The following benchmark 
models were considered: Convolutional Neural Networks 
(CNNs) [22], Recurrent Neural Networks (RNNs) [23], Multi-
Layer Perceptron Neural Network (MLPNeuNet) [24], and the 
BBO-DE Optimized SPAARCTree [25].  

The proposed model and each benchmark model were 
trained and tested using the same train-test split of the dataset. 
Their performances were evaluated and compared using the 
AUC metric and Accuracy (Acc), with a higher AUC and Acc 
indicating better prediction accuracy. 

IV. RESULTS AND ANALYSIS  

A. The importance score of the Landslide Influencing 

Factors  

To ascertain the contribution of the ten landslide influencing 
factors to the CNNsRNNs model and BBO-DE Optimized 
SPAARCTree model [25], we applied the wrapper algorithm 
[35], utilizing five-fold cross-validation to avoid potential bias 
[36]. Our analysis revealed that slope had the greatest role (score 
value = 0.299), followed by distance to road (score value = 
0.224) and elevation (score value = 0.142). The remaining 
factors made a lower contribution to the two models, with score 
values ranging from 0.026 (distance to river) to 0.084 (distance 
to fault). This outcome closely aligns with the findings from our 
previous research [25].  
B. Models’ Results and Assessment  

The four landslide susceptibility models: Convolutional 
Neural Networks (CNNs) [22], Recurrent Neural Networks 
(RNNs) [23], Multi-Layer Perceptron Neural Network 
(MLPNeuNet) [24], and the BBO-DE Optimized SPAARCTree 
[25], were successfully trained using the training dataset with 
ten-fold cross-validation.  

Table 1 shows the results of training the five landslide 
susceptibility models using the training dataset and ten-fold 
cross-validation to mitigate the risk of overfitting. All models 
performed well with the training data, but the BBO-DE-
STreeEns (AUC = 0.987, Kappa = 0.875, Fscore = 0.939, and 
Acc = 93.8) and CNNs-RNNs (AUC = 0.991, Kappa = 0.9, 
Fscore = 0.951, and Acc = 95) models achieved the best 
performance. In terms of performance, the CNNs and 
MLPNeuNet exhibited comparable results, while the RNNs 
achieved slightly better outcomes, as shown in Table 1.  

Table 1. Performance metrics of the proposed CNNs-RNNs model and the 

benchmarks on the training dataset. 
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Evaluating the predictive performance of landslide models is 

crucial for assessing their effectiveness. Using the validation 
dataset, we found varying levels of performance among the five 
models (Table 2). The BBO-DE-STreeEns model (AUC=0.940, 
Kappa=0.735, F-score=0.862, Acc=86.8%) and the CNNs-
RNNs model (AUC=0.968, Kappa=0.765, F-score=0.875, 
Acc=88.2%) exhibited the highest predictive abilities, with 
excellent statistical metrics. The RNNs model (AUC=0.855, 
Kappa=0.559, F-score=0.727, Acc=77.9%) also performed well 
but was slightly less effective. The CNNs model (AUC=0.798, 
Kappa=0.382, F-score=0.687, Acc=69.1%) and the 
MLPNeuNet model (AUC=0.748, Kappa=0.294, F-
score=0.684, Acc=64.7%) showed satisfactory but lower 
predictive power.  

Table 2. Performance metrics of the proposed CNNs-RNNs model and the 

benchmarks on the validating dataset.  

 
The final landslide susceptibility map for Than Uyen district, 

based on the CNNs-RNNs model, is presented in Figure 5.  

  

Figure 5. The landslide susceptibility map for Than Uyen district using CNNs-

RNNs model.  

V. DISCUSSION  

Landslides are a significant natural hazard, causing 
substantial human and economic losses, worsened by improper 
land use and climate change. Accurate prediction models are 
essential for mitigating these issues. We developed and validated 
an ensemble machine learning model, CNNs-RNNs, for 
landslide susceptibility mapping in Than Uyen district, Vietnam, 
a region prone to landslides and floods. 

Our CNNs-RNNs model combines the strengths of 
Convolutional Neural Networks (CNNs) and Recurrent Neural 
Networks (RNNs), specifically Long Short-Term Memory 
(LSTM) networks, optimized using the Adam algorithm. CNNs 
excel in spatial data analysis, while LSTMs manage temporal 
data like weather conditions. The model's excellent predictive 
power confirms its effectiveness. 

This model outperformed benchmarks from our previous 
research, including CNNs, RNNs, MLPNeuNet, and BBO-DE-
STreeEns [25]. Among the ten landslide factors, slope and 
proximity to roads were the most significant, which is reasonable 
given Than Uyen's mountainous terrain. Landslides mainly 
occur on slopes between 16 and 34 degrees, often near roads. 

However, the distribution of landslide samples along roads 
could introduce bias, affecting model accuracy. To mitigate this, 
we used multi-source data, including field surveys, remote 
sensing, and historical records. We also employed random effect 
variables, sensitivity analysis, and both non-spatial and spatial 
cross-validation techniques. 

While rainfall is a known factor in landslide modeling, we 
couldn't incorporate it due to a lack of accurate data. Future 
research should include rainfall and address uncertainties in its 
predictions. 

VI. CONCLUSIONS  

This research introduced a novel ensemble machine learning 
model, CNNs-RNNs, for landslide susceptibility mapping, 
validated against a Than Uyen district database comprising 114 
landslide and 114 non-landslide locations, and ten influential 
factors. The model's performance was also compared with four 
benchmark models: CNNs [22], RNNs [23], MLPNeuNet [24], 
and the BBO-DE-STreeEns [25]. Our study led to the following 
significant conclusions:  

The integration of CNNs and RNNs (LSTM networks) with 
the Adam Optimizer resulted in a robust ensemble model, 
offering precise landslide susceptibility mapping.  

The CNNs-RNNs model outperformed benchmark models, 
underscoring its potential for highly accurate landslide 
susceptibility mapping.  

Ten influential landslide factors including elevation, slope, 
curvature, aspect, relief amplitude, soil type, geology, distance 
to faults, distance to roads, and distance to rivers, were identified 
based on landslide inventory analysis and the study area's 
geoenvironmental characteristics. Each factor scored an 
importance value greater than zero, confirming their significance 
in predicting landslide occurrences.  

Of all factors considered, the slope and distance to roads 
were the most significant contributors to landslides in Than 
Uyen district.  

The result of this study offers critical insights for Than Uyen 
district authorities and policymakers, assisting in informed land-
use planning and territorial management decisions.  
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