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Abstract

In this paper, a new approach for the improvement of accuracy in DEMs (Digital Elevation Models) was
proposed. While algorithms such as bilinear, bicubic, Kriging, and the HNN (Hopfield neural network) model
can enhance the accuracy of DEMs, especially those derived from global data sources such as SRTM, ASTER,
etc., the inclusion of additional elevation data can further improve the accuracy of the DEM. In this paper, a
newly proposed resolution enhancing HNN model with the incorporation of elevation adjustment functions and
variations in constraint conditions was developed and evaluated. The evaluation of the model was implemented
in Cao Bang using SRTM 30m DEM data in a 1650m x 1344m area, with 130 elevation points used for accuracy
enhancement and 64 points used for evaluation. The test results show an increase in accuracy of up to 40% in
terms of both roots mean square error and mean absolute error when the additional elevation points were used.
It has also been discovered that a zoom factor of 4 provides the best optimization in terms of balancing accuracy
and computing cost for the newly proposed HNN downscaling algorithm. The results indicate that the model has
the potential to be applied in practice to enhance the accuracy of DEMs, especially global DEMs after additional

evaluation.
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1. Introduction

The accuracy of a DEM (Digital Elevation Model) is one
of the crucial factors in terrain analysis. However, some
commonly used global DEMs such as SRTM (Shuttle Radar
Topography Mission) and ASTER (Advanced Spaceborne
Thermal Emission and Reflection Radiometer) with a spatial

resolution of 30m often suffer from limitations in accuracy

when representing terrain, especially in the areas with com-
plex topography and significant elevation differences (Courty
et al., 2019; Uuemaa et al., 2020). Therefore, various meth-
ods have been used to improve the accuracy of digital eleva-
tion models, including conventional methods such as bilinear
resampling, bicubic interpolation (Wu ef al., 2008), Kriging
(Grohmann & Steiner, 2008), or the more unconventional ap-

proach such as Hopfield neural network downscaling (HNN)
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(Q. M. Nguyen et al., 2019). The accuracy of DEM data can
also be enhanced by using multiple DEMs with lower accu-
racy to create a higher-accuracy DEM, such as combining
SRTM and ASTER DEMs (Pham et al., 2018).

One of the widely applied methods to improve the accu-
racy of global DEM data is the use of supplementary data,
especially elevation data, to refine the existing DEM data.
The supplementary data used can be land cover data to cor-
rect elevation errors caused by vegetation, as in the study by
Yamazaki et al. (Yamazaki et al., 2017), or studies that utilize
river and canal network information as drainage convergence
points (the lowest points in a specific area) to adjust the DEM,
as in the research conducted by Bhuyian et al. (Bhuyian et
al., 2015). Similarly, in the study by Jana et al. (Jana et al.,
2007), a network of water outflow systems is employed to
enhance the accuracy of the DEM, enabling a more accurate
representation of the terrain surface.

One of the supplementary data sources used to improve
the accuracy of DEM are additional elevation points, where
algorithms utilizing geostatistical conflation techniques are
employed to incorporate the data to improve the accuracy
of DEMSs. Paredes-Hernandez er al. (Paredes-Hernandez
et al., 2010) used a geostatistical approach to adjust vari-
ous global DEMs such as ASTER GDEM, Inegi DEM, and
SRTM DEM, demonstrating that the algorithm reduced the
root mean square error of the DEM ranging from 0.5m to
2m depending on the input DEM type. Similarly, Tang et al.
(Tang et al., 2014) utilized a multi-point geostatistical meth-
od with 250 elevation points to enhance the accuracy of the
SRTM DEM in Zhangye City, China. The results showed
that when employing the additional elevation points with this
algorithm, the mean square error of the 30m SRTM DEM
decreased by an amount range from 0.5m to 3m, depending
on the Kriging method.

In enhancing the accuracy of DEMs through resampling
techniques, the method of using the Hopfield neural network
has several advantages and yields results with higher accu-
racy compared to other methods such as bilinear, bicubic,
or Kriging interpolation (Q. M. Nguyen et al., 2019). One of
the advantages of this method is its ability to integrate the
original DEMs with the other data sources by incorporating

additional goal functions or constraints (M. Q. Nguyen et al.,
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2006) to generate DEMs with higher resolution than the orig-
inal resolution. In this study, a new algorithm was proposed
to enable the integration of high-accuracy elevation points
into the resolution-enhancement model using the Hopfield
neural network. The goal is to improve the accuracy of the
DEM more than the traditional methods of resampling and
HNN (Hopfield neural network) downscaling. This proposed
model is tested with the data collected in an area located in

Cao Bang Province, Vietnam.

2. Methods

2.1 DEM downscaling using HNN

The proposed method developed based on the HNN model
aims to increase the resolution of a DEM using the previ-
ously used HNN model for DEM downscaling proposed by
Nguyen et. al. (Q. M. Nguyen ef al., 2019). The main idea of
the method is to divide the pixels in the original DEM into
smaller sub-pixels, corresponding to neurons in the HNN
model. The scaling factor (f) is used to determine the ratio
between the size of the higher resolution DEM'’s sub-pixels
and the original pixels. In the presented example in Figure 1,
the size of the DEM region is 2x2 pixels. Each pixel is divided
into 4x4 smaller sub-pixels, resulting in a new DEM with a
size of 8x8 sub-pixels, corresponding to 8x8 neurons in the
HNN. Specifically, this method utilizes a linear activation
function of the HNN to optimize the elevation values of the
higher resolution pixels based on the elevation data from the
original DEM. This optimization process helps to recreate

details and improve the resolution of the new DEM.

f=4

Elevation
Constraint

Vijn
Vv,

Ul

Spatial
Dependence 7/
Maximization

Original DEM Downscaled DEM

Fig. 1 Downscaling model using Hopfield neural network.

Fig. 1 is presented to illustrate the process of increasing the
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resolution of a DEM. This process can be applied throughout
the entire DEM to enhance the overall resolution of the digi-
tal elevation model.

The HNN DEM downscaling model operates based on
goal functions and elevation constraint. The goal function of
this neural network is based on the principle of maximizing
spatial dependency, where neighboring pixels in the DEM
model tend to have similar elevations. This is determined
by assessing the similarity of elevation values among the
sub-pixels in the DEM model using a semi-variogram func-

tion, as follows:

N(h)

1
y(h) = N Z [vij — Vij+h]2 @,
1

Where y(/) represents the variogram value for each dis-
tance between two points (two sub-pixels), / is the distance
between pairs of points. v; and v, are the corresponding
elevation values at points , j and (i, /) + /&, N(h) is the number
of point pairs.

If the elevation values of these points are similar, the value
of the variogram function will be small. Therefore, to maxi-
mize spatial dependency, it is necessary to modify the eleva-
tion values v; and v, in such a way that the variogram value
y(h) is minimized.

To determine the values of v; and v,.,, according to the
above-mentioned principle, you need to find the minimum
value of the variogram by setting the derivative of the vario-

gram function equal to zero:
dy(hy/ov =0 (@)

Setting the derivative of the variogram function equal to
zero, it is possible to find the optimal values of v; and v,
that minimize the variogram and maximize the spatial de-
pendency. By solving this equation, it is possible to obtain
the desired elevation values that satisfy the given condition.

From there, it follows that each corresponding elevation
value of the pixel (7, j) will be adjusted by a value given by:

sd _ . expected
duji" = v;j vy 3),

In equation (3), duf]fi represents the adjusted elevation

value for the pixel (i,/) by the principle of spatial dependency

maximization. It is calculated by taking the expected eleva-
expected
ij

value, v;;. This adjustment helps to refine and improve the

tion value, v , and subtracting the original elevation
elevation values of the sub-pixels in the downscaled DEM.

The adjustment process will be iterated repeatedly until
the variogram values reach a minimum at every pixel (i,)).
This result corresponds to the scenario where the elevation
values of all sub-pixels in the DEM will be equal to the aver-
age of the elevation values of surrounding sub-pixels.

It can be observed that if only the principle of maximiz-
ing spatial dependency, as described above, is applied to the
DEM, the elevation values of the sub-pixels in the final DEM
will be equal. Therefore, another function is needed, called
the elevation constraint. The principle of this constraint is
that the average elevation of the sub-pixels within the range
of an original pixel in the original DEM should be equal to
the elevation value of that pixel in the original DEM.

Thus, the elevation constraint function will have the fol-

lowing value:

ep Z?f 1)f2%]f 1f¥pa
ep _ ; _ 2G=nf 2y-1r e 4),
du;; = Elevation,,, T @

In equation (4), dufjp represents the adjustment value
based on the elevation constraint for the sub-pixel (i,). It is
calculated by subtracting the average of the elevation values
of all sub-pixels within the footprint of the original pixel
(x,y) in the original image from the elevation value of that
pixel in the original DEM. This adjustment helps to ensure
that the final accuracy enhanced DEM satisfies the elevation
constraint, maintaining consistency with the original DEM
in terms of average elevation values in each original pixel.
With Elevation,, representing the elevation of the pix-
el (x,y) in the original DEM that contains the pixel (i,/), and
(p,q) representing the sub-pixels within the coverage area of
the pixel (x,y), the adjustment value for the elevation of each
sub-pixel in the enhanced high-resolution DEM after each

iteration will be given by:
du;j = duisjd + duf}J ©)

With g being the activation function in neural network
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models, and in this model using a linear activation function,
the elevation values of the image points (sub-pixel) after each

iteration ¢ will be equal to
vl =gWwi") =au;+b 6).

In equation (6), vitj represents the elevation value of the
pixel (i,j) at iteration ¢. It is calculated by applying the activa-

tion function g to the elevation value at a previous iteration
-1
ij

the coefficients @ and b.

v;; ~, which results in a linear transformation represented by

The HNN is a type of recurrent network that runs through
multiple iterations until it reaches the desired target value.
In the proposed HNN model by (Minh & Huong, 2013), the

expected target is determined by:
E =Y, Zj(duis;i + dufjp) = min ),

where E is the energy function. The energy function repre-
sents the summation of the goal function and constraint val-
ues. When energy function value £ is minimized, the neural
network stops iterating, and the elevation value at the point of
network convergence is taken as the final elevation value for

the sub-pixels in the high-resolution DEM.

2.2 HNN downscaling DEM with additional point
data

The new HNN model proposed for incorporating

supplementary elevation data is developed upon the

previously mentioned HNN DEM downscaling model. In

f=4

Elevation
Constraint

V1)+h
V.

U

this model, a pixel in the original DEM was also divided
into fxf sub-pixels. The principle of this new HNN model is
presented in Fig 2.

Let’s consider a supplementary elevation point located
at sub-pixel position (k,/), with an elevation value of
Elevsyppiementary while the corresponding elevation
value in the original DEM is Elev,gina. At each sub-pixel
position that contains a supplementary elevation point, the

adjustment value for elevation can be determined as:
Expected _
AElev™P - EleUSupplementary - ElevOriginal @

For the remaining sub-pixels in the downscaled DEM,
the adjustment values for elevation from the supplementary
data are determined using a similar principle as described
in Equation (4), where the adjustment values for neighboring
sub-pixels are expected to be similar. Therefore, the
adjustment value for elevation at sub-pixel (7, /) is determined

as:

N(h)
Expected _ 2, AElevijip
AElev; i e ).

Expected
ij
elevation determined froma group of supplementary elevation

where AElev represents the adjustment value for
points. Here, / denotes the distance between sub-pixel (i, f)
and its neighboring sub-pixels. In this model, # = 1 indicates
that the considering only the sub-pixels that are adjacent to
sub-pixel (i,j). AElev;, ;+h represents the adjustment value for
elevation of the neighboring pixels, and N(/) is the number of

sub-pixel pairs. In the case of considering only the sub-pixels

d—
AE[gyErpected= Efevsl,pp,eme,.m,y - He"'oﬂghaf
Vi

RS

Spatial /

Dependence ¢
Maximization

Original DEM

Downscaled DEM

Additional elevation data

Fig. 2 New model of downscaling using Hopfield Neural Network with additional elevation data.
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in direct contact with sub-pixel (i,/), the maximum number of
sub-pixel pairs is 8. Please note that the adjustment presented
in Equation 9 is not used for the sub-pixels containing the
supplementary elevation points.

The value of the elevation adjustment from the additional

elevation points at each iteration 7 for each pixel is given by:

duff'® = AE levfjxpe“ed — AElev]; (10),

AElev
ij
the additional control points, and AE levitj is the elevation

where du is the calculated adjustment value from
adjustment value for each sub-pixel at the 7™ iteration.

Due to the presence of the elevation adjustment function
from the additional control points, the constraint function also
needs to be adjusted. It is assumed that all sub-pixels within
the range of a pixel (x,y) belonging to the original elevation
model are adjusted by a value of AE levlﬁq Therefore, the

height value of pixel (x,y) will be adjusted by:

¥ sY AElevt
AElev,, = ==L (}’X?f e (1D,

where f is zooming factor. The value of the elevation

constraint will be determined by:

X of
_ Z-nrEy-1)r Vpa

ep __ .
dui]. = Elevation,,, xr

12)

i syr
+ Za-nrZiy-nrAElevhg
xf

Thus, the total height adjustment value from Equation (7)
will be determined by:

du;; = dufﬁ + dufjp + duiA]H (13).

The energy function £ of the HNN is adjusted and used as

a condition to complete the iteration process as follows:
E= Zizj(duf}i + duf}’ + duiAjﬁle”) =min (14).
3. Data
To evaluate the proposed algorithm for DEM downscaling,

a DEM model for a small area in Cao Bang Province was

used for testing. The data was downloaded from the website

of the US Geological Survey (https:/earthexplorer.usgs.gov/)

for the Cao Bang Province area, consisting of two pieces

of elevation data in GeoTlFF format with the filenames
n22 el05 larc v3 and n22 el06 larc v3. The location and
coverage of these elevation models are presented in Fig. 3.
The data is georeferenced with EPSG:32648 - WGS 84/UTM
zone 48N coordinate system and the elevation is based on
the global geoid model EGM96. The data was established in

2011 with a spatial resolution of 30 meters.

3

Fig. 3 STRM data of Cao Bang Province

Fig. 4 Location of the DEM used for evaluation of the
newly proposed algorithm between Bach Dang commune,
Hoa An district and Minh Khai commune, Thach An
district, Cao Bang Province.

The accuracy of the elevation data has been evaluated in

various relatively different areas within a range of +6 meters
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to £9 meters (Chen et al., 2020; Mukul et al., 2017). For moun-
tainous areas similar to Cao Bang, it is possible to estimate
that the RMSE (Root Mean Square Error) of DEM is approx-
imately +9 meters. The elevation data from the global geoid
model is adjusted to the elevation system of Vietnam based
on the geoid benchmark at Hon Dau tidal station, Hai Phong,
using the height difference values determined by (Hoa, 2017),
where the global model elevation values are adjusted by the
height difference DO = 0.890 meters. The supplementary el-
evation points data is derived from the 1:10,000 topographic
base data established in 2012 through photogrammetric sur-
veying with a contour elevation interval of 5 meters, and the
RMSE is determined according to the regulations specified
in Circular 12/2020/TT-BTNMT (2020), which is one-third
of the contour elevation interval (increased by 1.5 times un-
der special difficult conditions). The accuracy of the elevation

points corresponds to a RMSE of 2.5 meters.
4. Experiment
The proposed algorithm was tested on a pierce of DEM

data in an area of 1650 m x 1344 m (Fig. 4) with its center
located at coordinates 106.71580E, 22.553640N (according

Fig. 5 Supplementary elevation data: . Additional eleva-

tion points for DEM improvement, - Elevation points for

accuracy evaluation
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to the EPSG:32648 - WGS 84 / UTM zone 48N coordinate
system). The location of the testing DEM is located in Bach
Dang Commune, Hoa An District and Minh Khai Commune,
Thach An District in Cao Bang Province.

The supplementary elevation points in the experimental
area were extracted from the 1:10000 scale geospatial
information dataset. The elevation points were divided
into two groups: a group of 130 points used to enhance the
accuracy of the elevation model, and a group of 64 points
used to evaluate the algorithm’s accuracy. The distribution of

these point groups is shown in Fig. 5.

@ (b)
Fig. 6 DEM datasets used as input for HNN downscaling
models: (a) SRTM 30 m resolution data, (b) Downgraded
60 m resolution DEM

To evaluate the algorithm, DEMs at different resolutions
were used as input for the HNN model to enhance the reso-
lution with 130 supplementary elevation points. An original
SRTM 30 m elevation model data DEM (presented in Fig.
6(a)) was used as input for the HNN model to generate 7.5
m DEM (zoom factor f'= 4). The results of the downscaling
using the new HNN model are presented in Fig. 7(b). Addi-
tionally, the elevation model data was also downscaled using
the conventional HNN model, (without the inclusion of addi-
tional elevation points), bilinear and bi-cubic resampling for
evaluation purposes, and the results are shown in Figs. 7(c),
(d) and (e), respectively

The original STRM DEM was also downgraded to 60 m
resolution using average method and this DEM was used as
input for the new HNN downscaling to produce the DEMs at
resolutions of 30 m, 20 m, 15 m, 12 m and 10 m, correspond-

ing to the zoom factors of 2, 3, 4, 5 and 6, respectively. These
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would help to evaluate the effect of zoom factors of the newly
proposed HNN downscaling using supplementary elevation
data. The input DEM datasets are presented in Fig. 6(b) and
the resulted downscaled DEMs of both HNN downscaling
and proposed HNN downscaling with supplementary data
are presented in the Figs. 8(a), 8 (b) for DEMs at 30 m res-
olution, Fig. 8(c) and Fig. 8(d) for DEM at 20 m resolution,
Figs. 9(a), 9(b) for DEM at 15 m resolution, Figs. 9(c), 9(d) for
DEM at 12 m resolution, and Figs. 9(¢) , 9(f) for DEM at 10

m resolution.

this dataset, the elevations of the test points are compared
with the elevations obtained from the SRTM 30 m DEM, the
7.5 m resolution DEM generated by conventional resampling
methods such as bilinear and bi-cubic, the Hopfield neural
network without additional elevation points, and the 7.5 m
resolution elevation model generated by the Hopfield neural
network with additional elevation points. The purpose
of this is to assess the newly proposed HNN downscaling
algorithm by comparing it’s accuracy statistics to those of the

conventional resampling and downscaling algorithms.

© @

Fig. 7 Results of resampling and downscaling of 30 m
SRTM DEM with zoom factor of 4 to 7.5 m resolution: (a)
result of bilinear method; (b) result of bi-cubic method; (c)
results of HNN; (d) results of new HNN with supplementa-

ry elevation data.

5. Results and discussion

To evaluate the results of the algorithm that improves
the accuracy of the elevation model using the HNN with
additional elevation points, a dataset of 64 points was used,
and the performance of the algorithms was assessed using
parameters including RMSE and Mean Absolute Error
(MAE). The evaluation results are presented in Table 1. In

© @

Fig. 8 Results of downscaling of 60 m degraded SRTM
DEM with zoom factor of 2 to 30 m resolution and factor
of 3 to 20 m resolution: (a) 30 m HNN downscaled DEM;

(b) 30 m new HNN downscaled DEM (c) 20 m HNN down-
scaled DEM; (d) 20 m new HNN downscaled DEM.

The results in Table 1 show that when comparing the
maximum and minimum error values, the use of additional
elevation data has corrected the larger errors. The absolute
values of both the smallest and largest errors have decreased
for the elevation model produced by the HNN with the use of
additional elevation points. Comparing the results in terms
of RMSE and MAE indicates a significant improvement in

accuracy when incorporating additional elevation points
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into the HNN model compared to the resampling by bilinear
and bi-cubic, and HNN downscaling without additional
points cases. The RMSE has decreased from 9.197 m,
+9.122 m, £9.595 m and +9.234 m for the original DEM, the
elevation model generated by the HNN downscaling, bilinear
and bi-cubic resampling, respectively, to +6.490 when
supplementary elevation data was incorporated in the model.
Thus, using the supplementary elevation data will help the
accuracy of the DEM increased by nearly 30% compared to
the original model and 29% compared to the DEM generated
by the HNN DEM downscaling without additional elevation

points.

Table 1. Accuracy assessment for HNN downscaling and
HNN downscaling using supplementary elevation points
for SRTM DEM at 30 m.

E
Resolution — rrors
(m) Min | Max | RMSE | MAE

(m) | (m) | (m) (m)

Dataset

SRTM 30 m 30.0 285 | 18.6 | £9.197 | 7.431
DEM 7.5 m
resampled 7.5 -28.5 | 19.2 | £9.595 | 7.830
using bilinear
DEM 7.5 m
resampled 7.5 -28.5 | 192 | £9.234 | 7447

using bi-cubic
DEM 7.5 m

downscaled 7.5
using HNN

DEM 7.5 m
down_scaled
using
HNNwith |
supplementary
elevation data

-28.231|19.294| £9.122 | 7.319

-15.371|13.987| £6.490 | 5.140

Similarly, comparing the MAE (Mean Absolute Error)
values of the DEMs also demonstrates a significant reduction
in the MAE for the 7.5 m resolution DEM generated by
the HNN with additional elevation points compared to the
original 30 m resolution DEM (SRTM 30 m), the HNN
downscaling without using supplementary data, bilinear and
bi-cubic resampling approaches. The values of MAE reduced
from 7.830 m, 7.447 m, and 7.319 m for the DEM produced
by bilinear, bi-cubic and HNN downscaling, respectively, to
5.140 m for the DEM produced by HNN downscaling with

402

supplementary data.

Although the DEM by the conventional resampling
and HNN downscaling achieved an improvement in
accuracy when compared to the original SRTM elevation
model, the MAE only decreased by 0.12 m for this DEM.
However, when using additional elevation points, the
MAE decreased by 2.2 m from 7.319 m for the elevation
model generated by the HNN without additional elevation
points to 5.140 m, thanks to the incorporation of additional

elevation points.

© (®)

Fig. 9 Results of downscaling of 60 m degraded SRTM
with zoom factor of 4, 5, 6: (a) 15 m HNN downscaled
DEM; (b) 15 m new HNN; (¢) 12 m HNN downscaled

DEM; (d) 12 m new HNN downscaled DEM; (e) 10 m HNN
downscaled DEM; (d) 10 m new HNN downscaled DEM.
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ERROR VALUES AND ZOOM FACTOR
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Fig. 10 Changes of error values versus zoom factor

To investigate the effects of zoom factor to the newly
proposed algorithm, the downscalings of DEM using HNN
and HNN with additional point data were implemented using
zoom factors ranging from 2 to 6. Resulting downscaled
DEMs are presented in Figs. 8 and 9. The evaluation of this
DEMs is based on basic statistics such as RMSE and MAE
with a set 64 validation elevation points (Fig.5) and presented
in Table 2. Additionally, Fig. 10 illustrate the variation in

accuracy as a function of the zoom factor. These variations

show a correlation between zoom factor and the accuracy
of the downscaled DEMs. As the zoom factor increases, the
accuracy of both HNN downscaling and HNN downscaling
using supplementary elevation data is increased. The
RMSE of HNN downscaled DEM reduced from +12.123
m of original 60 m DEM to +11.687 m, £10.720 m, +10.164
m, $9.883 m and +9.770 m for DEMs with zoom factor of
2, 3,4, 5 and 6, respectively. Similarly, when incorporating
supplementary elevation data to the HNN, the RMSE of the
DEM decreased to +9.190 m, +7.994 m, +7.176 m, +7.262
m, and £7.067 m. Upon inspection, it is evident that the
incorporation of supplementary elevation data significantly
enhances the accuracy of the DEM compared to using HNN
downscaling alone, without supplementary elevation data.
The most accurate DEM achieved through HNN downscaling
showed an improvement of approximately 20% compared to
the original low-resolution DEM. However, with the newly
proposed HNN algorithm, the accuracy of the most accurate
DEM improved by approximately 41.5% in comparison to the
original DEM.

Although the accuracy of the DEM improves as the zoom
factor increases, there appears to be a limitation in the extent

of accuracy improvement for two HNN-based downscaling

Table 2. Accuracy assessment for HNN downscaling and HNN downscaling using supplementary elevation points for

downgraded DEM at 60 m
Errors
Dataset Resolution (m) :
Min (m) Max(m) | RMSE (m) | MAE (m)
Downgraded SRTM 60 m 60.0 -30.5 22.6 $12.123 10.405
DEM 30 m downscaled with HNN 30.0 -30.12 22.0 +11.687 9.872
DEM 30 m downscaled using HNN with 30.0 16.867 18.366 49190 7683
supplementary elevation data
DEM 20 m downscaled with HNN 20.0 -27.967 20.864 +10.720 9.086
DEM 20 m downscaled using HNN with 200 17407 17.384 +7.994 6.657
supplementary elevation data
DEM 15 m downscaled with HNN 15.0 -27.403 21.41 +10.164 8.460
DEM 15 m downscaled using HNN with 150 12787 15918 +7.176 5.948
supplementary elevation data
DEM 12 m downscaled with HNN 12.0 -26.521 19.827 +9.883 8.195
DEM 12 m downscaled using HNN with 12,0 136 16.279 +7262 6018
supplementary elevation data
DEM 10 m downscaled using HNN 10.0 -26.0 19.9 +9.770 7.988
DEM 10 m downscaled using HNN with 10.0 13415 17618 £7.067 5,702
supplementary elevation data
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methods. Specifically, when the zoom factor is increased
to 4, the HNN downscaling method results in an RMSE
and MAE reduction of approximately 1.96 m and 1.945
m, respectively. However, when the zoom factor is further
increased from 4 to 6, the reduction in RMSE and MAE is
only around 0.4 m and 0.5 m, respectively. Similarly, for
the HNN downscaling method using supplementary data, a
reduction of approximately 4.95 m in RMSE and 4.46 m in
MAE is observed when the zoom factor is increased to 4. In
contrast, when the zoom factor is increased from 4 to 6, the
reduction in RMSE and MAE is merely 0.11 m and 0.25 m,
respectively. These findings suggest that a zoom factor of 4
appears to be the most optimized value for the model, as it
achieves a balance between accuracy improvement and the

diminishing returns observed at higher zoom factors.

6. Conclusions

Although the HNN has demonstrated the ability to
improve the accuracy of elevation models when used to
enhance the resolution of grid-based DEMs, it is necessary
to further enhance the HNN model by integrating additional
elevation data when available. The results of the study have
shown that the proposed HNN DEM downscaling model,
designed to incorporate supplementary elevation data, has
significantly improved the accuracy of the DEM. Both the
Root Mean Square Error and Mean Absolute Error values
have decreased significantly, and the accuracy of the DEM
has increased by from 30% to 40% compared to the original
models.

Additionally, the findings indicate that a zoom factor of
4 appears to be the optimal choice for the newly proposed
models. This zoom factor strikes the best balance between
accuracy and computing cost as the zoom factor increases.

Although the proposed model has only been tested on
a relatively small dataset, the promising results of using
the HNN model to integrate available elevation data for
improving the accuracy of elevation models, especially for
global elevation datasets like SRTM 30 m data, indicate that
the proposed method can be applied in practical settings
with comprehensive evaluations under various terrain

conditions.

404

Acknowledgement

The content of this scientific paper presents the research
findings of the project with the code B2021-MDA-04, funded
by the Ministry of Education and Training. The authors
would like to express their sincere gratitude to the Ministry
of Education and Training and the Hanoi University of
Mining and Geology for providing the necessary resources

and support to successfully complete this research.

References

Bhuyian, M., J., Kalyanapu, A., & Fernando, N. (2015), Ap-
proach to Digital Elevation Model Correction by Improv-
ing Channel Conveyance. Journal of Hydrologic Engi-
neering, Vol 20, No. 5, 4014062.
https://doi.org/10.1061/(ASCE)HE.1943-5584.0001020

Chen, C., Yang, S., & Li, Y. (2020), Accuracy Assessment
and Correction of SRTM DEM Using ICESat/GLAS Data
under Data Coregistration, In Remote Sensing (Vol. 12,
No. 20).
https://doi.org/10.3390/rs12203435

Courty, L. G., Soriano-Monzalvo, J. C., & Pedrozo-Acufia,
A. (2019), Evaluation of open-access global digital ele-
vation models (AW3D30, SRTM, and ASTER) for flood
modelling purposes, Journal of Flood Risk Management,
Vol. 12, No S1, pp. 1-14.
https://doi.org/10.1111/j{r3.12550

Grohmann, C. H., & Steiner, S. S. (2008), SRTM resample
with short distance-low nugget kriging, International
Journal of Geographical Information Science, Vol. 22,
No. &, pp. 895-906.
https://doi.org/10.1080/13658810701730152

Hoa, H. M. (2017), Construction of initial national qua-
si-geoid model VIGAC2017, first step to national spatial
reference system in Vietnam, Vietnam Journal of Earth
Sciences. 2017a, Vol. 39, No. 2, pp. 155-166.

Jana, R., Reshmidevi, T. V, Arun, P. S., & Eldho, T. 1. (2007),
An enhanced technique in construction of the discrete
drainage network from low-resolution spatial database,
Computers & Geosciences, Vol 33, No. 6, pp. 717-727.



Improving The Accuracy Of Digital Elevation Model Using Hopfield Neural Network With Additional Elevation Point Dataset

https://doi.org/10.1016/j.cageo.2006.06.002

Minh, N. Q., & Huong, N. T. T. (2013), Increasing spatial res-
olution of remotely sensed image using HNN Super-reso-
lution mapping combined with a forward model, Journal
of the Korean Society of Surveying Geodesy Photogram-
metry and Cartography, Vol. 31, No. 6 PART 2.
https://doi.org/10.7848/ksgpc.2013.31.6-2.559

Circular 12/2020/TT-BTNMT on national topographic maps
of 1:10000 and 1:25000.

Mukul, M., Srivastava, V., Jade, S., & Mukul, M. (2017),
Uncertainties in the Shuttle Radar Topography Mission
(SRTM) Heights: Insights from the Indian Himalaya and
Peninsula, Scientific Reports, Vol. 7, No. 1, 41672.
https://doi.org/10.1038/srep41672

Nguyen, M. Q., Atkinson, P. M., & Lewis, H. G. (2006), Su-
perresolution mapping using a hopfield neural network
with fused images, [EEE Transactions on Geoscience and
Remote Sensing, Vol 44, No. 3, 736-749.
https://doi.org/10.1109/TGRS.2005.861752

Nguyen, Q. M., Nguyen, T. T. H., La, P. H., Lewis, H. G.,
& Atkinson, P. M. (2019), Downscaling Gridded DEMs
Using the Hopfield Neural Network, /EEE Journal of Se-
lected Topics in Applied Earth Observations and Remote
Sensing, Vol 12, No. 11, pp. 4426—4437.
https://doi.org/10.1109/JSTARS.2019.2953515

Paredes-Hernandez, C. U., Tate, N. J., Tansey, K. J., Fisher, P.
F., & Salinas-Castillo, W. E. (2010), Increasing the Accu-
racy of Low Spatial Resolution Digital Elevation Models
using Geostatistical Conflation, Ninth International Sym-
posium on Spatial Accuracy Assessment in Natural Re-
sources and Environmental Sciences, pp. 413—416.

Pham, H. T., Marshalla, L., Johnsona, F., & Sharmaa, A.
(2018), A method for combining SRTM DEM and ASTER
GDEM2 to improve topography estimation in regions
without reference data, Remote Sensing of Environment,
210, 229-241.
https://doi.org/10.1016/J.RSE.2018.03.026

Tang, Y., Zhang, J., Li, H., Ding, H., Liu, J., & Jing, L. (2014),
A multiple-point geostatistical method for digital elevation
models conflation. International Geoscience and Remote
Sensing Symposium (IGARSS), pp. 4299-4302.
https://doi.org/10.1109/IGARSS.2014.6947440

Uuemaa, E., Ahi, S., Montibeller, B., Muru, M., & Kmoch,
A. (2020), Vertical Accuracy of Freely Available Global
Digital Elevation Models (ASTER, AW3D30, MERIT,
TanDEM-X, SRTM, and NASADEM), In Remote Sensing
Vol. 12, No. 21.
https://doi.org/10.3390/rs12213482

Wu, S., Li, J., & Huang, G. H. (2008), A study on DEM-de-
rived primary topographic attributes for hydrologic appli-
cations: Sensitivity to elevation data resolution, Applied
Geography, Vol 28, No 3, pp. 210-223.
https://doi.org/10.1016/j.apgeog.2008.02.006

Yamazaki, D., Ikeshima, D., Tawatari, R., Yamaguchi, T.,
O’Loughlin, F., Neal, J. C., Sampson, C. C., Kanae, S., &
Bates, P. D. (2017), A high-accuracy map of global terrain
elevations. Geophysical Research Letters, Vol. 44, No. 11,
pp. 5844-5853.
https://doi.org/https://doi.org/10.1002/2017GL072874

405






