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Abstract: The digital elevation model (DEM) and its derived morphometric factors, i.e., slope, as-

pect, profile and plan curvatures, and topographic wetness index (TWI), are essential for natural 

hazard modeling and prediction as they provide critical information about the terrain’s character-

istics that can influence the likelihood and severity of natural hazards. Therefore, increasing the 

accuracy of the DEM and its derived factors plays a critical role. The primary aim of this study is to 

evaluate and compare the effects of resampling and downscaling the DEM from low to medium 

resolution and from medium to high resolutions using four methods: namely the Hopfield Neural 

Network (HNN), Bilinear, Bicubic, and Kriging, on five morphometric factors derived from it. A 

geospatial database was established, comprising five DEMs with different resolutions: specifically, 

a SRTM DEM with 30 m resolution, a 20 m resolution DEM derived from topographic maps at a 

scale of 50,000, a 10 m resolution DEM generated from topographic maps at a scale of 10,000, a 5 m 

resolution DEM created using surveying points with total stations, and a 5 m resolution DEM con-

structed through drone photogrammetry. The accuracy of the resampling and downscaling was 

assessed using Root Mean Square Error (RMSE) and mean absolute error (MAE) as statistical met-

rics. The results indicate that, in the case of downscaling from low to medium resolution, all four 

methods—HNN, Bilinear, Bicubic, and Kriging—significantly improve the accuracy of slope, as-

pect, profile and plan curvatures, and TWI. However, for the case of medium to high resolutions, 

further investigations are needed as the improvement in accuracy observed in the DEMs does not 

necessarily translate to the improvement of the second derivative morphometric factors such as plan 

and profile curvatures and TWI. While RMSEs of the first derivatives of DEMs, such as slope and 

aspect, reduced in a range of 8% to 55% in all five datasets, the RMSEs of curvatures and TWI slightly 

increased in cases of downscaling and resampling of Dataset 4. Among the four methods, the HNN 

method provides the highest accuracy, followed by the bicubic method. The statistics showed that 

in all five cases of the experiment, the HNN downscaling reduced the RMSE and MAE by 55% for 

the best case and 10% for the worst case for slope, and it reduced the RMSE by 50% for the best case 

of aspect. Both the HNN and the bicubic methods outperform the Kriging and bilinear methods. 

Therefore, we highly recommend using the HNN method for downscaling DEMs to produce more 

accurate morphometric factors, slope, aspect, profile and plan curvatures, and TWI. 
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1. Introduction 

Digital elevation models (DEMs), which were introduced in the late 1950s, have been 

widely utilized in various applications dealing with the Earth’s surface, including, but not 

limited to, hydrology, geology, cartography, geomorphology, engineering, and landscape 

architecture [1–3]. DEMs have especially been extensively utilized in the last decade for 

accurate modeling and predicting natural hazards, including landslide [4,5], soil erosion 

[6,7], flood [8,9], and sea level rise assessment [10,11]. Herein, the accurate prediction of 

natural hazards refers to the ability to predict the occurrence, severity, and location of 

natural hazards with high accuracy. 

Literature review shows that the accuracy of natural hazard prediction is signifi-

cantly dependent on both the methods employed for modeling and the data used [12,13], 

which includes the DEM and its derived topographic or morphological factors, such as 

slope angle, slope aspect, plan curvatures, profile curvatures, and topographic wetness 

index (TWI). Basically, high-resolution DEMs are commonly assumed to provide superior 

results in natural hazard mapping. A higher accuracy DEM can provide more precise in-

formation on the extracted topographic factors such as slope, aspect, plan curvature, pro-

file curvature, and TWI, resulting in more accuracy in the applications [14]. In other 

words, higher accuracy input DEM can improve the accuracy of these applications by 

providing more detailed information on topographic factors. 

DEM data, mostly in grid raster, are acquired using different methods such as ground 

surveying, photogrammetry, optical and radar remote sensing, light detection and rang-

ing (LiDAR). These data, therefore, are available at various resolutions and accuracy de-

pending on the data acquisition methods [15]. The resolution may range from a very high 

of 0.5 m to 5 m collected by the LiDAR or ground survey to a medium of 30 m by Ad-

vanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and 90 m by 

Shuttle Radar Topography Mission (SRTM) data. It is apparent that DEMs created using 

total stations, drone photogrammetry, or LiDAR have demonstrated the highest level of 

accuracy [16–18]. However, these accurate DEMs are not always available in the areas of 

interest. Therefore, improving the accuracy of the DEMs and their morphometric factors 

through sub-pixel methods and interpolation techniques may be an alternative to obtain-

ing the DEM and its derived morphometric factors at an acceptable level of accuracy. 

Numerous methods and techniques have been proposed to increase the DEM accu-

racy for natural hazard predictions [14,19]. Some of these are based on the down-sampling 

of DEM to different resolutions, and they use these DEMs to calculate the input factors for 

natural hazard models in different regions [20]. Thus, the accuracy and grid DEM resolu-

tion can be increased using resampling and downscaling methods [19,20]. The common 

approaches for downscale resampling are bilinear, bi-cubic, and Kriging [21]. The main 

advantage of these methods is that they do not require prior DEM data at different reso-

lutions for training and are computationally efficient. However, accuracy may not be sat-

isfactory in some cases. 

More recently, a number of sophisticated deep learning artificial intelligence models, 

such as deep residual networks [22], Recursive Sub-Pixel Convolutional Neural Networks 

[23], Laplacian of Gaussian Super-resolution [24], Reconstruction Network Combining In-

ternal and External Learning [25], Super-Resolution with Generative Adversarial Network 

[26] have been proposed. These methods are mostly based on approaches proposed for 

image super-resolution [22–26]. The result shows that the DEM accuracy has improved 

regarding root mean square error (RMSE) and the closeness to the reference data [19,20]. 

However, although showing potential for improvement of super-resolved DEMs’ accu-

racy, applying these methods still required large amounts of training data and very high-

capacity hardware to build complex neural network models. 

In recent research, we proposed a method for downscaling DEM using Hopfield 

Neural Network (HNN) [20] with promising results. This method not only improves the 

accuracy of DEMs but also is computationally efficient and can be performed on personal 

computers without incurring high costs. However, the extent to which DEM resampling 
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approaches can improve the accuracy of derived morphometric factors, i.e., slope, aspect, 

plan curvature, profile curvature, and topographic wetness index (TWI), is still unknown. 

This research aims to address this gap in the literature by assessing and comparing 

HNN, bilinear, bi-cubic, and Kriging methods regarding the enhancement of the accuracy 

of the five morphometric factors mentioned above through up-sampling and downscaling 

of DEMs across various resolutions. Herein, five DEMs with different resolutions were 

used for testing such as SRTM DEM with 30 m resolution, 20 m resolution DEM generated 

from topographic maps at a scale of 50,000, 10 m resolution DEM generated from topo-

graphic maps at a scale of 10,000, 5 m resolution DEM constructed using surveying points 

with total stations, and 5 m resolution DEM built using drone photogrammetry. 

2. Method and Data Used 

2.1. Method Used 

2.1.1. Hopfield Neural Network 

The Hopfield Neural Network (HNN) is a recurrent artificial neural network that was 

proposed by John Hopfield in 1982 [27]. This method operates based on the principle of 

maximizing spatial dependence or similarity among adjacent pixels within an image. For 

downscaling of the DEM in this research context, the spatial dependence is interpreted as 

a goal function as 

𝑑𝑢𝑖𝑗
𝑠𝑑 = 𝑣𝑖𝑗

𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑
− 𝑣𝑖𝑗  (1) 

where 𝑣𝑖𝑗
𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑

=
∑ 𝑣𝑖𝑗+ℎ

𝑁(ℎ)
1

𝑁(ℎ)
  is the average value computed from the 𝑁(ℎ)  surrounding 

pixels to the pixel (i, j), h is the distance from the pixel (i, j) to the surrounding pixel 𝑖𝑗 + ℎ; 

𝑑𝑢𝑖𝑗
𝑠𝑑 is an elevation correction value of pixel (i, j) at the iteration u, and 𝑣𝑖𝑗  is the elevation 

value of the iteration u − 1. 

In HNN downscaling, each sub-pixel or pixel at a higher resolution is represented by 

a neuron, and the whole DEM image is a panel of neurons. 

Together with the goal function, an elevation constraint function is as follows: 

𝑑𝑢𝑖𝑗
𝑒𝑝

= 𝐸𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛𝑥,𝑦 −
∑ ∑ 𝑣𝑝𝑞

𝑦𝑓
(𝑦−1)𝑓

𝑥𝑓
(𝑥−1)𝑓

𝑓 × 𝑓
 (2) 

where 𝐸𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛𝑥,𝑦 is the elevation value of pixel (x, y) in the original image, 𝑣𝑝𝑞 is the 

output (elevation) value of the sub-pixel (p, q) in the newly generated image covered by 

pixel (x, y), and f is the zoom factor. 

If the average of the elevation values of all sub-pixels within a pixel is smaller than 

the 𝐸𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛𝑥,𝑦, then the elevation values 𝑣𝑝𝑞 of all sub-pixels within the footprint of pixel 

(x, y) are increased. 

In contrast, when the average of the elevation values of all sub-pixels within a pixel 

(x, y) is larger than the 𝐸𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛𝑥,𝑦, a value is subtracted from the output value 𝑣𝑝𝑞 of the 

neuron (p, q). 

The HNN network runs in an iterative process until the energy E value is minimized 

as 

𝐸 = ∑ ∑(𝑑𝑢𝑖𝑗
𝑠𝑑 + 𝑑𝑢𝑖𝑗

𝑒𝑝
)

𝑗𝑖

= 𝑚𝑖𝑛 (3) 

2.1.2. Bilinear Interpolation Method 

Bilinear interpolation is a conventional method used to interpolate pixel values based 

on the weighted average of neighboring pixels [28]. This technique assumes that the pixel 

intensity changes linearly across the image, and its value is computed using the formula 

as follows: 
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𝑓(𝑥, 𝑦) = 𝑓(0,0)(1 − 𝑥)(1 − 𝑦) + 𝑓(1,0)𝑥(1 − 𝑦) + 𝑓(0,1)(1 − 𝑥)𝑦 + 𝑓(1,1)𝑥𝑦 (4) 

where 𝑓(𝑥, 𝑦) is the value of the pixel, (𝑥, 𝑦); f(0,0), f(1,0), f(0,1), and f(1,1) are the values of 

four surrounding pixels (0,0), (1,0), (0,1), and (1,1) of the pixel (𝑥, 𝑦) . In the case of 

resampling of the DEM, 𝑓(𝑥, 𝑦) represents the elevation of the pixel (𝑥, 𝑦). 

2.1.3. Bi-Cubic Interpolation Method 

The bi-cubic interpolation method uses the closest 4 × 4 surrounding pixels for a total 

of 16 pixels to calculate the value of the pixel at the location (x, y) [29]: 

𝑓(𝑥, 𝑦) = ∑ ∑ 𝑎𝑖𝑗𝑓(𝑥𝑖 , 𝑦𝑗)

3

0

3

0

 (5) 

where 𝑓(𝑥, 𝑦) is the value (elevation) of the pixel (𝑥, 𝑦); 𝑓(𝑥𝑖 , 𝑦𝑗) is the value of the sur-

rounding pixel (i, j) of the original image used to calculate 𝑓(𝑥, 𝑦) with i = 0,..,3, j = 0,..,3; 

and 𝑎𝑖𝑗   is weight value which is computed using the distances from pixel (𝑥, 𝑦)  to the 

pixel (i, j) at the original image. 

2.1.4. Kriging Interpolation Method 

Kriging interpolation is a method of interpolation based on the spatial correlation 

between sampled points [30]. Kriging consists of two steps. The first step is to determine 

the spatial covariance structure of the sampled points by fitting a variogram. The second 

step is to derive a weight matrix from the covariance structure obtained in the first step 

and use this weight matrix to calculate the value (elevation) of the pixel (x, y). The com-

putation of 𝑓(𝑥, 𝑦) of Kriging is similar to that of bi-cubic resampling as follows: 

𝑓(𝑥, 𝑦) = ∑ ∑ 𝑎𝑖𝑗𝑓(𝑥𝑖 , 𝑦𝑗)

3

0

3

0

 (6) 

However, the calculation of weight values 𝑎𝑖𝑗  is based on a different process using 

the covariance structures obtained from the surrounding pixels. 

2.2. Data Used 

In this research, five DEM datasets (Table 1) of different areas in Vietnam and at a 

variety of resolutions were used. The locations of these datasets are presented in Figure 1. 

Dataset 1 is a 30 m DEM obtained from the Shuttle Radar Topography Mission 

(SRTM) and downloaded from USGS EarthExplorer (accessible via https://earthex-

plorer.usgs.gov, accessed on 2 September 2023). This dataset covered an area of about 3.5 

km by 3.5 km and is located at 18°58′57.03″N, 105°22′44.87″E in Yen Thanh District, Nghe 

An Province, in North Central Vietnam. This area was selected because the vegetation 

covers were very low, and its effect to the elevation accuracy of SRTM data was mini-

mized. This DEM is used to examine the impact of the resampling and downscaling of 

DEM from lower resolution to 30 m resolution. To obtain the DEM at low resolution, the 

30 m DEM was upscaled to the resolution of 90 m for evaluation on the impact of 

resampling and downscaling. 

Dataset 2 is a DEM obtained from the same location as the first dataset. This DEM 

was generated by Kriging (ordinary Kriging) interpolation of contours in topographic 

maps with a scale of 1:10,000. The original DEM had a spatial resolution of 20 m, but it 

was upscaled to 60 m by averaging the elevation values of 20 m pixels that were within 

the boundaries of the degraded 60 m pixels. 

Dataset 3 was acquired using ground surveying in Lang Son Province of Vietnam. 

The test field is situated in Mai Pha Ward, Lang Son City, and covers an area of approxi-

mately 200 m by 200 m. In order to create a gridded 5 m DEM dataset for reference pur-

poses, a total of 533 elevation points were measured and processed with Kriging 
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interpolation. The accuracy of the reference DEM was determined by evaluating its Root 

Mean Square Error (RSME) with 234 validation points. The vertical accuracy of the eleva-

tion points measured by Topcon total station is 0.05 m (Vertical and horizontal accuracy 

of angle measurement is 5” and accuracy of distance measurement is 5 mm). 

Dataset 4 was created from contour data in Dac Ha district, Kontum Province, Vi-

etnam, at the location of 14.671794°N and 107.967292°E. The survey area covers an ap-

proximate area of 6.6 km by 6.6 km. A DEM with a resolution of 10 m was generated from 

the original contour data, which was obtained at 5 m intervals. This 10 m DEM was used 

as the reference dataset. In order to produce coarse 30 m spatial resolution input data for 

resampling and downscaling, 10 m interval contours were interpolated from the same 

area. 

Dataset 5 has an area of 1.4 km × 1.4 km and was obtained using an unmanned aerial 

vehicle in Cao Bang Province. The DJI Phantom 4 RTK was used with a flying height of 

150 m to generate two sets of DEMs, as in Table 1. The 5 m and 20 m DEMs were generated 

from the 2000 and 500 elevation point datasets with accuracy of 2.2 m and 0.5 m, respec-

tively (see Table 1). 
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Figure 1. Four datasets (a) DEM 20 m and 30 m in Nghe An Province; (b) DEM 5 m in Lang Son 

Province; (c) DEM 10 m in Kon Tum Province; (d) DEM 5 m in Cao Bang Province. 

Table 1. DEM datasets at different spatial resolutions and locations. 

DEM Datasets 
Resolution of 

Reference DEM 

Vertical Accu-

racy (RMSE) 

Resolution be-

fore Resampling 

Zoom  

Factor 

30 m SRTM DEM in Nghe An 

Province 
30 m 9.0 m 90 m 3 

20 m DEM in Nghe An Prov-

ince from a topographic map 
20 m 7.5 m 60 m 4 

5 m DEM in Lang Son Prov-

ince from ground survey 
5 m 0.5 m 20 m 4 

10 m DEM in Kon Tum Prov-

ince from a topographic map 
10 m 1.2 m 30 m 3 

5 m DEM in Cao Bang Prov-

ince from photogrammetry 
5 m 0.5 m 20 m 4 

2.3. Morphometric Factors 

In this analysis, four morphometric factors were considered: slope, aspect, plan cur-

vature, profile curvature, and Topographic Wetness Index (TWI). 

2.3.1. Slope and Aspect 

The most utilized algorithms calculate slope and aspect from a Digital Elevation 

Model (DEM) using a 3 × 3 cell neighborhood. Several methods of calculating the slope 

and aspect from the 3 × 3 cell window include the Maximum Slope Method, Maximum 

Downhill Slope Method, Quadratic Surface Method, and Neighborhood Method [31]. 

Comparing these methods using a standard Morison’s surface, Jones [32] indicated that 

the method of Horn is suitable for calculating both slope and aspect from DEM. The slope 

and aspect calculation in this paper is implemented using this method which is incorpo-

rated in the SAGA tools in QGIS software (Version 3.14). 

2.3.2. Plan Curvature and Profile Curvature 

Plan and profile curvatures are conditional factors used in many different models for 

landslide, hydrological and biophysical property modeling, and landform classification. 

The two mostly used curvatures are plan curvature and profile curvature [33,34]. These 

curvatures are the second-order derivatives of the topography [35]. The method for plan 

and profile curvatures from DEM in this paper was proposed by Zevenbergen and Thorne 

[36] and deployed as a tool in SAGA using QGIS. 

2.3.3. Topographic Wetnet Index 

The Topographic Wetness Index (TWI) presents the potential for water to accumulate 

in a given location based on the topography of the area. TWI is a measure of soil moisture 

based on terrain features derived from a DEM. The calculation of TWI is usually based on 

a gridded DEM, and the value of TWI at a point [37,38] is computed as follows: 

       𝑇𝑊𝐼 =  𝑙𝑛(𝑎/𝑡𝑎𝑛𝛽) (7) 

where a is the upslope contributing area per unit contour length (or Specific Catchment 

Area, SCA) and β is the local slope gradient for reflecting the local drainage potential. The 

calculation of a and the estimation of tanβ algorithms exert an impact on the TWI value 

[38]. 

2.4. Accuracy Assessment 
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The accuracy assessment of slope, aspect, plan curvature, profile curvature, and TWI 

obtained from different DEMs commonly relies on the root mean square error (RMSE) 

[39]. By comparing the RMSE among different DEMs, it is possible to evaluate the differ-

ences in the topographic factors derived from them. 

In addition to the RMSE, other statistics were also used. For slope evaluation, statis-

tics such as Mean Absolute Error (MAE), or the minimum, maximum, and mean values, 

were used to provide insight into the range of values and the trends or patterns in the 

slope. The evaluation of the aspect was based on RMSE and the categories of aspect value 

difference, which reflects the change of slope direction, which may substantially affect the 

natural process and hazard modeling. The assessment of plan and profile curvatures was 

implemented using the percentages of correct classification of curvature features such as 

concave, convex, and zero curvature. 

Together with the above-mentioned parameters, the histograms of the topographic 

factors are also used for evaluation. The histograms may show differences or closeness in 

the distribution of slopes at different resolutions and accuracies or visually present the 

trends and distributions of their values. 

3. Results and Discussions 

3.1. Results of Downscaling and Resampling of the Digital Elevation Model 

In order to evaluate the impacts of up-sampling and downscaling on the morpho-

metric factors, the DEM experiment datasets were downscaled using four approaches: bi-

linear, bi-cubic, Kriging, and Hopfield Neural Network. The zoom factors were used as 

presented in Table 1. These zoom factors were used with the aims of evaluating the impact 

of up-sampling and downscaling from coarse resolution to medium resolution, as in the 

cases of 90 m DEMs to 30 m DEMs and 60 m DEM to 20 m DEM, and from medium reso-

lution to fine resolution, as in the cases of 30 m DEMs to 10 m DEMs, and 20 m DEMs to 

5 m DEMs. The result of the downscaled DEMs is presented in Figure 2, and the RMSE of 

each resampled DEM against its reference DEM is presented in Table 2. 

      

(1a) Reference 
(1b) Low resolu-

tion 
(1c) Bilinear (1d) Bi-cubic (1e) Kriging (1f) HNN 

      

(2a) Reference 
(2b) Low resolu-

tion 
(2c) Bilinear (2d) Bi-cubic (2e) Kriging (2f) HNN 
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(3a) Reference 
(3b) Low resolu-

tion 
(3c) Bilinear (3d) Bi-cubic (3e) Kriging (3f) HNN 

      

(4a) Reference 
(4b) Low resolu-

tion 
(4c) Bilinear (4d) Bi-cubic (4e) Kriging (4f) HNN 

      

(5a) Reference 
(5b) Low resolu-

tion 
(5c) Bilinear (5d) Bi-cubic (5e) Kriging (5f) HNN 

Figure 2. Resampling and downscaling results: (1a–1f): Reference, Input and downscaled and 

resampled DEMs in Dataset 1; (2a–2f): Reference, Input and downscaled and resampled DEMs in 

Dataset 2; (3a–3f): Reference, Input and downscaled and resampled DEMs in Dataset 3; (4a–4f): Ref-

erence, Input and downscaled and resampled DEMs in Dataset 4; (5a–5f): Reference, Input and 

downscaled and resampled DEMs in Dataset 5. 

Table 2. RMSE of the resampled DEMs. 

DEM Datasets Resampling Method RMSE (m) 

Dataset 1: SRTM 30 m DEM in Nghe An Province 

No resample (90 m)  7.86 

Bilinear 4.96 

Bi-cubic 3.72 

Kriging 8.16 

HNN 3.54 

Dataset 2: 20 m DEM in Nghe An Province from topo-

graphic map 

No resample (60 m) 5.82 

Bilinear 3.39 

Bi-cubic 2.54 

Kriging 7.07 

HNN 2.61 

Dataset 3: 5 m DEM in Lang Son Province from ground 

survey 

No resample (20 m) 2.44 

Bilinear 1.27 

Bi-cubic 1.14 

Kriging 1.32 

HNN 1.21 

Dataset 4: 10 m DEM in Kon Tum Province from topo-

graphic map 

No resample (30 m) 0.49 

Bilinear 0.57 

Bi-cubic 0.38 

Kriging 1.06 
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HNN 0.39 

Dataset 5: 5 m DEM in Cao Bang Province from photo-

grammetry 

No resample (20 m) 1.32 

Bilinear 0.83 

Bi-cubic 0.65 

Kriging 1.06 

HNN 0.64 

3.2. Slopes of the Resampled and Downscaled Digital Elevation Models 

Evaluation of the effect of the resampling and downscaling of DEM to topographic 

factors is conducted based on both visual analysis and quantitative analysis. The visual 

analysis is implemented using histograms of the slope values obtained by bilinear, bi-cu-

bic, Kriging, and HNN approaches, as presented in Figure 3. 

Comparisons of slopes generated from resampled and downscaled DEMs showed 

that resampling and downscaling could improve the accuracy of slopes. Due to the 

smoothing effect, the slopes calculated from DEMs at low resolutions are always lower in 

comparison with those calculated from higher-resolution DEMs [15]. This trend is evident 

in the histograms of slopes obtained from referenced DEMs, original DEMs, and 

resampled DEMs using various methods, as shown in Figure 3. Applying the resampling 

methods to increase the resolution of DEMs, the number of points with higher slopes in-

creased and approached those observed in the referenced DEMs as a result. 
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Figure 3. Histograms of the slopes obtained from the (a) Dataset 1: 30 m DEM in Nghean; (b) Dataset 

2: 20 m DEM in Nghean; (c) Dataset 4: 10 m DEM in Daklak; (d) Dataset 5: 5 m DEM in Caobang. 

The increasing slope angle after using resampling and downscaling methods can be 

easily seen in the high slope values larger than 10° especially in slope histograms of DEM 

at medium resolutions of Dataset 1 (Figure 3a) and Dataset 2 (Figure 3b). The data in these 

figures revealed that the number of pixels exhibiting slope angles ranging from 10° to 40° 

increased when utilizing Kriging interpolation, bi-cubic resampling, and HNN downscal-

ing in comparison to low-resolution DEMs. For the DEM at higher resolution, as in Figure 

3c, 3d resampling approaches do not increase the slope values as much as for the DEM of 

medium resolution. This may be explained by the fact that in cases where the original 

DEMs have resolutions of 20 m or 30 m, the smoothing effect on the topography is not as 

severe as in cases where of original DEMs have resolutions of 60 m or 90 m. 

Visual analysis of the histogram in Figure 3 shows that the resampling methods used 

in this research, bi-cubic and HNN are evidently superior to Kriging and bilinear 

resampling. By looking at the histograms in Figure 3, it is possible to see that in most of 

the cases, the histograms of bilinear resampling DEM’s are very close to those of the orig-

inal low resolutions, while the histograms of Kriging, bi-cubic, and HNN are close to each 

other and closer to the slopes calculated from referenced DEMs. 

Quantitative analysis in Table 3 shows the changes in slope angles due to the 

resampling effects. For the medium resolutions, the increase in slope angles can be seen 

in the maximums and means of the slopes in both Dataset 1 (90 m to 30 m DEMs) and 

Dataset 2 (60 m to 20 m DEMs). While the maximum and mean values of slopes in low-

resolution data are considerably smaller than those in high-resolution data, the applica-

tion of resampling techniques significantly increased these statistics. Except for the 

Kriging interpolation, all of the other resampling approaches increase the maximum val-

ues of slopes between 8° to 13° from the original 60 m and 90 m DEMs, which had maxi-

mum slope values of 24.40° and 32.91°, respectively, to make them closer to the maximum 

slope values of 44.49° and 57.57° of the fine 20 m and 30 m reference DEMs, respectively. 

Similarly, the mean values of resampled slope data increase by around 2° to 3° compared 

to the original low-resolution slope data, making them just approximately 1.5° lower than 

the reference high-resolution slopes for both medium-resolution datasets. 

Resampling of DEM from medium resolution to high resolution has similar impacts 

as of the medium resolution when the maximum and mean slopes were considered. In all 

three datasets of high-resolution DEMs shown in Table 2, except for the bilinear and 

Kriging methods in the Langson 5 m dataset (Dataset 3), both the maximum and mean 

slope values were observed to increase. However, the increase is not as significant as that 

seen in the medium-resolution data, with maximum slopes increasing by approximately 

5° to 7° and mean slopes increasing by 0.5° to 1.5°. 

Evaluation of the DEM resampling impacts on the accuracy of the slopes was also 

implemented using RMSE and MAE. These two statistics show the closeness of the two 

datasets. The statistics in Table 2 demonstrate that resampling techniques can make the 

slopes created from the coarse DEMs significantly closer to those from the fine reference 

DEM. The increase in slope accuracy achieved through downscale resampling from 

coarse-resolution DEMs to medium-resolution DEMs is greater than that achieved 

through downscaling from medium-resolution DEMs to high-resolution DEMs. In both 

cases of downscale resampling from 90 m to 30 m and from 60 m to 20 m, an average 

reduction of approximately 50% in RMSE is observed. The most significant improvement 

is seen in the case of HNN downscaling, where the RMSE is reduced from 6.98° and 7.18° 

of coarse resolution slope data to 3.10° and 4.18° of HNN downscaled slope data, respec-

tively. In addition, bi-cubic resampling is also a valuable approach for slope improvement 

with an RMSE of 3.27° for a 30 m DEM case and 4.13° for a 20 m DEM case. Comparing 

these two approaches, bilinear and Kriging are not very impressive. The reduction in 

RMSE of bilinear resampling is around 35% to 4.100 and 4.86° for 90 m to 30 m cases and 
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60 m to 20 m cases, respectively. The RMSE of Kriging even slightly increased in the case 

of the 60 m to 20 m. 

Table 3. Statistics on the slopes generated from DEMs created from the resampling and downscaling 

methods. 

DEM Datasets Resampling Method Min Max Mean RMSE MAE 

Dataset 1 

No resample (90 m)  0.12 24.40 9.88 6.98 5.55 

Bilinear 0.05 34.29 12.03 4.10 3.19 

Bi-cubic 0.03 37.34 12.85 3.27 2.46 

Kriging 0.37 27.78 10.21 6.18 4.98 

HNN 0.08 37.68 12.98 3.10 2.33 

Reference 0.11 44.49 14.75   

Dataset 2 

No resample (60 m) 0.00 32.91 11.76 7.18 5.41 

Bilinear 0.00 40.95 13.52 4.86 3.43 

Bi-cubic 0.00 44.73 14.26 4.13 2.80 

Kriging 0.00 30.31 10.86 7.83 5.97 

HNN 0.00 43.89 14.13 4.18 2.86 

Reference 0.00 57.57 15.80   

Dataset 3 

No resample (20 m) 0.28 38.05 17.66 8.47 5.97 

Bilinear 0.00 37.57 16.70 7.90 6.09 

Bi-cubic 0.00 40.00 17.35 7.60 5.77 

Kriging 0.33 34.78 16.83 7.50 5.76 

HNN 0.15 46.18 18.82 7.60 5.22 

Reference 0.00 60.55 19.54   

Dataset 4 

No resample (30 m) 0.00 37.88 7.85 2.53 1.58 

Bilinear 0.00 41.23 7.91 1.81 1.08 

Bi-cubic 0.00 42.91 8.06 1.51 0.88 

Kriging 0.00 41.79 7.97 1.65 1.00 

HNN 0.00 43.24 8.07 1.42 0.86 

Reference 0.00 53.16 8.23   

Dataset 5 

No resample (20 m) 0.33 30.53 10.40 2.92 2.08 

Bilinear 0.07 31.42 10.40 3.27 2.16 

Bi-cubic 0.07 36.89 10.64 2.61 1.87 

Kriging 0.11 35.40 10.61 2.83 1.94 

HNN 0.01 37.96 10.70 2.58 1.86 

Reference 0.12 47.00 11.05   

The evaluation based on MAE shows the same results as the RMSE. The reduction of 

MAE is from 5.55° to 2.46° for bi-cubic and 2.33 m for HNN downscaling in the 90 m to 30 

m resampling case. For the case of downscale resampling from 60 m to 20 m, the MAE of 

the slopes reduced by almost 50% from 5.41° to 2.80° and 2.86° for bi-cubic and HNN 

downscaling, respectively. However, the resampling using bilinear and Kriging does not 

give the same good results as bicubic and HNN downscaling in terms of MAE. The reduc-

tion in MAE is observed with bilinear resampling in both datasets but not with Kriging in 

the case of downscale resampling from 60 m to 20 m. 

In three datasets of downscaling from medium to high resolutions (Dataset 3, Dataset 

4, Dataset 5), the statistics show less impressive results than that of the coarse-to-medium 

downscaling. The RMSE and MAE reductions of slopes by resampling are only from 6% 

to 40% compared with the slopes obtained from original low-resolution data. The best 

downscaling methods are still HNN downscaling and bi-cubic. The HNN downscaling is 

slightly better than bi-cubic in all three cases with RMSE of 7.60°, 1.42°, and 2.58° for HNN 
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downscaling in Dataset 3, Dataset 4, and Dataset 5, respectively, compared to RMSE of 

7.60°, 1.51°, and 2.61° for bi-cubic resampling in Dataset 3, Dataset 4, and Dataset 5, re-

spectively. The statistics of MAE also yield the same results for the HNN downscaling and 

bi-cubic resampling with MAE values of 5.22°, 0.86°, and 1.80° for Dataset 3, Dataset 4, 

and Dataset 5, respectively, while the MAE values for the Dataset 3, Dataset 4, and Dataset 

5 of the bi-cubic resampling are 5.77°, 0.88° and 1.87°, respectively. 

Among the resampling methods for three cases of medium to high resolutions, the 

bilinear resampling produced the worst results with values of MAE of 6.09 m in Dataset 

3, and RMSE and MAE of 3.27° and 2.16°, respectively, in Dataset 5. These results are even 

worse than those of the low resolutions slope with the values of MAE of 5.97° in the case 

of Dataset 3, RMSE of 2.92° and MAE of 2.08° in the case of Dataset 5. This means the 

bilinear resampling and Kriging interpolation of DEM are not always reliable for effec-

tively improving the quality of slope data in many cases. In contrast, the bi-cubic and 

HNN downscaling are viable methods to make the slope created from low-resolution 

DEMs closer to those produced from higher spatial resolution DEMs. 

3.3. Aspects of the Resampled and Downscaled Digital Elevation Models 

Although aspect is sometimes considered an indirect factor to the earth process mod-

eling, it directly impacts the distribution of solar radiation, temperature, and soil moisture 

over the terrain. Specifically, aspect represents the orientation of a slope relative to the 

sun, and this determines the amount of solar radiation received by the area, which subse-

quently affects its temperature and moisture conditions and the vegetation patterns, soil 

features, and erosion processes across the landscape. 

Aspect is measured clockwise from the north and takes values between 0 and 360 

degrees. Depending on the intervals used, aspects of different values can be categorized 

into groups. For instance, slope directions can be classified into four geographical direc-

tions, namely North, South, East, and West, using 90-degree intervals. Alternatively, 45-

degree intervals can be used to divide slope directions into eight categories: North, North-

East, East, South-East, South, South-West, West, and North-West. Depending on the scale 

and resolutions of the original DEMs, the different extent of changes in aspect may influ-

ence the accuracy of the earth process modeling. Therefore, in this paper, in addition to 

using statistics such as RMSE, the evaluation of aspect is also based on the percentages of 

groups of aspect value difference within intervals such as 0–10°, 10–20°, 20–45°, 45–90° 

and 90–180°. The differences in aspect values are calculated by comparing the aspects of 

the original low-resolution DEMs and resampled DEMs with the aspects obtained from 

the reference DEMs at high resolutions. For example, if the calculated aspect value of a 

pixel in 20 m resampled DEM is 40° and in reference DEM is 55° the aspect difference is 

15°, and the pixel is located in the 10–15° difference group. The percentage is calculated 

based on the fraction of the total number of pixels belonging to a group and the total 

number of pixels. The results on RMSE and percentages of each group of aspect differ-

ences are presented in Table 3. 

The resampling approaches improved the accuracy of the aspect when they 

downscaled the DEMs from low to medium resolutions, as shown by the RMSE values in 

Table 3. The aspects of the original low-resolution DEMs at 60 m (Dataset 2) and 90 m 

(Dataset 1) differ remarkably from the reference DEMs at 20 m and 30 m, with RMSE val-

ues of 40.73° and 34.45°, respectively. The resampling approaches improved the aspects 

significantly, lowering the RMSE values by half to around 20.21° for the bi-cubic 

resampled and HNN downscaled DEMs at 30 m resolution. For the case of Dataset 2, the 

improvement is also very impressive with RMSE of the aspects produced by 20 m bi-cubic 

resampled and HNN downscaled DEMs of 20.41° and 20.35°, respectively. The other 

resampling techniques, such as bilinear and Kriging, although not as good as bi-cubic and 

HNN, still enhance the accuracy of the resulting aspects. The RMSEs of aspects of 23.88° 

and 32.20° for 30 m bilinear resampled DEMs and Kriging interpolation, respectively, and 
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31.91° and 31.91° for 20 m bilinear resampled and Kriging interpolation, respectively, are 

still much smaller than those of original one. 

The impact on accuracy improvements of aspect by DEM resampled from medium 

to high resolutions in Dataset 3, Dataset 4, and Dataset 5 is not as great as in Dataset 1 and 

Dataset 2. The improvement in RMSEs is less than 10° for all three datasets. Especially for 

the DEMs downscaled by four times in Dataset 5, the improvement in aspect accuracy is 

less than 20, which may not be significant enough for some applications, such as landslide 

modeling, to result in an overall accuracy improvement. 

To evaluate the impacts of resampling on aspect values and, eventually, the accuracy 

of earth process modeling or natural hazard prediction, it is necessary to analyze the char-

acteristics of aspect difference presented in Table 4. In this table, the percentages of the 

different groups show that the aspect calculated from the low-resolution DEMs at 90 m 

and 60 m in Dataset 1 and Dataset 2 differs significantly from the aspect calculated from 

reference DEM at 30 m and 20 m. Only 27.60% and 33.66% of the aspect calculated from 

low-resolution DEM of 90 m and 60 m, respectively, are in the group of difference in aspect 

value of 0–10°, which means the aspect values are very close to the aspect calculated from 

the higher resolution DEMs. Conversely, the percentages of the 45–90° group and the 90–

1800 group are 13.76% and 4.66%, respectively, for the aspect from 90 m DEM and 9.24% 

and 2.78%, respectively, for the aspect from 60 m DEM. If the aspects of two pixels are 90° 

different, it means that they are facing in opposite directions. Hence, for the pixels located 

in these groups, the slope directions calculated from low-resolution DEM are completely 

opposite to the calculated value of the corresponding pixel from the higher-resolution one. 

Table 4. RMSE and percentages of aspect differences within 0–10°, 10–20°, 20–45°, 45–90°, and 90–

180°. 

DEM Datasets 
Resampling 

Method 

RMSE 

(Degree) 

Groups of Difference in Aspect Values (%) 

0–10° 10–20° 20–45° 45–90° 90–180° 

Dataset 1 

No resample (90 m)  40.73 27.60% 23.31% 30.67% 13.76% 4.66% 

Bilinear 23.88 49.49% 27.11% 18.22% 4.00% 1.18% 

Bi-cubic 21.21 57.83% 24.57% 13.73% 2.94% 0.93% 

Kriging 32.20 33.74% 26.66% 28.52% 8.70% 2.39% 

HNN 20.21 59.63% 24.20% 12.86% 2.50% 0.80% 

Dataset 2 

No resample (60 m) 34.45 33.66% 25.87% 28.45% 9.24% 2.78% 

Bilinear 31.91 51.92% 26.91% 16.40% 3.72% 0.76% 

Bi-cubic 20.41 59.27% 23.66% 13.25% 3.04% 0.49% 

Kriging 31.91 32.47% 25.40% 30.58% 9.51% 2.05% 

HNN 20.35 59.93% 23.23% 12.79% 3.42% 0.64% 

Dataset 3 

No resample (20 m) 41.83 55.56% 23.05% 11.11% 3.70% 6.58% 

Bilinear 38.04 55.14% 20.99% 13.17% 5.35% 5.35% 

Bi-cubic 37.80 57.61% 20.58% 11.93% 4.53% 5.35% 

Kriging 32.66 59.67% 16.87% 13.17% 4.94% 5.35% 

HNN 33.53 60.49% 21.40% 10.70% 2.47% 4.94% 

Dataset 4 

No resample (30 m) 17.08 71.92% 16.86% 8.59% 2.11% 0.52% 

Bilinear 13.20 81.33% 12.06% 5.06% 1.30% 0.25% 

Bi-cubic 11.42 86.78% 8.27% 3.90% 0.83% 0.22% 

Kriging 11.90 83.99% 10.46% 4.43% 0.89% 0.22% 

HNN 11.03 87.19% 8.29% 3.56% 0.75% 0.21% 

Dataset 5 

No resample (20 m) 21.70 55.26% 25.02% 15.42% 3.39% 0.92% 

Bilinear 20.52 57.70% 24.41% 14.14% 2.97% 0.79% 

Bi-cubic 19.63 59.85% 23.57% 13.24% 2.64% 0.70% 

Kriging 19.51 60.06% 23.78% 12.87% 2.59% 0.70% 
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HNN 19.72 59.64% 23.70% 13.27% 2.67% 0.72% 

Unlike the aspects of the DEMs from Dataset 1 and Dataset 2, most of the aspect val-

ues calculated from the medium resolutions at 20 m and 30 m are similar to those com-

puted from the higher resolution DEMs at 5 m and 10 m resolutions in the case of Dataset 

3, Dataset 4, and Dataset 5. In all three datasets, over 55% of aspects generated from 20 m 

or 30 m resolution DEMs are within 10 degrees of the aspects at the same position pro-

duced by 5 m or 10 m DEMs. 

The discrepancy of aspects computed from DEMs at different resolutions can be 

partly resolved using resampling approaches. The statistics in Table 3 suggest that 

resampling approaches can be used in most cases to make the aspects from low-resolution 

DEMs more similar to those from higher-resolution DEMs. This means the resampling 

approaches, especially the bi-cubic and HNN downscaling, can effectively improve the 

accuracy of aspect data derived from low-resolution DEMs. Applying these resampling 

approaches to DEMs, the percentage of group 0–10° increased approximately twice to 

59.63% and 59.93% for Dataset 1 and Dataset 2, respectively, while the percentages of 45–

90° and 90–180° groups reduced sharply from 13.76% and 4.66% to 2.50% and 0.80%, re-

spectively, for Dataset 1 and from 9.24% and 2.78% to 3.42% and 0.64%, respectively, for 

the 60 m Dataset 2. For Dataset 3, Dataset 4, and Dataset 5, the bi-cubic and HNN 

downscaling are also very effective in improving the accuracy of the aspects. The percent-

age of the 0–10° group increased from 55.56%, 71.92%, and 55.26% to 57.61%, 86.78%, and 

59.85% for Dataset 3, Dataset 4, and Dataset 5, respectively, using bi-cubic and to 60.49%, 

87.19%, and 59.64% using HNN downscaling. Furthermore, the application of bi-cubic 

and HNN can reduce the percentage of aspects in the 45–90° and 90–180° groups by at 

least one-third, as in Dataset 5 case or maybe higher in Dataset 3 and Dataset 4. 

3.4. Plan Curvatures and Profile Curvatures of the Resampled and Downscaled Digital Elevation 

Models 

Plan and profile curvatures are second derivatives of the elevation surface, represent-

ing the slope change rate in the directions parallel and perpendicular to the contour lines 

and profile lines, respectively. The plan and profile curvatures can be calculated using a 

DEM, and the unit of measure is inverse meter (m−1). In some processes of earth material 

movement, such as landslides and debris flow, the amount of movement correlates with 

landforms such as concave and convex, and therefore, it is necessary to determine these 

landforms (curvature features). The land surface can be classified into concave, zero cur-

vature, and convex landforms based on the values of plan and profile curvatures, which 

have negative, zero, or positive values. The accurate identification of concave and convex 

features is crucial for soil and earth movement modeling. A concave feature mistakenly 

identified as a convex feature may result in an inaccurate prediction of where water will 

flow and collect. Therefore, in this research, in addition to statistics like RMSE, the assess-

ment of curvature calculation is also based on the correctness of curvature feature recog-

nition. The statistics for this accuracy assessment are the percentages of correct and incor-

rect curvature features obtained from a DEM against the curvature features produced by 

the reference DEM at a higher resolution. The RMSE and curvature feature recognition 

accuracy statistics of all five testing datasets are presented in Table 5. 

Table 5. RMSE of plan and profile curvatures and curvature features recognition accuracy of five 

testing datasets. 

DEM Datasets 
Resampling 

Method 

Plan  

Curvature 

RMSE 

(m−1) 

Profile  

Curvature 

RMSE  

(m−1) 

Plan Curvature  

Classification 

Profile Curvature  

Classification 

Incorrect Correct Incorrect Correct 

Dataset 1 No resample (90 m)  0.01983 0.00169 46.30% 53.70% 43.68% 56.32% 
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Bilinear 0.02173 0.00145 37.05% 62.95% 35.70% 64.30% 

Bi-cubic 0.02556 0.00125 32.71% 67.29% 30.10% 69.90% 

Kriging 0.02276 0.00193 46.96% 53.04% 44.60% 55.40% 

HNN 0.01915 0.00125 31.97% 68.03% 29.75% 70.25% 

Dataset 2 

No resample (60 m) 0.02255 0.00441 51.23% 48.77% 68.46% 31.54% 

Bilinear 0.02296 0.00439 51.00% 49.00% 67.08% 32.92% 

Bi-cubic 0.02789 0.00419 48.76% 51.24% 66.09% 33.91% 

Kriging 0.02296 0.00451 51.76% 48.24% 67.39% 32.61% 

HNN 0.02789 0.00411 42.45% 57.55% 38.56% 61.44% 

Dataset 3 

No resample (20 m) 0.07113 0.01512 44.44% 55.56% 51.39% 48.61% 

Bilinear 0.09452 0.01623 47.58% 52.42% 50.40% 49.60% 

Bi-cubic 0.13607 0.01626 44.41% 55.59% 47.30% 52.70% 

Kriging 0.13293 0.10244 45.20% 54.80% 50.06% 49.94% 

HNN 0.06833 0.01539 44.28% 55.72% 46.89% 53.11% 

Dataset 4 

No resample (30 m) 0.07390 0.00248 33.71% 66.29% 30.14% 69.86% 

Bilinear 0.05973 0.00272 42.07% 57.93% 33.23% 66.77% 

Bi-cubic 0.04798 0.00223 32.71% 67.29% 27.06% 72.94% 

Kriging 0.10244 0.00244 37.85% 62.15% 30.35% 69.65% 

HNN 0.05147 0.00225 34.64% 65.36% 27.41% 72.59% 

Dataset 5 

No resample (20 m) 0.04446 0.00454 50.26% 49.74% 66.40% 33.60% 

Bilinear 0.04561 0.00460 52.13% 47.13% 66.75% 32.87% 

Bi-cubic 0.04522 0.00448 63.25% 36.75% 60.48% 39.52% 

Kriging 0.04668 0.04668 47.51% 52.49% 62.04% 37.96% 

HNN 0.04671 0.00449 66.40% 33.60% 59.69% 40.31% 

The results based on both RMSEs and curvature features assessment show that the 

application of DEM resampling from low resolutions to medium resolutions, for example, 

from DEM 90 m to DEM 30 m or 60 m to 20 m, can improve the accuracy of plan and 

profile curvatures slightly. Using HNN downscaling, the RMSEs of plan and profile cur-

vatures reduced slightly to 0.01915 m−1 and 0.00125 m−1 from 0.01983 m−1 and 0.00169 m−1, 

respectively, of original low-resolution DEM for Dataset 1. Moreover, the percentage of 

incorrect recognition of curvature features such as concave, zero, and convex reduced 

sharply by approximately 15% for both plan and profile curvatures. In the case of Dataset 

2, although the RMSE of HNN downscaling slightly increased for plan curvature, the 

RMSE of profile curvature and percentages of the incorrect curvature recognition were 

reduced. Especially, the percentage of correct recognition of the profile curvature feature 

improved by 30% compared with that of “no resampling” data. 

The results of the other resampling methods are not as consistent as those of the HNN 

downscaling. While the Kriging is not an effective method for downscaling curvatures in 

all five experiment datasets, as evidenced by both RMSE and curvature feature recogni-

tion, the bi-cubic and bilinear resampling approaches are also unreliable. The statistics for 

all five datasets presented in Table 4 show that while resampling generally improved the 

curvature accuracy, they do not perform better than “no resampling” in all the statistics. 

Particularly, in each of the five experiments presented in Table 4, the resampled data is 

inferior to the original low-resolution DEM in at least one out of the four statistics. 

3.5. Topographic Wetness Index of the Resampled and Downscaled Digital Elevation Models 

The TWI measures the potential of water accumulation in each pixel on the DEM. 

High TWI values indicate high soil moisture and low soil stability. Therefore, inaccurate 

measurement of TWI may lead to false predictions of safe and unsafe landslide areas or 
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soil erosion. In this research, TWI was evaluated based on the RMSE and MAE of TWIs 

from resampled DEMs against those computed from the reference DEMs, as in Table 6. 

Table 6. RMSE and MEA of Topographic Wetness Index in five experimental datasets. 

DEM Datasets 
Resampling 

Method 
RMSE MAE 

Dataset 1 

No resample (90 m)  1.499 0.985 

Bilinear 0.419 0.551 

Bi-cubic 0.362 0.491 

Kriging 0.591 0.686 

HNN 0.334 0.475 

Dataset 2 

No resample (60 m) 2.235 1.393 

Bilinear 1.016 0.754 

Bi-cubic 0.994 0.731 

Kriging 1.244 0.891 

HNN 2.155 1.075 

Dataset 3 

No resample (20 m) 2.341 1.023 

Bilinear 2.694 1.473 

Bi-cubic 2.687 1.466 

Kriging 2.683 1.469 

HNN 2.657 1.446 

Dataset 4 

No resample (30 m) 2.635 1.422 

Bilinear 2.086 0.993 

Bi-cubic 2.699 1.431 

Kriging 2.683 1.430 

HNN 2.739 1.440 

Dataset 5 

No resample (20 m) 3.538 1.837 

Bilinear 1.072 0.848 

Bi-cubic 0.969 0.796 

Kriging 1.114 0.870 

HNN 0.960 0.791 

The results in Table 6 show a good improvement in the TWI values using resampling 

approaches for the cases of low-to-medium DEM. Both Dataset 1 (90 m to 30 m) and Da-

taset 2 (60 m to 20 m) showed a significant decrease in both RMSE and MAE values by 

over 50% compared to “No Resampling”. For Dataset 1, the values reduced from 1.499 

and 0.985 to 0.362 and 0.491 for bi-cubic resampling, respectively. For Dataset 2, they re-

duced from 2.235 and 1.393 to 0.362 and 0.491 for the best resampling method (bi-cubic), 

respectively. Unlike in the cases of slope and aspect, the HNN downscaling did not per-

form as well as the other resampling approaches. The bi-cubic and bilinear resampling 

approaches had the best performance compared to the other methods. 

In comparison to the low-to-medium resolution resampled data, the results of TWI 

calculated from medium-to-high resolution DEMs were found to be less accurate in two 

out of three datasets, where the TWI values derived from resampled DEM were less accu-

rate than those produced from “no resampling”, as indicated by slightly larger RMSE and 

MAE values. Only in Dataset 5’s case, the bi-cubic and HNN show a significant reduction 

of 60% in both RMSE and MAE. 

To have a deeper understanding of how the different resampling approaches influ-

ence the TWI, visual evaluation is implemented based on the images of TWI presented in 

Figure 4. These images are the TWI generated using reference (Figure 4a), “no 

resampling” (Figure 4b), bilinear (Figure 4c), bi-cubic (Figure 4d), Kriging (Figure 4e), and 
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HNN (Figure 4f). These images illustrate the differences between details of “no 

resampling” and resampled TWIs of Dataset 5. 

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure 4. TWI calculated from resampled DEM in Dataset 5 (5 m resolution): (a) TWI from reference 

DEM; (b) TWI from “no resampling” 20 m DEM; (c) TWI from the DEM resampled by bilinear 

method; (d) TWI from the DEM resampled by bi-cubic method; (e) TWI from the DEM created by 

Kriging interpolation method; and (f) TWI from DEM generated by the HNN downscaling ap-

proach. 

Due to the larger size of the pixels, the image for “no resampling” TWI is pixelated. 

Some details of the linear features that present high values of TWI, which correlate to high 

flow accumulation, are blurred, distorted, and pixelated. Visual comparison of the images 

shows an improvement in details of these features as in Figure 4c–f, representing the re-

sulting TWI of bilinear, bi-cubic, Kriging, and HNN downscaled DEMs, respectively. Alt-

hough the level of detail of TWI is still significantly lower than that of the reference image, 

some specific features in TWI images obtained from resampled DEMs, particularly those 

from bi-cubic and HNN downscaled DEMs, exhibit less blurring and pixelation than those 

from the non-resampled DEM. Among these resampling approaches, both bi-cubic and 

HNN show comparable performance, with HNN slightly outperforming bi-cubic. In con-

trast, the Kriging and bilinear methods perform significantly worse than the other two. 

3.6. Relationship between the Accuracy Improvement of Resampled Digital Elevation Model and  

Topographic Factors 

By comparing the improvement in accuracy of digital elevation models (DEMs) and 

topographic factors, it is apparent that the accuracy improvement of the first derivatives 

of DEM correlates with the accuracy of DEM. As demonstrated in Table 2, resampling 

techniques such as bi-cubic and HNN downscaling significantly reduced the RMSE of 

DEM. The evidence of that is these techniques enhanced the accuracy of DEMs in all five 
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experiment datasets. Similarly, the accuracy of the first derivative factors, such as slope 

and aspect, improved substantially (Tables 3 and 4). The RMSE and other statistical 

measures confirm that the accuracy enhancement of DEM led to an overall improvement 

in slope and aspect accuracy for all five datasets. 

The investigation of the relationship between the accuracy improvement of digital 

elevation models (DEMs) and resulting second derivatives of curvatures and topographic 

wetness index did not show the correlation as that of the first derivatives. The statistics 

reveal that the accuracy improvement of resampled DEMs does not necessarily translate 

into the improvement in the accuracy of second derivatives for all types of DEMs. The 

improvement of DEMs only impacted low-to-medium resolutions, as demonstrated by 

the reduction in RMSE of the curvatures and TWI in Dataset 1 (90 m to 30 m) and Dataset 

2 (60 m to 20 m). However, while the accuracy improvement of DEMs led to enhanced 

accuracy of plan and profile curvatures and topographic wetness index in two medium-

to-high resolution cases, the RMSE of these derivatives increased in other cases. Thus, it 

is not advisable to use resampled DEMs to calculate these second derivatives for medium-

to-high resolution cases, such as downscaling from 20 m to 5 m and 30 m to 10 m. 

4. Conclusions 

This research evaluates and compares the effects of resampling and downscaling the 

digital elevation model (DEM) and the five associated morphometric factors (slope, as-

pect, plan curvature, profile curvature, and topographic wetness index) using four inter-

polation methods, namely the Hopfield Neural Network (HNN), Bilinear, Bicubic, and 

Kriging methods. From the results of the experiment, it is possible to draw the conclusions 

as follows: 

▪ Both bi-cubic and HNN downscaling outperform Kriging and bilinear resampling 

techniques. Specifically, the results suggest that HNN has a slight advantage over bi-

cubic resampling. 

▪ Resampling approaches applied to DEMs have demonstrated their effectiveness in 

enhancing the quality of their derived derivatives, with remarkable improvements 

observed in the first derivatives of slope and aspect, as indicated by the reduction in 

RMSEs and other statistical metrics. 

▪ Resampling techniques from low to medium resolutions have proven valuable in en-

hancing the accuracy of second derivatives, including plan and profile curvatures 

and the TWI. The resampling and downscaling approaches have shown their capa-

bility to improve the accuracy of these topographic factors, as evident in the results. 

However, the improvement of DEM’s accuracy, as indicated by reduced RMSEs, does 

not translate into enhancing accuracy for the second group of medium-to-high-reso-

lution DEM data. Therefore, further investigations are required to understand the 

impacts of resampling and downscaling of DEMs from medium to high resolutions. 

▪ Future investigations should be undertaken to explore the impacts of the other 

downscaling methods, such as deep learning for downscaling, which has been 

proven to positively impact to DEM’s accuracy enhancement recently. In addition, 

the direct downscaling of topographic factors, especially of the second derivatives 

such as curvatures and TWI, from lower resolution to higher resolution, also should 

be evaluated to find the best solutions for enhancing their accuracy. 

Author Contributions: Conceptualization, N.Q.M. and P.Q.K.; methodology, N.Q.M.; software, 

N.T.T.H.; validation, L.P.H. and D.T.B.; formal analysis, P.Q.K.; data curation, P.Q.K.; writing—orig-

inal draft preparation, D.T.B. and N.Q.M.; writing—review and editing, L.P.H. and D.T.B.; visuali-

zation, N.T.T.H. All authors have read and agreed to the published version of the manuscript. 

Funding: This research was funded by the Ministry of Education and Training of Vietnam, grant 

number B2021-MDA-04. 



Remote Sens. 2023, 15, x FOR PEER REVIEW 19 of 20 
 

 

Acknowledgments: The research presented in this paper results from the project title B2021-MDA-

04, funded by the Ministry of Education and Training. The authors would like to express their sin-

cere gratitude to the Ministry of Education and Training and the University of Mining and Geology 

for providing the necessary support and resources to complete this research. 

Conflicts of Interest: The authors declare no conflicts of interest. 

References 

1. Erdogan, S. A comparision of interpolation methods for producing digital elevation models at the field scale. Earth Surf. Process. 

Landf. 2009, 34, 366–376. 

2. Yang, L.; Meng, X.; Zhang, X. SRTM DEM and its application advances. Int. J. Remote Sens. 2011, 32, 3875–3896. 

3. Mesa-Mingorance, J.L.; Ariza-López, F.J. Accuracy assessment of digital elevation models (DEMs): A critical review of practices 

of the past three decades. Remote Sens. 2020, 12, 2630. 

4. Brock, J.; Schratz, P.; Petschko, H.; Muenchow, J.; Micu, M.; Brenning, A. The performance of landslide susceptibility models 

critically depends on the quality of digital elevation models. Geomat. Nat. Hazards Risk 2020, 11, 1075–1092. 

5. Moretto, S.; Bozzano, F.; Mazzanti, P. The role of satellite InSAR for landslide forecasting: Limitations and openings. Remote 

Sens. 2021, 13, 3735. 

6. Kumar, N.; Singh, S.K. Soil erosion assessment using earth observation data in a trans-boundary river basin. Nat. Hazards 2021, 

107, 1–34. 

7. Chidi, C.L.; Zhao, W.; Chaudhary, S.; Xiong, D.; Wu, Y. Sensitivity assessment of spatial resolution difference in DEM for soil 

erosion estimation based on UAV observations: An experiment on agriculture terraces in the middle hill of Nepal. ISPRS Int. J. 

Geo-Inf. 2021, 10, 28. 

8. Rocha, J.; Duarte, A.; Silva, M.; Fabres, S.; Vasques, J.; Revilla-Romero, B.; Quintela, A. The importance of high resolution digital 

elevation models for improved hydrological simulations of a mediterranean forested catchment. Remote Sens. 2020, 12, 3287. 

9. Muthusamy, M.; Casado, M.R.; Butler, D.; Leinster, P. Understanding the effects of Digital Elevation Model resolution in urban 

fluvial flood modelling. J. Hydrol. 2021, 596, 126088. 

10. Wassmann, R.; Hien, N.X.; Hoanh, C.T.; Tuong, T.P. Sea Level Rise Affecting the Vietnamese Mekong Delta: Water Elevation 

in the Flood Season and Implications for Rice Production. Clim. Change 2004, 66, 89–107. 

https://doi.org/10.1023/B:CLIM.0000043144.69736.b7. 

11. Minderhoud, P.; Coumou, L.; Erkens, G.; Middelkoop, H.; Stouthamer, E. Mekong delta much lower than previously assumed 

in sea-level rise impact assessments. Nat. Commun. 2019, 10, 3847. 

12. Carlà, T.; Intrieri, E.; Di Traglia, F.; Nolesini, T.; Gigli, G.; Casagli, N. Guidelines on the use of inverse velocity method as a tool 

for setting alarm thresholds and forecasting landslides and structure collapses. Landslides 2017, 14, 517–534. 

13. Dou, J.; Yunus, A.P.; Tien Bui, D.; Sahana, M.; Chen, C.-W.; Zhu, Z.; Wang, W.; Pham, B.T. Evaluating GIS-based multiple 

statistical models and data mining for earthquake and rainfall-induced landslide susceptibility using the LiDAR DEM. Remote 

Sens. 2019, 11, 638. 

14. Mahalingam, R.; Olsen, M.J. Evaluation of the influence of source and spatial resolution of DEMs on derivative products used 

in landslide mapping. Geomat. Nat. Hazards Risk 2016, 7, 1835–1855. 

15. Mukherjee, S.; Joshi, P.K.; Mukherjee, S.; Ghosh, A.; Garg, R.; Mukhopadhyay, A. Evaluation of vertical accuracy of open source 

Digital Elevation Model (DEM). Int. J. Appl. Earth Obs. Geoinf. 2013, 21, 205–217. 

16. Kršák, B.; Blišťan, P.; Pauliková, A.; Puškárová, P.; Kovanič, Ľ.m.; Palková, J.; Zelizňaková, V. Use of low-cost UAV photogram-

metry to analyze the accuracy of a digital elevation model in a case study. Measurement 2016, 91, 276–287. 

17. Bolkas, D. Assessment of GCP number and separation distance for small UAS surveys with and without GNSS-PPK positioning. 

J. Surv. Eng. 2019, 145, 04019007. 

18. Rogers, S.R.; Manning, I.; Livingstone, W. Comparing the spatial accuracy of digital surface models from four unoccupied aerial 

systems: Photogrammetry versus LiDAR. Remote Sens. 2020, 12, 2806. 

19. Rees, W.G. The accuracy of digital elevation models interpolated to higher resolutions. Int. J. Remote Sens. 2000, 21, 7–20. 

20. Nguyen, Q.M.; Nguyen, T.T.H.; La, P.H.; Lewis, H.G.; Atkinson, P.M. Downscaling gridded DEMs using the hopfield neural 

network. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 4426–4437. 

21. Grohmann, C.H.; Steiner, S.S. SRTM resample with short distance-low nugget kriging. Int. J. Geogr. Inf. Sci. 2008, 22, 895–906. 

https://doi.org/10.1080/13658810701730152. 

22. Jiao, D.; Wang, D.; Lv, H.; Peng, Y. Super-resolution reconstruction of a digital elevation model based on a deep residual net-

work. Open Geosci. 2020, 12, 1369–1382. https://doi.org/10.1515/geo-2020-0207. 

23. Zhang, R.; Bian, S.; Li, H. RSPCN: Super-resolution of digital elevation model based on recursive sub-pixel convolutional neural 

networks. ISPRS Int. J. Geo-Inf. 2021, 10, 501. 

24. Shin, D.; Spittle, S. LoGSRN: Deep super resolution network for digital elevation model. In Proceedings of 2019 IEEE Interna-

tional Conference on Systems, Man and Cybernetics (SMC), Bari, Italy, 6–9 October 2019; pp. 3060–3065. 

25. Lin, X.; Zhang, Q.; Wang, H.; Yao, C.; Chen, C.; Cheng, L.; Li, Z. A DEM Super-Resolution Reconstruction Network Combining 

Internal and External Learning. Remote Sens. 2022, 14, 2181. 



Remote Sens. 2023, 15, x FOR PEER REVIEW 20 of 20 
 

 

26. Zhang, Y.; Yu, W. Comparison of DEM Super-Resolution Methods Based on Interpolation and Neural Networks. Sensors 2022, 

22, 745. 

27. Hopfield, J.J. Neurons with graded response have collective computational properties like those of two-state neurons. Proc. Natl. 

Acad. Sci. 1984, 81, 3088–3092. 

28. Bovik, A.C. Chapter 3—Basic Gray Level Image Processing. In The Essential Guide to Image Processing; Bovik, A., Ed.; Academic 

Press: Boston, MA, USA, 2009; pp. 43–68. https://doi.org/10.1016/B978-0-12-374457-9.00003-2 

29. Chen, Y.; Yang, R.; Zhao, N.; Zhu, W.; Huang, Y.; Zhang, R.; Chen, X.; Liu, J.; Liu, W.; Zuo, Z. Concentration Quantification of 

Oil Samples by Three-Dimensional Concentration-Emission Matrix (CEM) Spectroscopy. Appl. Sci. 2020, 10, 315. 

30. Bivand, R.S.; Pebesma, E.J.; Gomez-Rubio, V.; Pebesma, E.J. Applied Spatial Data Analysis with R.; Springer: Berlin/Heidelberg, 

Germany, 2008; Volume 747248717. 

31. Dunn, M.; Hickey, R. The effect of slope algorithms on slope estimates within a GIS. Cartography 1998, 27, 9–15. 

32. Jones, K.H. A comparison of algorithms used to compute hill slope as a property of the DEM. Comput. Geosci. 1998, 24, 315–323. 

33. Pham, B.T.; Tien Bui, D.; Prakash, I. Bagging based support vector machines for spatial prediction of landslides. Environ. Earth 

Sci. 2018, 77, 1–17. 

34. Deng, Y.; Wilson, J.P.; Bauer, B. DEM resolution dependencies of terrain attributes across a landscape. Int. J. Geogr. Inf. Sci. 2007, 

21, 187–213. 

35. Kienzle, S. The effect of DEM raster resolution on first order, second order and compound terrain derivatives. Trans. GIS 2004, 

8, 83–111. 

36. Zevenbergen, L.W.; Thorne, C.R. Quantitative analysis of land surface topography. Earth Surf. Process. Landf. 1987, 12, 47–56. 

https://doi.org/10.1002/esp.3290120107. 

37. Beven, K.J.; Kirkby, M.J. A physically based, variable contributing area model of basin hydrology / Un modèle à base physique 

de zone d'appel variable de l'hydrologie du bassin versant. Hydrol. Sci. Bull. 1979, 24, 43–69. 

https://doi.org/10.1080/02626667909491834. 

38. Güntner, A.; Seibert, J.; Uhlenbrook, S. Modeling spatial patterns of saturated areas: An evaluation of different terrain indices. 

Water Resour. Res. 2004, 40, 1–19. https://doi.org/10.1029/2003WR002864. 

39. Zhou, Q.; Liu, X. Error Analysis on Grid-Based Slope and Aspect Algorithms. Photogramm. Eng. Remote Sens. 2004, 70, 957–962. 

https://doi.org/10.14358/PERS.70.8.957. 


