УДК 622.235

DOI: 10.25018/0236 1493 2024 6 0 31

РАЗРАБОТКА МОДЕЛЕЙ ПРОГНОЗА ПЛОЩАДИ ПОПЕРЕЧНОГО СЕЧЕНИЯ ТОННЕЛЯ ПРИ ВЕДЕНИИ БУРОВЗРЫВНЫХ РАБОТ

Буй Мань Тунг¹, Нгуен Чи Тхань¹, А.П. Господариков², М.А. Зацепин²

 1 Ханойский университет горного дела и геологии, Ханой, Вьетнам 2 Санкт-Петербургский горный университет императрицы Екатерины II, Санкт-Петербург, Россия, e-mail: Zatsepin_MA@pers.spmi.ru

Аннотация: Одним из важнейших критериев оценки буровзрывного метода разрушения горных пород при проходке тоннеля является его значение площади поперечного сечения после взрывных работ. Площадь поперечного сечения тоннеля после взрывных работ определяет во многом виды и объемы работ, возникающие во время проходки тоннеля, такие как облицовка тоннеля, выемка и транспортировка грунта/скальной породы. В данной статье предложены два метода прогноза значения площади поперечного сечения тоннеля после взрыва: первая модель основана на методе искусственного интеллекта с использованием модели адаптивной нейро-нечеткой системы вывода (ANFIS); вторая модель - метод множественного линейного регрессионного анализа (MLRA). Для построенных прогнозных моделей определения площади поперечного сечения тоннеля после взрывных работ было проведено широкое сравнение численных результатов, полученных обоими методами (эффективность прогнозных моделей оценивалась по значениям среднеквадратичной ошибки RMSE и коэффициента детерминации R^2). Значения RMSEи R^2 модели MLRA равны 0.2135 и 0.9362, соответственно, для обучающих наборов данных. Эти значения для тестовых наборов данных равны 0,1827 и 0,9605, соответственно. В модели ANFIS, значения RMSE и R^2 равны 0,099 и 0,9758 для обучающих наборах данных, а для тестовых наборов данных составляют 0,1211 и 0,9704, соответственно. Таким образом, был сделан вывод, что метод искусственного интеллекта с использованием модели ANFIS может быть использован при прогнозе значения площади поперечного сечения тоннеля после взрывных работ с достаточно высокой точностью.

Ключевые слова: проходка тоннелей буровзрывным способом, площадь поперечного сечения тоннеля, адаптивная нейро-нечеткая система вывода (ANFIS), метод искусственного интеллекта, множественная линейная регрессия (MLRA), среднеквадратичная ошибка RMSE, коэффициент детерминации R^2 .

Благодарность: Исследование проводилось при поддержке Министерства образования и профессиональной подготовки Вьетнама и Ханойского университета горного дела и геологии.

Для цитирования: Буй Мань Тунг, Нгуен Чи Тхань, Господариков А. П., Зацепин М. А. Разработка моделей прогноза площади поперечного сечения тоннеля при ведении буровзрывных работ // Горный информационно-аналитический бюллетень. – 2024. – № 6. – С. 31–49. DOI: 10.25018/0236 1493 2024 6 0 31.

Developing prediction models for the cross-sectional areas of tunnels during drilling and blasting

Bui Manh Tung¹, Nguyen Chi Thanh¹, A.P. Gospodarikov², M.A. Zatsepin²

¹ Hanoi University Mining and Geology, Hanoi, VietNam
² Empress Catherine II Saint-Petersburg Mining University, Saint-Petersburg, Russia, e-mail: Zatsepin MA@pers.spmi.ru

Abstract: One of the major criteria of drilling and blasting quality during tunneling is the cross-sectional area of a tunnel after blasting. The post-blasting cross-sectional area of a tunnel governs also the scope of work during tunnel driving, such as soil/rock removal and haulage, and tunnel lining. This article proposes two methods to predict a cross-sectional area of a tunnel after blasting: the first model uses the artificial intelligences and the adaptive network-based fuzzy inference system (ANFIS); the second model uses the multiple linear regression analysis (MLRA). For the predictive modeling of the post-blasting cross-sectional area of a tunnel, we performed a broad comparison of the numerical results obtained using the two methods (efficiency of a prediction model was estimated by the values of the root-mean square error *RMSE* and coefficient of determination R^2). The values of *RMSE* and R^2 in the MLRA model are 0.2135 and 0.9362, respectively, for the learning datasets, and are 0.1827 and 0.9605, respectively, for the test datasets. In the ANFIS model, *RMSE* and R^2 are 0.099 and 0.9758 for the learning datasets, and are 0.1211 and 0.9704 for the test datasets. On this basis, the conclusion is drawn that the method of the artificial intelligence with the ANFIS model can be used for predicting a cross-sectional area of a tunnel after blasting at a sufficiently high accuracy.

Key words: drill and blast tunneling, cross-sectional area of tunnel, Adaptive Network-Based Fuzzy Inference System (ANFIS), artificial intelligence method, Multiple Linear Regression Analysis (MLRA), Root-Mean Square Error (RMSE), coefficient of determination R^2 .

Acknowledgements: The study was supported by the Ministry of Education and Training of Vietnam and by the Hanoi University of Mining and Geology.

For citation: Bui Manh Tung, Nguyen Chi Thanh, Gospodarikov A. P., Zatsepin M. A. Developing prediction models for the cross-sectional areas of tunnels during drilling and blasting. *MIAB. Mining Inf. Anal. Bull.* 2024;(6):31-49. [In Russ]. DOI: 10.25018/0236_1493_2024_6_0_31.

Введение

При строительстве тоннелей в настоящее время буровзрывной метод считается основным методом, применяемым для разрушения горных пород. Для оценки эффективности буровзрывного метода разрушения горных пород используют ряд критериев [1, 2], в том числе значение площади поперечного сечения тоннеля, вибрацию грунта при взрыве и другие. Было проведено множество исследований с использованием различных

критериев [3—5]. Однако, в большинстве проведенных исследований изучался только один из критериев отдельно без применения других, оценивающий эффективность, в том числе, и метода буровзрывных работ [6]. В данной работе построены модели, способные прогнозировать значение площади поперечного сечения тоннеля после взрывных работ с достаточно высокой точностью. Площадь поперечного сечения тоннеля после взрывных работ в работе принята

в качестве основного критерия, позволяющего оценить эффективность буровзрывного метода при отбойке горных пород. В подземных выработках плошадь поперечного сечения тоннеля после взрывных работ является основной причиной возникновения угроз безопасности и дополнительных затрат [7, 8]. При точном прогнозировании значения площади поперечного сечения тоннеля после взрывных работ рассчитывается объем работ при строительстве тоннеля буровзрывным способом с отбойкой горных пород, что способствует ускорению проходки тоннеля и возможности корректировки параметров буровзрывных работ, повышению эффективности применения буровзрывного метода. На поперечное сечение тоннеля при ведении взрывных работ могут влиять различные параметры, например, свойства горного массива (предел прочности горных пород на одноосное сжатие, рейтинг массива горных пород RMR), геометрия взрывных работ и свойства взрывчатого вещества (масса заряда Q, средняя длина шпура L). Все эти параметры разнообразны и имеют сложную взаимосвязь [9, 10]. Использование метода множественного линейного регрессионного анализа (MLRA) не позволяет в полной мере решить учесть все эти параметры, поэтому в данной работе для решения поставленной задачи предпочтение отдается искусственному интеллекту.

Во многих исследованиях использовалась модель адаптивной нейро-нечеткой системы логического вывода (ANFIS) для прогнозирования разрыва и недоразрыва, а также вибрации грунта при разрушении горных пород буровзрывным методом [11, 12]. В некоторых других исследованиях [13, 14] также использовалась линейная регрессия для прогнозирования вышеуказанных параметров. В целом результаты, полученные в результате исследований с использованием ANFIS и MLRA, являются положительными и имеют достаточно высокую точность. В данном исследовании метод искусственного интеллекта с использованием модели ANFIS и метода MLRA используются для построения моделей, способных прогнозировать значение площади поперечного сечения тоннеля после взрывных работ, в строящихся тоннелях социалистической республики Вьетнам [15, 16].

Рис. 1. Тоннель, построенный компанией DeoCa Group (рисунок составлен авторами) Fig. 1. Tunnel built by DeoCa Group (compiled by the authors)

Таблица 1 Свойства буровзрывных и тоннельных параметров Properties of drilling and tunneling parameters

Параметр	Символ	Ед. изм.	Категория	Мин.	Макс.	Среднее значение	Стандартное отклонение
Длина шпура	L	М	входные данные	1,0	3,2	1,95	0,644
Площадь проектного сечения выработок тоннеля	S	M ²	входные данные	49,26	64,85	54,55	6,163
Масса заряда	Q	кг/м ³	входные данные	0,37	2,32	1,43	0,417
Рейтинг горной массы	RMR	_	входные данные	5,0	73,0	51,33	14,531
Площадь фактиче- ского сечения выра- боток тоннеля после взрывных работ	SA	M ²	выходные параметры	51,22	71,05	58,87	6,476

Данные для проведения исследований

Тоннель, построенный компанией DeoCa Group (рис. 1), соединяет провинции Фуйен и Кханьхоа и имеет длину 4,1 км. Он расположен в районе со сложными горно-геологическими условиями, в основном, в области магматических и метаморфических пород. В этом районе имеются крупные геологические разломы [17-19]. По данным геологоразведки, участок, на котором расположен тоннель, имеет рейтинг массива горных пород RMR в диапазоне от 5 до 73 и неподтвержденную прочность на одноосное сжатие в диапазоне от 20 до 120 МПа [20 – 22]. В настоящем исследовании было использовано 100 различных параметров применения буровзрывного метода во время фактического строительства тоннеля (включая рейтинг горной массы *RMR*, массу заряда *Q*, среднюю длину шпура L и площадь S проектного сечения выработок тоннеля). Тестирование и обучение проводились в области значений площадей сечений выработок проектного тоннеля после взрывных работ *SA* для используемых прогнозных моделей. Свойства буровзрывных и тоннельных параметров приведены в табл. 1.

Методы прогнозирования площади поперечного сечения тоннеля после взрывных работ

a) Метод множественного линейного регрессионного анализа (MLRA)

Метод множественного линейного регрессионного анализа используется для построения необходимых функциональных зависимостей и довольно часто используется для решения различных инженерных задач [23—25]. Результатом применения метода MLRA является уравнение, представляющее взаимосвязь между зависимой переменной Y и независимыми переменными $(X_1, X_2, ..., X_n)$:

$$Y = C_0 + a_1 X_1 + a_2 X_2 + ... + a_n X_n$$
 (1)

где Y — прогнозируемое значение, оцененное по переменной X_i ; C_0 — точка пересечения; a_i — коэффициенты частичной регрессии.

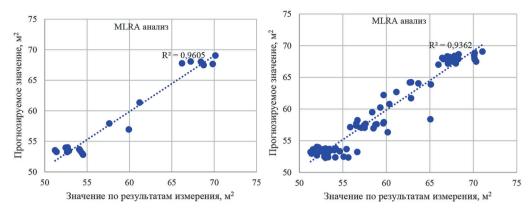


Рис. 2. Корреляция между измеренными SA и прогнозируемыми значениями S, полученными с помощью модели MLRA для обучающих и тестовых наборов данных (рисунок составлен авторам)

Fig. 2. Correlation between measured SA and predicted S values obtained from the MLRA model for training and test datasets (compiled by the authors)

Критерием, используемым для оценки точности модели MLRA, является коэффициент детерминации R^2 . Значение R^2 находится в диапазоне от 0 до 1. Чем ближе значение R^2 к 1, тем модель MLRA является более точной прогностической моделью. В процессе построения прогнозной модели MLRA используется статистика Durbin-Watson [26].

Индекс статистики Durbin-Watson находится в диапазоне от 0 до 4. В случае, когда индекс Durbin-Watson имеет значение, близкое к 0 или 4, то может иметь место явление нежелательных признаков отрицательной и положительной автокорреляции, соответственно.

В исследовании было применено 80 наборов параметров буровзрывных ра-

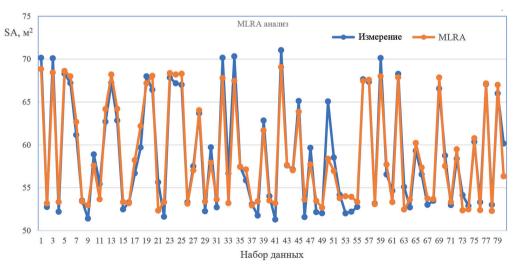


Рис. 3. Сравнение прогнозируемой S и измеренной SA для обучающих наборов данных в модели MLRA (рисунок составлен авторами)

Fig. 3. Comparison of predicted S and measured SA for training datasets in the MLRA model (compiled by the authors)

Рис. 4. Сравнение прогнозируемой S и SA измеренной для тестирования наборов данных в модели MLRA (рисунок составлен авторами)

Fig. 4. Comparison of predicted S and measured SA for testing datasets in the MLRA model (compiled by the authors)

бот во время фактического строительства тоннеля DeoCa для разработки лучшей модели MLRA прогнозирования значения площади поперечного сечения выработок проектного тоннеля после взрывных работ.

С помощью программы SPSS V18 получено уравнение определяющей связи между зависимой переменной SA (значение площади фактического сечения тоннеля после взрывных работ) и независимыми переменными (включая рейтинг горной массы RMR, массу заряда Q, среднюю длину шпура L и зна-

чение площади сечения выработки проектного тоннеля S):

$$SA = 3,473 - 0,353 \cdot L + 1,033 \cdot S + + 0,647 \cdot Q - 0,023 \cdot RMR$$
 (2)

Результаты применения модели MLRA представлены в табл. 2. Графическое сравнение измеренной SA и прогнозируемой S площади сечения тоннеля после взрывных работ показано на рис. 2, 3 и 4. Из этого сравнения видно, что существует достаточно хорошее соответствие между измеренной SA и прогнозируемой S площадью сечения тон-

Таблица 2 **Результаты применения модели MLRA Results of MLRA model application**

Модель 1		дартные циенты	Стандарт-	t	Sig.	Стати коллине	-
	В	стандарт. ошибка	фициенты Веtа			толерант- ность	VIF
Const	3,473	1,672		2,078	0,041		
L	-0,353	0,456	-0,036	-0,775	0,441	0,383	2,579
S	1,033	0,032	0,985	32,583	0,000	0,884	1,209
Q	0,647	0,760	0,045	0,852	0,397	0,293	2,886
RMR	-0,023	0,025	-0,057	-0,948	0,346	0,226	4,029

неля после взрывных работ по модели MLRA.

б) Модель адаптивной нейронечеткой системы вывода (ANFIS)

ANFIS — это метод искусственного интеллекта. В 1993 г. ANFIS был изложен в работе [27 — 29], а в 2012 г. ANFIS был представлен как метод, базируюшийся на комбинации нечеткой логики и искусственной нейронной сети ANN [30, 31]. Метод ANFIS позволяет нечеткому множеству изменять параметры MF (mead field — теория среднего поля или самосогласованного поля) с помощью алгоритма BP (back propagation обратное распространение). Метод вычисления градиентов всех параметров нейронной сети для обновления ее весов. Метод ANFIS основан на нечетких правилах «если-то» типа Takagi или Sugeno [32]. Используемая модель представляет собой нечеткую модель Sugeпо, помещенную в структуру адаптивных систем, позволяющую сделать возможным обучение и адаптацию. В модели ANFIS для нечеткой модели Sugeno первого порядка два нечетких правила «если-то» могут быть представлены в виде правил [15, 19]:

Правило 1: если (x есть A_1) и (y есть B_1), то ($f_1 = p_1 x + q_1 y + r_1$). (3)

Правило 2: если (x есть A_{γ}) и (y есть B_{γ}),

TO
$$(f_2 = p_2 x + q_2 y + r_2)$$
. (4)

Здесь p_1 , q_1 , r_1 , p_2 , q_2 , r_2 — линейные параметры; A_1 , A_2 , B_1 , B_2 , — нелинейные параметры; x, y — входы; f_1 , f_2 — выходы.

Архитектура ANFIS представлена на рис. 5. Вся системная архитектура модели ANFIS состоит из пяти слоев: первый слой — фаззификация; второй слой — слой продукта; третий слой — нормализованный слой; четвертый слой — слой дефаззификации; пятый слой — общий выходной слой.

• Первый слой модели ANFIS.

Функции этих слоев могут быть описаны уравнениями [29]:

$$O_{1,i} = m_{A_i}(x), \quad i = 1,2;$$
 (5)

$$O_{2,i} = m_{B_i}(y), \quad i = 1,2,$$
 (6)

где x и y — входные данные для первого слоя; $A_{_{\! 1}}$ и $B_{_{\! 1}}$ — нечеткие множества; $O_{_{\! 1}}$ — степень принадлежности нечетко-

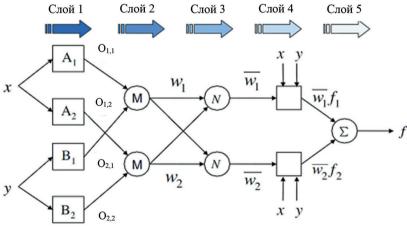


Рис. 5. Архитектура ANFIS [30] (рисунок составлен авторами) Fig. 5. ANFIS architecture [30] (compiled by the authors)

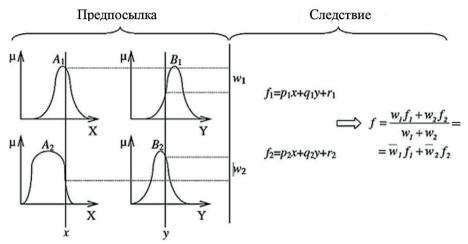


Рис. 6. Четвертый слой в модели ANFIS [6] (рисунок составлен авторами) Fig. 6. The fourth layer in the ANFIS model [6] (compiled by the authors)

го множества $A_{\rm i}$ — по входу «x»; $O_{\rm 2i}$ — степень принадлежности нечеткого множества $B_{\rm i}$ по входу «y»; $m_{\rm A_{\rm i}}$ и $m_{\rm B_{\rm i}}$ — кривые нечеткой функции принадлежности.

• Второй слой модели ANFIS.

Каждый узел второго слоя является фиксированным узлом, выход которого является произведением всех входящих сигналов. Значение каждого такого узла является результатом произведения всех степеней принадлежности предыдущего слоя, приходящих к данному узлу:

$$W_i = m_A(x)m_B(y), i = 1,2, (7)$$

где $v_{_{\rm i}}$ — выходной узел.

• Третий слой модели ANFIS.

Слой может быть представлен как нормализованный слой; каждый узел в третьем слое нормализует весовые функции, полученные из предыдущего слоя продукта на основе уравнения:

$$\overline{w}_i = \frac{w_i}{w_1 + w_2}, \quad i = 1, 2,$$
 (8)

где \overline{w}_i — нормализованный уровень.

• Четвертый слой модели ANFIS.

Этот слой является слоем дефаззификации; узлы четвертого слоя являются адаптивными узлами с функцией:

$$Q_{4i} = \overline{W}_i \left(p_i x + q_i x + r_i \right), \qquad (9)$$

где $Q_{4,i}$ — степень принадлежности нечеткого множества A_i по входу «х»; p_i , q_i , r_i — линейные параметры (3), (4).

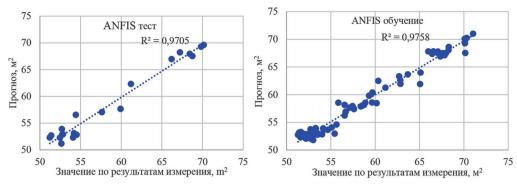
• Пятый слой модели ANFIS.

На пятом слое окончательный результат получается путем суммирования результатов предыдущего (четвертого) слоя продукта по фиксированным узлам:

$$O_{5,1} = \frac{\sum_{i} w_{i} f_{i}}{\sum_{i} w_{i}}.$$
 (10)

В этой части работы с 100 наборами данных применения метода буровзрывных работ во время фактического строительства тоннеля DeoCa, использовалась модель ANFIS для прогнозирования значения площади сечения тоннеля после ведения взрывных работ. В настоящем исследовании пять различных наборов данных были выбраны случайным образом для обучения и тестирования для разработки интеллектуальных моделей.

Целью использования таких наборов данных для тестирования является проверка эффективности прогнозирования каждой из используемых модели.

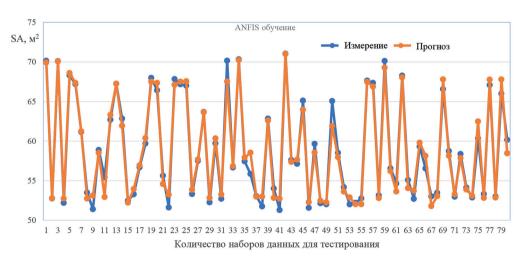

Таблица З

Performance of each model in five randomly selected datasets and their rank values for the predictive models Показатели эффективности каждой модели в пяти случайно выбранных наборах данных и их ранговые значения для прогностических моделей

Modyaeture Pant RMSE Pant RMSE Pant RMSE Pant RMSE 3X2X3X3C-const-gaussmf 0,991039 15 0,001031 1 0,001031 8 0,320034 8 0,32859433 AX2X2X2C-const-gaussmf 0,99427 18 0,014205 1 0,061631 1 0,015324 18 0,033657 1 0,033657 1 0,045319 6 0,434305 6 0,434305 6 0,434319 8 0,233657 1 0,035677 1 0,06183 13 0,04511 1 0,159646 1 0,04648 1 0,046481 1 0,046481 1 0,046481 1 0,046481 1 0,046481 1 0,046481 1 0,046481 1 0,046481 1 0,046481 1 0,046481 1 0,044411787 1 0,046481 1 0,044411787 1 0,04441787 1 0,044411787 0,04441787 0,04441787 0,04441787 0,04441787		Модель		T.	R ₂			R	RMSE			Де	Дельта		-90
3x3x3x3-const-gaussmf 0,991039 15 0,701096 7 0,061671 15 0,381705 8 0,220034 8 2x2x2x2-const-gaussmf 0,99437 18 0,516259 4 0,04889 19 0,483193 6 0,434305 6 2x2x2x2-cinear-gaussmf 0,99437 18 0,516259 4 0,04889 19 0,483193 6 0,434305 6 2x2x2x2-linear-gaussmf 0,99033 14 0,578545 6 0,065348 14 0,616515 4 0,159647 17 0,12093 5 0,25381 12 0,13586 1 0,06458 1 0,626348 14 0,616515 4 0,159648 1 0,159648 1 0,159648 1 0,159648 1 0,159648 1 0,159648 1 0,159648 1 0,159648 1 0,159648 1 0,159648 1 0,159648 1 0,159648 1 0,159648 1 0,159648 1 0,1596			обучение	ранг	тест	ранг	<i>RMSE</i> обучение	ранг	RMSE TecT	ранг	дельта RMSE	ранг	дельта R²	ранг	щий ранг
2x2x2x2-const-gaussmf 0,976162 5 0,942505 18 0,141401 2 0,163234 18 0,021833 19 0,483193 6 0,434305 6 0,4383193 6 0,434305 6 2x2x2x2x2-tinear-gaussmf 0,99437 18 0,516259 4 0,048889 19 0,483193 6 0,434305 6 2x2x2x2x2-tinear-gaussmf 0,990333 14 0,578545 6 0,065248 14 0,616515 4 0,15963 12 0,15963 1 2x2x2x2x2-const-gaussmf 0,996455 4 0,68573 11 0,12093 5 0,25381 12 0,13588 14 0,58653 17 0,12093 5 0,25381 17 0,13582 14 0,58653 17 0,04393 18 0,27381 17 0,04393 18 0,04393 18 0,04393 18 0,04393 18 0,04393 18 0,04393 18 0,04393 18 0,04393 18 0,04393 18		3x3x3x3-const-gaussmf	0,991039	15	0,701096	7	0,061671	15	0,381705	∞	0,320034	∞	0,2899433	7	09
SX3X3X3-Linear-gaussmf 0,99437 18 0,516259 4 0,04889 19 0,483193 6 0,434305 6 2X2X2X2-Linear-gaussmf 0,990333 14 0,578545 6 0,06518 13 0,157854 1 0,155361 1 0,155367 4 2X2X2X2-const-gaussmf 0,96465 4 0,86373 11 0,12093 5 0,25381 12 0,155361 4 0,157884 1 0,12093 5 0,25381 12 0,155382 1 0,157889 14 0,157893 1 0,12093 5 0,25381 12 0,12093 1 1,24939 1 1,24939 1 1,24939 1 1,24939 1 1,24939 1 1,24939 1 1,24939 1 1,24939 1 1,24939 1 1,24939 1 1,24939 1 1,24939 1 1,24939 1 1,24939 1 1,24939 1 1,24939 1 1,24939 1	2		0,976162	2	0,942505	18	0,141401	2	0,163234	18	0,021833	19	0,033657	18	80
2x2x2x2-linear-gaussmf 0,98968 13 0,806418 13 0,06618 13 0,065248 14 0,15964 12 3x3x3x3-const-gaussmf 0,990333 14 0,578545 6 0,063248 14 0,615326 4 0,553267 4 2x2x2x2x-const-gaussmf 0,994214 17 0,35686 3 0,048936 18 1,298329 2 1,249339 2 2x2x2x2x-linear-gaussmf 0,986633 9 0,789633 8 0,074371 9 0,315701 9 0,24133 1 2x2x2x2x-Linear-gaussmf 0,98828 12 0,91364 1 0,07304 1 0,23648 1 0,04438 1 0,04737 1 0,24488 1 0,04737 1 0,24488 1 0,04737 1 0,24488 1 0,04737 1 0,04737 1 0,04737 1 0,04737 1 0,04737 1 0,04737 1 0,14469 1 0,04737 1 0,144	Mar		0,99437	18	0,516259	4	0,048889	19	0,483193	9	0,434305	9	0,47811	4	27
3x3x3x3-const-gaussmf 0,990333 14 0,578545 6 0,065248 14 0,616515 4 0,553267 4 2x2x2x2x-const-gaussmf 0,96465 4 0,86373 11 0,12093 5 0,25381 12 0,13288 14 3x2x3x3x3-Linear-gaussmf 0,994214 17 0,35686 3 0,048936 18 1,298329 2 1,249393 2 2x2x2x2x-Linear-gaussmf 0,98623 3 0,913161 15 0,13598 4 0,13598 18 0,07304 11 0,23087 13 0,14183 1 0,04189 4 0,181639 17 0,04189 1 0,24138 14 0,136489 1 0,14049 4 0,181639 1 0,24138 1 0,24138 1 0,07504 11 0,24139 1 0,07504 11 0,24189 1 0,07504 11 0,24189 1 0,04189 1 0,07504 11 0,24189 1 0,04189		2x2x2x2-linear-gaussmf	0,98968	13	9/6/8,0	13	0,06618	13	0,22582	14	0,15964	12	0,10992	11	9/
2x2x2x2-const-gaussmf 0,96465 4 0,86373 11 0,12093 5 0,25381 12 0,12382 14 0,12093 5 0,025381 12 0,124939 2 1,249393 2 2x2x2x2x2-linear-gaussmf 0,986433 9 0,789633 8 0,074371 9 0,315701 9 0,24133 9 2x2x2x2x2-linear-gaussmf 0,98638 12 0,91592 16 0,07304 11 0,23087 13 0,157828 13 2x2x2x2x2-const-gaussmf 0,98731 11 0,92278 17 0,07001 8 0,19771 16 0,1277 18 2x2x2x2x2-linear-gaussmf 0,98734 10 0,62736 12 0,07236 12 0,308189 11 0,235863 10 1,240171 16 0,1177 16 0,1177 16 0,1177 16 0,1177 17 17 17 17 17 18 18 1,117 1,117 18 1,117 1,117 </td <td></td> <td>3x3x3x3-const-gaussmf</td> <td>0,990333</td> <td>14</td> <td>0,578545</td> <td>9</td> <td>0,063248</td> <td>14</td> <td>0,616515</td> <td>4</td> <td>0,553267</td> <td>4</td> <td>0,411787</td> <td>9</td> <td>48</td>		3x3x3x3-const-gaussmf	0,990333	14	0,578545	9	0,063248	14	0,616515	4	0,553267	4	0,411787	9	48
3x3x3x3-linear-gaussmf 0,994214 17 0,55686 3 0,048356 18 1,298329 2 1,249393 2 2x2x2x2x2-linear-gaussmf 0,986633 9 0,789633 8 0,074371 9 0,515701 9 0,24133 9 3x3x3x3-const-gaussmf 0,98828 12 0,91592 16 0,07304 1 0,23087 13 0,157828 13 2x2x2x2-const-gaussmf 0,994485 20 0,547347 5 0,050115 17 0,584369 5 0,54754 5 2x2x2x2-linear-gaussmf 0,98731 11 0,92278 17 0,07601 8 0,19771 16 0,1217 15 2x2x2x2-clinear-gaussmf 0,987128 10 0,072326 12 0,140171 3 0,153643 3 0,44075 10 0,13537 19 0,140171 3 0,13537 10 0,253863 10 0,253863 10 0,253863 10 0,253863 10 0,253863	7		0,96465	4	0,86373	11	0,12093	5	0,25381	12	0,13288	14	0,100922	13	59
2x2x2x2-linear-gaussmf 0,986633 9 0,789635 8 0,074371 9 0,315701 9 0,24133 9 3x3x3x3-const-gaussmf 0,98828 12 0,91592 16 0,07304 11 0,23087 13 0,157828 13 2x2x2x2-const-gaussmf 0,956982 3 0,913161 15 0,13948 4 0,181639 17 0,041691 18 3x3x3x3-clinear-gaussmf 0,98731 11 0,92278 17 0,06011 8 0,19771 16 0,1217 15 2x2x2x2-clinear-gaussmf 0,98732 10 0,828945 10 0,072326 12 0,153971 19 0,0135 20 2x2x2x2-const-gaussmf 0,994394 19 0,204736 2 0,047736 20 0,15397 2 0,047736 20 0,15397 3 0,840925 3 2x2x2x2-linear-gaussmf 0,994394 19 0,30471 2 0,08361 2 0,08361 3 0,414652<	Maz		0,994214	17	0,35686	3	0,048936	18	1,298329	2	1,249393	2	0,637353	3	45
5x3x3x3-const-gaussmf 0,98828 12 0,91592 16 0,07304 11 0,23087 13 0,157828 13 2x2x2x2-const-gaussmf 0,956982 3 0,913161 15 0,139948 4 0,181639 17 0,041691 18 3x3x3x3-clinear-gaussmf 0,98731 11 0,92278 17 0,07601 8 0,19771 16 0,1217 15 2x2x2x2-clinear-gaussmf 0,987128 10 0,828945 10 0,072326 12 0,308189 11 0,238866 1 0,136189 11 0,235863 10 3x2x2x2-const-gaussmf 0,987128 10 0,304726 19 0,447726 20 0,888661 3 0,8440925 3 2x2x2x2-linear-gaussmf 0,98656 8 0,801498 9 0,074252 10 0,2395597 7 0,521345 7 2x2x2x2-const-gaussmf 0,98656 8 0,801498 9 0,0744567 1 0,214567 1 <t< td=""><td></td><td>2x2x2x2-linear-gaussmf</td><td>0,986633</td><td>6</td><td>0,789633</td><td>∞</td><td>0,074371</td><td>6</td><td>0,315701</td><td>6</td><td>0,24133</td><td>6</td><td>0,196999</td><td>∞</td><td>52</td></t<>		2x2x2x2-linear-gaussmf	0,986633	6	0,789633	∞	0,074371	6	0,315701	6	0,24133	6	0,196999	∞	52
2x2x2x2-const-gaussmf 0,956982 5 0,913161 15 0,139948 4 0,181639 17 0,041691 18 3x3x3x3-linear-gaussmf 0,994485 20 0,547347 5 0,050115 17 0,584369 5 0,534254 5 2x2x2x2-Linear-gaussmf 0,987128 11 0,92278 17 0,075326 12 0,388661 1 0,1217 15 2x2x2x2-const-gaussmf 0,951642 2 0,954922 19 0,140171 3 0,153971 19 0,0138 20 2x2x2x2-const-gaussmf 0,994394 19 0,36472 20 0,047736 20 0,888661 3 0,0138 3 2x2x2x2-Linear-gaussmf 0,98656 8 0,96772 20 0,047756 10 0,13657 17 2x2x2x2-const-gaussmf 0,98656 8 0,801498 9 0,074252 10 0,359597 7 0,521345 7 2x2x2x2-const-gaussmf 0,98656 18		3x3x3x3-const-gaussmf	0,98828	12	0,91592	16	0,07304	11	0,23087	13	0,157828	13	0,072357	14	79
3x3x3x3-linear-gaussmf 0,994485 20 0,547347 5 0,050115 17 0,584569 5 0,534254 5 2x2x2x2-Linear-gaussmf 0,98731 11 0,92278 17 0,07601 8 0,19771 16 0,1217 15 3x3x3x3-const-gaussmf 0,987128 10 0,828945 19 0,140171 3 0,153971 19 0,0138 2x2x2x2-const-gaussmf 0,994394 19 0,304319 2 0,047736 20 0,888661 3 0,0138 3 2x2x2x2-Linear-gaussmf 0,98656 8 0,801498 9 0,074252 10 0,355597 7 0,321345 7 2x2x2x2-const-gaussmf 0,98656 8 0,801498 9 0,074252 10 0,355597 7 0,321345 7 2x2x2x2-const-gaussmf 0,951085 1 0,0614165 1 0,014165 1 0,214567 1 1 1 2x2x2x2-linear-gaussmf 0,98413 <t< td=""><td>177</td><td></td><td>0,956982</td><td>3</td><td>0,913161</td><td>15</td><td>0,139948</td><td>4</td><td>0,181639</td><td>17</td><td>0,041691</td><td>18</td><td>0,04382</td><td>17</td><td>74</td></t<>	177		0,956982	3	0,913161	15	0,139948	4	0,181639	17	0,041691	18	0,04382	17	74
2x2x2x2-linear-gaussmf 0,98731 11 0,92278 17 0,07601 8 0,19771 16 0,1217 15 3x3x3x3x3-const-gaussmf 0,987128 10 0,828945 10 0,072326 12 0,308189 11 0,255863 10 2x2x2x2-const-gaussmf 0,951642 2 0,954922 19 0,140171 3 0,153971 19 0,0138 20 3x3x3x3-Linear-gaussmf 0,994394 19 0,304319 2 0,047736 20 0,888661 3 0,840925 3 2x2x2x2-Linear-gaussmf 0,98656 8 0,801498 9 0,074252 10 0,395597 7 0,321345 7 2x2x2x2-const-gaussmf 0,951085 1 0,061162 1 0,0141652 1 0,214567 1 5,863475 1 1 2x2x2x2-Linear-gaussmf 0,98413 7 0,08149 9 0,074252 1 0,214567 1 1 1 1	c plvl		0,994485	20	0,547347	5	0,050115	17	0,584369	2	0,534254	5	0,447138	5	27
3x3x3x3-const-gaussmf 0,987128 10 0,828945 10 0,072326 12 0,308189 11 0,235863 10 2x2x2x2-const-gaussmf 0,951642 2 0,954922 19 0,140171 3 0,153971 19 0,0138 20 3x3x3x3-Linear-gaussmf 0,994394 19 0,304319 2 0,047736 20 0,888661 3 0,840925 3 2x2x2x2-Linear-gaussmf 0,98656 8 0,801498 9 0,074252 10 0,355597 7 0,321345 7 2x2x2x2-const-gaussmf 0,951085 1 0,896256 14 0,141652 1 0,214567 15 0,72215 16 3x3x3x3-Linear-gaussmf 0,995582 16 0,003129 1 0,051319 16 5,863475 1 5,812157 1 2x2x2x2-Linear-gaussmf 0,98413 7 0,087491 1 0,086969 7 0,20891 10 0,232822 11		2x2x2x2-linear-gaussmf	0,98731	11	0,92278	17	0,07601	8	0,19771	16	0,1217	15	0,064534	15	82
2x2x2x2-const-gaussmf 0,951642 2 0,954922 19 0,140171 3 0,153971 19 0,0138 20 3x3x3x3x3-Linear-gaussmf 0,994394 19 0,304319 2 0,047736 20 0,888661 3 0,840925 3 2x2x2x2x-Linear-gaussmf 0,98656 8 0,801498 9 0,074252 10 0,395597 7 0,321345 7 2x2x2x2-const-gaussmf 0,951085 1 0,89656 14 0,141652 1 0,214567 15 0,072915 16 3x3x3x3x3-Linear-gaussmf 0,995582 16 0,003129 1 0,051319 16 5,863475 1 5,812157 1 2x2x2x2-Linear-gaussmf 0,98413 7 0,87481 12 0,08069 7 0,30891 10 0,22822 11		3x3x3x3-const-gaussmf	0,987128	10	0,828945	10	0,072326	12	0,308189	11	0,235863	10	0,158182	10	63
2x2x2x2-linear-gaussmf 0,994394 19 0,304319 2 0,047736 20 0,888661 3 0,840925 3 2x2x2x2x2-linear-gaussmf 0,9828 6 0,96772 20 0,08361 6 0,13637 20 0,05276 17 3x3x3x3x3-const-gaussmf 0,98656 8 0,801498 9 0,074252 10 0,395597 7 0,321345 7 2x2x2x2x2-const-gaussmf 0,951085 1 0,896556 14 0,141652 1 0,214567 15 0,072915 16 3x3x3x3x3-linear-gaussmf 0,993582 16 0,087481 12 0,08069 7 0,30891 10 0,22822 11	2		0,951642	2	0,954922	19	0,140171	3	0,153971	19	0,0138	20	0,003279	20	83
2x2x2x2-linear-gaussmf 0,9828 6 0,96772 20 0,08361 6 0,13637 20 0,05959 7 0,521345 17 3x3x3x3-const-gaussmf 0,98656 8 0,801498 9 0,074252 10 0,395597 7 0,321345 7 2x2x2x2-const-gaussmf 0,951085 1 0,896256 14 0,141652 1 0,214567 15 0,072915 16 3x3x3x3-linear-gaussmf 0,993582 16 0,087481 12 0,08069 7 0,30891 10 0,22822 11	<u> </u>		0,994394	19	0,304319	2	0,047736	20	0,888661	3	0,840925	3	0,690074	2	49
3x3x3x3-const-gaussmf 0,98656 8 0,801498 9 0,074252 10 0,395597 7 0,321345 7 2x2x2x2x2-const-gaussmf 0,951085 1 0,896256 14 0,141652 1 0,214567 15 0,072915 16 3x3x3x3-linear-gaussmf 0,993582 16 0,003129 1 0,051319 16 5,863475 1 5,812157 1 x2x2x2x2-Linear-gaussmf 0,98413 7 0,87481 12 0,08069 7 0,30891 10 0,22822 11		2x2x2x2-linear-gaussmf	0,9828	9	0,96772	20	0,08361	9	0,13637	20	0,05276	17	0,015081	19	88
2x2x2x2-const-gaussmf 0,951085 1 0,896256 14 0,141652 1 0,214567 15 0,072915 16 3x3x3x3-linear-gaussmf 0,993582 16 0,003129 1 0,051319 16 5,863475 1 5,812157 1 2x2x2x2-Linear-gaussmf 0,98413 7 0,87481 12 0,08069 7 0,30891 10 0,22822 11		3x3x3x3-const-gaussmf	0,98656	8	0,801498	6	0,074252	10	0,395597	7	0,321345	7	0,185061	6	20
3x3x3x3-linear-gaussmf 0,993582 16 0,003129 1 0,051319 16 5,863475 1 5,812157 1 2x2x2x2-Linear-gaussmf 0,98413 7 0,87481 12 0,08069 7 0,30891 10 0,22822 11 11	Z		0,951085	1	0,896256	14	0,141652	Т	0,214567	15	0,072915	16	0,054828	16	63
0,98413 7 0,87481 12 0,08069 7 0,30891 10 0,22822 11	CDIVI		0,993582	16	0,003129	1	0,051319	16	5,863475	1	5,812157	1	0,990453	1	36
		2x2x2x2-linear-gaussmf	0,98413	7	0,87481	12	0,08069	7	0,30891	10	0,22822	11	0,109323	12	59

Таблица 4
Влияние различных параметров на выбор оптимальной модели ANFIS
Effect of various parameters on the selection of the optimal ANFIS model

Оптимальная модель		Ą	R^2			RM	RMSE			Де	Дельта		Общий
ANFIS	обучение ранг	ранг	тест	ранг	<i>RMSE</i> ранг обучение	ранг	RMSE TecT	ранг	дельта ранг <i>R</i> ²	ранг	дельта <i>RMSE</i>	ранг	ранг
2x2x2x2-linear-gaussmf 0,982799 2 0,967717 3 0,08361 2 0,136371	0,982799	2	0,967717	3	0,08361	2		3	3 0,01508	3	3 0,05276037	3	16
2x2x2x2-linear-gbellmf 0,984222	0,984222	3	0,929545	2	0,080075 3	3	0,190152	2	0,05468	2	0,11007771	2	14
2x2x2x2-linear-trimf 0,97585	0,97585	1	0,97046 4		0,09908	1	0,12115	4	0,00539	4	0,02206807	4	18
2x2x2x2-Linear-trapmf 0,984446 4 0,912165 1 0,079496 4 0,234918 1	0,984446	4	0,912165	1	0,079496	4	0,234918	1	0,07228	1	0,15542221 1	1	12


Puc. 7. Корреляция между прогнозируемым S и измеренным SA сечением тоннеля, полученными с помощью модели ANFIS для обучения и тестирования наборов данных (рисунок составлен авторами) Fig. 7. Correlation between predicted S and measured SA tunnel cross-section obtained using the ANFIS model for training and testing datasets (compiled by the authors)

Исходя из полученных результатов, необходимо выбрать лучшую модель. Имеющиеся наборы данных были случайным образом разделены на два подмножества с 80 наборами данных для обучения и 20 наборами данных для тестирования в модели ANFIS (согласно работам [33, 34] рекомендуется использовать 20% или 25% всех наборов данных для целей тестирования, соответственно). Для поиска оптимальных пара-

метров модели ANFIS использовался метод проб и ошибок. Результаты применения ANFIS представлены в табл. 3.

Среди построенных и обученных моделей ANFIS из пяти наборов данных производительность четвертой модели была лучше, чем у других построенных моделей. Это модель с линейным выходным типом.

Параметры и их значения, использованные для построения оптимальной мо-

Puc. 8. Сравнение прогнозируемой S и измеренной SA значений сечений тоннеля для обучающих наборов данных в модели ANFIS (рисунок составлен авторами)

Fig. 8. Comparison of predicted S and measured SA values of tunnel cross-sections for training datasets in the ANFIS model (compiled by the authors)

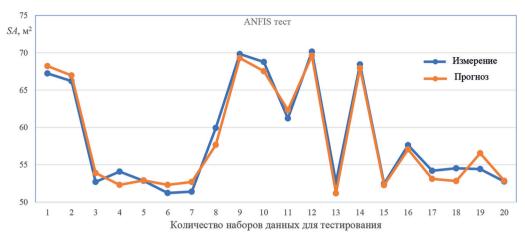


Рис. 9. Сравнение прогнозируемой S и SA измеренной значений сечений тоннеля для тестовых наборов данных в модели ANFIS (рисунок составлен авторами)

Fig. 9. Comparison of predicted S and SA measured values of tunnel cross sections for test datasets in the ANFIS model (compiled by the authors)

дели ANFIS, представлены в табл. 4.Для получения оптимальной модели ANFIS был применен простой метод ранжирования, предложенный в работе [35]. На рис. 7 приведена корреляция наборов данных для прогнозируемого сечения *S* и измеренного сечения *SA* тоннеля для теста и обучения. Прогнозируемая площадь *S* сечения проектного тоннеля после взрывных работ в сравнении с измеренной площадью сечения *SA* тоннеля после взрывов для оптимальной модели ANFIS на этапе обучения и тестирования

показана на рис. 8 и 9, соответственно. Были построены и рассмотрены несколько моделей ANFIS. Эти модели имели четыре входных параметра и один выходной параметр. Предлагаемая модель ANFIS для прогнозирования значения площади сечения проектного тоннеля после взрывных работ имеет две функции принадлежности для каждого из 16 входных параметров. В оптимальной модели ANFIS использовалась обобщенная треугольная нечеткая функция принадлежности. В этих моделях комбинация

Таблица 5 Информация об оптимальной модели ANFIS Information about the optimal ANFIS model

Тип параметра модели ANFIS	Значение
Выходная функция	линейная
Количество MFs	2
Тип МҒ	Trimf (обобщенная треугольная нечеткая функция принадлежности)
Количество узлов	55
Количество линейных параметров	16
Количество нелинейных параметров	16
Общее количество параметров	32
Количество нечетких правил	16

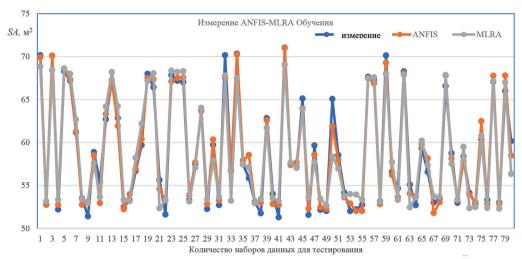


Рис. 10. Сравнение измеренного SA и прогнозируемого S значений для моделей MLRA и ANFIS для обучающих наборов данных (рисунок составлен авторами)

Fig. 10. Comparison of measured SA and predicted S values for MLRA and ANFIS models for training datasets (compiled by the authors)

методов наименьших квадратов и градиентого спуска. Такой алгоритм обучения использовался для определения параметров функции принадлежности одного выхода (эта модель — система нечеткого вывода типа Sugeno). Информация об оптимальной модели ANFIS представлена в табл. 5.

Сравнение эффективности моделей ANFIS и MLRA

Было проведено сравнение эффективности прогнозирования между моделью ANFIS и моделью множественного линейного регрессионного анализа MLRA. Эффективность модели MLRA и модели ANFIS, примененных для прог-

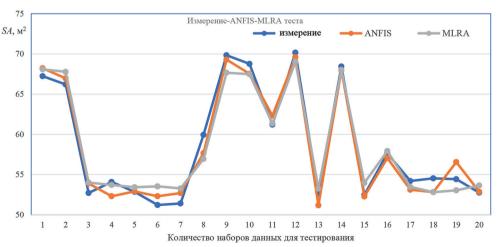


Рис. 11. Сравнение измеренного SA и прогнозируемого S значений для моделей MLRA и ANFIS для тестовых наборов данных (рисунок составлен авторами)

Fig. 11. Comparison of measured SA and predicted S values for MLRA and ANFIS models for test datasets (compiled by the authors)

Таблица 6 Показатели эффективности моделей ANFIS и MLRA и их ранговые значения для прогностических моделей

Performance indicators of ANFIS and MLRA models and their rank values
for predictive models

Модель		R	2			RM:	SE			Дел	тьта	
	обуче- ние	ранг	тест	ранг	обуче- ние	ранг	тест	ранг	дельта <i>R</i> ²	ранг	дельта <i>RMSE</i>	ранг
MLRA	0.936222	1	0.960509	1	0.2135415	1	0.182755	1	0.024288	1	0.0307863	1
ANFIS	0.975847	2	0.970459	2	0.0990784	2	0.121146	2	0.005388	2	0.02206807	2

нозирования значения площади сечения проектного тоннеля после взрывных работ, оценивалась в соответствии со статистическими критериями, такими как коэффициент детерминации R^2 , среднеквадратическая ошибка RMSE. Результаты сравнения этих моделей (табл. 6) показывают, что прогностическая эффективность модели ANFIS явно выше, чем у модели множественного линейного регрессионного анализа MLRA. На основе результатов модели ANFIS и модели MLRA можно сделать вывод, что модель ANFIS имеет максимальное значение коэффициента детерминации R^2 по сравнению с моделью MLRA (R_{train}^2 = $= 0,9758; R^2_{\text{testing}} = 0,9704)$ и среднеквадратичную ошибку *RMSE* модели ANFIS, значение которой меньше значения среднеквадратичной ошибки *RMSE* в модели MLRA (табл. 6). Таким образом, модель ANFIS более эффективна по сравнению с моделью множественного линейного регрессионного анализа MLRA.

Чтобы сравнить эффективность оптимальной нечеткой модели с моделью MLRA, в обеих моделях использовались одни и те же наборы данных. Сравнение прогнозируемого значения *S* и

измеренного значения *SA* для моделей ANFIS и MLRA показано на рис. 10 и 11 с наборами данных для обучения и наборами данных для тестирования, соответственно. Основываясь на этих результатах можно сделать вывод, что эффективность модели ANFIS значительно выше, чем модели MLRA, как для обучающих наборов данных, так и для тестовых наборов данных.

Выводы

В работе использовались модели множественного линейного регрессионного анализа MLRA и искусственного интеллекта ANFIS для прогнозирования значения площади поперечного сечения тоннеля после проведения взрывных работ. В процессе построения моделей для прогнозирования площади сечения тоннеля после взрыва в качестве входных параметров были рассмотрены четыре эффективных параметра и было использовано 100 наборов данных для тоннеля DeoCa во Вьетнаме. Входными параметрами прогнозной модели являлись рейтинг горной массы RMR, масса заряда Q, средняя длина шпура L и площадь сечения проектного тоннеля выработок *S*. Из результатов этого исследования можно сделать следующие выводы:

- уравнение, полученное на основе модели множественной линейной регрессии, имело приемлемую эффективность прогнозирования. *RMSE* и для множественного линейного регрессионного анализа MLRA равны 0,2135 и 0,9362 для обучающих наборов данных соответственно. Для тестовых наборов данных эти значения равны 0,1827 и 0.9605. соответственно:
- установлено, что построенная модель ANFIS обладает высокой эффективностью для прогнозирования площади поперечного сечения тоннеля после проведения взрывных работ в тоннеле DeoCa.

- RMSE и для модели ANFIS были рассчитаны равными 0,099 и 0,9758 в обучающих наборах данных, соответственно. Эти значения составляют 0,1211 и 0,9704 в тестовых наборах данных, соответственно:
- модель прогнозирования MLRA и модель прогнозирования ANFIS могут быть практически использованы для прогнозирования площади поперечного сечения тоннеля после проведения взрывных работ при проходке тоннеля с использованием буровзрывного метода. Следовательно, можно обосновать основные параметры повышения эффективности применяемого метода буровзрывных работ для разрушения горных пород в подземных выработках.

СПИСОК ЛИТЕРАТУРЫ

- 1. Холодилов А. Н., Виноградов Ю. И. Методика прогнозирования колебаний наземных объектов при импульсном воздействии воздушных ударных волн // Горный информационно-аналитический бюллетень. -2021. -№ 2. -C. 55-63. DOI: 10.25018/0236-1493-2021-2-0-55-63.
- 2. Сабянин Г. В., Шиленко С. Ю., Трофимов А. В., Киркин А. П. Разгрузка массива горных пород взрывным способом на глубоких рудниках 3Ф ПАО «ГМК «Норильский никель» // Горный журнал. 2021. № 2. С. 32 36. DOI: 10.17580/gzh.2021.02.04.
- 3. *Iphar M.* ANN and ANFIS performance prediction models for hydraulic impact hammers // Tunnelling and Underground Space Technology. 2012, vol. 27, no. 1, pp. 23 29. DOI: 10.1016/j. tust.2011.06.004.
- 4. Jang H., Topal E. Optimizing over break prediction based on geological parameters comparing multiple regression analysis and artificial neural network // Tunnelling and Underground Space Technology. 2013, vol. 38, pp. 161 169. DOI: 10.1016/j.tust.2013.06.003.
- 5. Hasanipanah M., Amine B. H., Arab H., Zamzam M. S. Feasibility of PSO ANFIS model to estimate rock fragmentation produced by mine blasting // Neural Computing and Applications. 2016, vol. 30. DOI: 10.1007/s00521-016-2746-1.
- 6. Mottahedi A., Sereshki F., Ataei M. Development of overbreak prediction models in drill and blast tunneling using soft computing methods // Engineering with Computers. 2018, vol. 34, no. 1, pp. 45 58. DOI: 10.1007/s00366-017-0520-3.
- 7. *Трушко В. Л.*, *Баева Е. К.* Обоснование рациональных параметров крепи комплекса горных выработок, проводимых в сложных горно-геологических условиях // Горный информационно-аналитический бюллетень. 2023. № 12. С. 55 69. DOI: 10.25018/0236-1493-2023-12-0-55.
- 8. Корчак П. А., Карасев М. А. Геомеханическое обоснование формирования зон хрупкого разрушения пород в окрестности сопряжений горных выработок рудников АО «Апатит» // Устойчивое развитие горных территорий. 2023. Т. 15. № 1. С. 67 80. DOI: 10.21177/1998-4502-2023-15-1-67-80.
- 9. *Ibarra J. A.*, *Maerz N. H.*, *Franklin J. A.* Overbreak and underbreak in underground openings part 2: causes and implications // Geotechnical and Geological Engineering. 1996, vol. 14, pp. 325 340.

- 10. Мысин А. В., Ковалевский В. Н., Должиков В. В. Экспериментальные исследования параметров функционирования удлиненных зарядов различной конфигурации // Горный информационно-аналитический бюллетень. 2022. № 10. С. 125 140. DOI: 10.25018/0236-1493-2022-10-0-125.
- 11. Kosko B. Neural networks and fuzzy systems: a dynamical systems approach to machine intelligence. Prentice Hall, New Delhi, 1994, 449 p.
- 12. Mandal S. K., Singh M. M., Dasgupta S. Theoretical concept to understand plan and design smooth blasting pattern // Geotechnical and Geological Engineering. 2008, vol. 26, no. 4, pp. 399—416.
- 13. Monjezi M., Mohamadi H., Barati B., Khandelwal M. Application of soft computing in predicting rock fragmentation to reduce environmental blasting side effects // Arabian Journal of Geosciences. 2012, vol. 7, pp. 505 511.
- 14. Набатов В. В., Вознесенский А. С. Геомеханический анализ влияния строительства новых тоннелей в окрестности действующих подземных сооружений метрополитена на состояние грунтового массива // Записки Горного института. 2023. Т. 264. С. 926 936.
- 15. Mohammad E., Morteza O., Rashidinejad F., Aghajani B. A., Mohammad T. Multiple regression, ANN and ANFIS models for prediction of backbreak in the open pit blasting // Engineering with Computers. 2014, vol. 30, pp. 549 558.
- 16. Chi T. N., Do N. A., Pham V. V., Gospodarikov A. Prediction of blast-induced the area of the tunnel face in underground excavations using fuzzy set theory ANFIS and artificial neural network ANN // International Journal of GEOMATE. 2022, vol. 23, no. 95, pp. 136 143.
- 17. Шабаров А. Н., Куранов А. Д. Основные направления развития горнодобывающей отрасли в усложняющихся горнотехнических условиях ведения горных работ // Горный журнал. 2023. № 5. С. 5 10. DOI: 10.17580/qzh.2023.05.01.
- 18. Литвиненко В. С., Петров Е. И., Василевская Д. В., Яковенко А. В., Наумов И. А., Ратников М. А. Оценка роли государства в управлении минеральными ресурсами // Записки Горного института. 2023. Т. 259. С. 95 111. DOI: 10.31897/PMI.2022.100.
- 19. Шадрин М. А., Сидоров Д. В., Корнаушенко А. П., Минзарипов Р. Г. Обоснование безопасных параметров междукамерных податливых целиков при применении технологической схемы со скважинной отбойкой руды и принудительной посадкой кровли в сложных удароопасных условиях шахт СУБРа // Горный журнал. 2023. № 1. С. 85 88. DOI: 10.17580/gzh.2023. 01.14.
- 20. Протосеня А. Г., Беляков Н. А., Буслова М. А. Моделирование напряженно-деформированного состояния блочного горного массива рудных месторождений при отработке системами разработки с обрушением // Записки Горного института. 2023. Т. 262. С. 619 627.
- 21. Nguyen Tai Tien, Do N. A., Karasev M. A., Kien D. V., Dias D. Influence of tunnel shape on tunnel lining behavior // Proceedings of the Institution of Civil Engineers: Geotechnical Engineering, 2021, vol. 74, no. 4, pp. 355 371. DOI: 10.1680/jgeen.20.00057.
- 22. Kim Y., Moon H. K. Application of the guideline for overbreak control in granitic rock masses in Korean tunnels // Tunnelling and Underground Space Technology. 2013, vol. 35, pp. 67 77. DOI: 10.1016/j.tust.2012.11.008.
- 23. Ghasemi E., Kalhori H., Bagherpour R. A new hybrid ANFIS—PSO model for prediction of peak particle velocity due to bench blasting // Engineering with Computers. 2016, vol. 32, no. 4, pp. 607—614.
- 24. Shoorehdeli M. A., Teshnehlab M., Sedigh A. K. Identification using ANFIS with intelligent hybrid stable learning algorithm approaches // Neural Computing and Applications. 2009, vol. 18, pp. 157 174.
- 25. Fisne A., Kuzu C., Hüdaverdi T. Prediction of environmental impacts of quarry blasting operation using fuzzy logic // Environmental Monitoring and Assessment. 2011, vol. 174, pp. 461 470.
- 26. Anatolyev S. Durbin-Watson statistic and random individual effects // Econometric Theory. 2003, vol. 19, no. 5, pp. 882 883.
- 27. Jang R. J. S. Anfis: adaptive-network-based fuzzy inference system // IEEE Transactions on Systems Man and Cybernetics. 1993, vol. 23, no. 3, pp. 665 685.
- 28. Jang R. J. S., Sun C. T., Mizutani E. Neuro-fuzzy and soft computing. Prentice-Hall, Upper Saddle River, 1997, 614 p.

- 29. Mohamed M. T. Performance of fuzzy logic and artificial neural network in prediction of ground and air vibrations // International Journal of Rock Mechanics and Mining Sciences. 2011, vol. 48, no. 5, pp 845 851.
- 30. Ozer U., Kahriman A., Aksoy M., Adiguzel D., Karadogan A. The analysis of ground vibrations induced by bench blasting at Akyol quarry and practical blasting charts // Environmental Geology. 2008, vol. 54, pp. 737 743.
- 31. *Кашников А. В., Круглов Ю. В.* Стратегия управления проветриванием рудника в оптимальном режиме с использованием аппарата нечеткой логики // Записки Горного института. 2023. Т. 262. С. 594—605. DOI: 10.31897/PMI.2022.75.
- 32. Sedykh I., Istomin V. Management of the strip cooling process using neural networks based on clustered dat/2nd International Conference on Control Systems, Mathematical Modeling, Automation and Energy Efficiency. 2020, pp. 375 377.
- 33. Looney C. G. Advances in feed-forward neural networks: demystifying knowledge acquiring black boxes // IEEE Transactions on Knowledge and Data Engineering. 1996, vol. 8, no. 2, pp. 211—226.
- 34. Swingler K. Applying neural networks: a practical guide. Academic Press. New York, 1996, 303 p.
- 35. Zorlu K., Gokceoglu C., Ocakoglu F., Nefeslioglu H. A., Acikalin S. Prediction of uniaxial compressive strength of sandstones using petrography-based models // Engineering Geology. 2008, vol. 96, pp. 141 158.

REFERENCES

- 1. Kholodilov A. N., Vinogradov Yu. I. Method for forecasting of surface facilities vibrations reasoned by impulse action of air shock waves. *MIAB. Mining Inf. Anal. Bull.* 2021, no. 2, pp. 55 63. [In Russ]. DOI: 10.25018/0236-1493-2021-2-0-55-63.
- 2. Sabyanin G. V., Shilenko S. Yu., Trofimov A. V., Kirkin A. P. Explosive unloading of a rock mass at deep mines of the Polar Division of PJSC MMC Norilsk Nickel. *Gornyi Zhurnal.* 2021, no. 2, pp. 32 36. [In Russ]. DOI: 10.17580/qzh.2021.02.04.
- 3. Iphar M. ANN and ANFIS performance prediction models for hydraulic impact hammers. *Tunnelling and Underground Space Technology*. 2012, vol. 27, no. 1, pp. 23 29. DOI: 10.1016/j. tust.2011.06.004.
- 4. Jang H., Topal E. Optimizing over break prediction based on geological parameters comparing multiple regression analysis and artificial neural network. *Tunnelling and Underground Space Technology*. 2013, vol. 38, pp. 161 169. DOI: 10.1016/j.tust.2013.06.003.
- 5. Hasanipanah M., Amine B. H., Arab H., Zamzam M. S. Feasibility of PSO ANFIS model to estimate rock fragmentation produced by mine blasting. *Neural Computing and Applications*. 2016, vol. 30. DOI: 10.1007/s00521-016-2746-1.
- 6. Mottahedi A., Sereshki F., Ataei M. Development of overbreak prediction models in drill and blast tunneling using soft computing methods. *Engineering with Computers*. 2018, vol. 34, no. 1, pp. 45 58. DOI: 10.1007/s00366-017-0520-3.
- 7. Trushko V. L., Baeva E. K. Substantiation of rational parameters of mine support system for underground roadways in difficult geological conditions. *MIAB. Mining Inf. Anal. Bull.* 2023, no. 12, pp. 55 69. [In Russ]. DOI: 10.25018/0236-1493-2023-12-0-55.
- 8. Korchak P. A., Karasev M. A. Geomechanical prediction of the brittle fracture zones in rocks in the vicinity of the excavation junction of Ltd «Apatit» mines. *Sustainable Development of Mountain Territories*. 2023, vol. 15, no. 1, pp. 67 80. [In Russ]. DOI: 10.21177/1998-4502-2023-15-1-67-80.
- 9. Ibarra J. A., Maerz N. H., Franklin J. A. Overbreak and underbreak in underground openings part 2: causes and implications. *Geotechnical and Geological Engineering*. 1996, vol. 14, pp. 325 340.
- 10. Mysin A. V., Kovalevsky V. N., Dolzhikov V. V. Experimental studies on the performance parameters of elongated shaped charges of different configurations. *MIAB. Mining Inf. Anal. Bull.* 2022, no. 10, pp. 125 140. DOI: 10.25018/0236-1493-2022-10-0-125.
- 11. Kosko B. Neural networks and fuzzy systems: a dynamical systems approach to machine intelligence. Prentice Hall, New Delhi, 1994, 449 p.
- 12. Mandal S. K., Singh M. M., Dasgupta S. Theoretical concept to understand plan and design smooth blasting pattern. *Geotechnical and Geological Engineering*. 2008, vol. 26, no. 4, pp. 399—416.

- 13. Monjezi M., Mohamadi H., Barati B., Khandelwal M. Application of soft computing in predicting rock fragmentation to reduce environmental blasting side effects. *Arabian Journal of Geosciences*. 2012, vol. 7, pp. 505 511.
- 14. Nabatov V. V., Voznesenskii A. S. Geomechanical analysis of the impact of the new tunnels construction in the vicinity of existing underground subway structures on the state of the soil massif. *Journal of Mining Institute*. 2023, vol. 264, pp. 926 936. [In Russ].
- 15. Mohammad E., Morteza O., Rashidinejad F., Aghajani B. A., Mohammad T. Multiple regression, ANN and ANFIS models for prediction of backbreak in the open pit blasting. *Engineering with Computers*. 2014, vol. 30, pp. 549 558.
- 16. Chi T. N., Do N. A., Pham V. V., Gospodarikov A. Prediction of blast-induced the area of the tunnel face in underground excavations using fuzzy set theory ANFIS and artificial neural network ANN. *International Journal of GEOMATE*. 2022, vol. 23, no. 95, pp. 136 143.
- 17. Shabarov A. N., Kuranov A. D. Basic development trends in mining sector in complicating geotechnical conditions. *Gornyi Zhurnal*. 2023, no. 5, pp. 5 10. [In Russ]. DOI: 10.17580/qzh.2023.05.01.
- 18. Litvinenko V. S., Petrov E. I., Vasilevskaya D. V., Yakovenko A. V., Naumov I. A., Ratnikov M. A. Assessment of the role of the state in the management of mineral resources. *Journal of Mining Institute*. 2023, vol. 259, pp. 95 111. [In Russ]. DOI: 10.31897/PMI.2022.100.
- 19. Shadrin M. A., Sidorov D. V., Kornaushenko A. P., Minzaripov R. G. Substantiation of safe parameters for yielding rib pillars in mining technology of ore breaking with induced roof subsidence in complex rockburst-hazardous conditions in Severouralsk bauxite mines. *Gornyi Zhurnal*. 2023, no. 1, pp. 85 88. [In Russ]. DOI: 10.17580/gzh.2023.01.14.
- 20. Protosenya A. G., Belyakov N. A., Bouslova M. A. Modelling of the stress-strain state of block rock mass of ore deposits during development by caving mining systems. *Journal of Mining Institute*. 2023, vol. 262, pp. 619 627. [In Russ].
- 21. Nguyen Tai Tien, Do N. A., Karasev M. A., Kien D. V., Dias D. Influence of tunnel shape on tunnel lining behavior. *Proceedings of the Institution of Civil Engineers: Geotechnical Engineering*, 2021, vol. 74, no. 4, pp. 355 371. DOI: 10.1680/jgeen.20.00057.
- 22. Kim Y., Moon H. K. Application of the guideline for overbreak control in granitic rock masses in Korean tunnels. *Tunnelling and Underground Space Technology*. 2013, vol. 35, pp. 67 77. DOI: 10.1016/j.tust.2012.11.008.
- 23. Ghasemi E., Kalhori H., Bagherpour R. A new hybrid ANFIS—PSO model for prediction of peak particle velocity due to bench blasting. *Engineering with Computers*. 2016, vol. 32, no. 4, pp. 607—614.
- 24. Shoorehdeli M. A., Teshnehlab M., Sedigh A. K. Identification using ANFIS with intelligent hybrid stable learning algorithm approaches. *Neural Computing and Applications*. 2009, vol. 18, pp. 157 174.
- 25. Fisne A., Kuzu C., Hüdaverdi T. Prediction of environmental impacts of quarry blasting operation using fuzzy logic. *Environmental Monitoring and Assessment*, 2011, vol. 174, pp. 461 470.
- 26. Anatolyev S. Durbin-Watson statistic and random individual effects. *Econometric Theory*. 2003, vol. 19, no. 5, pp. 882 883.
- 27. Jang R. J. S. Anfis: adaptive-network-based fuzzy inference system. *IEEE Transactions on Systems Man and Cybernetics*. 1993, vol. 23, no. 3, pp. 665 685.
- 28. Jang R. J. S., Sun C. T., Mizutani E. Neuro-fuzzy and soft computing. Prentice-Hall, Upper Saddle River, 1997, 614 p.
- 29. Mohamed M. T. Performance of fuzzy logic and artificial neural network in prediction of ground and air vibrations. *International Journal of Rock Mechanics and Mining Sciences*. 2011, vol. 48, no. 5, pp 845 851.
- 30. Ozer U., Kahriman A., Aksoy M., Adiguzel D., Karadogan A. The analysis of ground vibrations induced by bench blasting at Akyol quarry and practical blasting charts. *Environmental Geology*. 2008, vol. 54, pp. 737 743.
- 31. Kashnikov A. V., Kruglov Y. V. Strategy of mine ventilation control in optimal mode using fuzzy logic controllers. *Journal of Mining Institute*. 2023, vol. 262, pp. 594 605. [In Russ]. DOI: 10.31897/PMI.2022.75.
- 32. Sedykh I., Istomin V. Management of the strip cooling process using neural networks based on clustered dat. 2nd International Conference on Control Systems, Mathematical Modeling, Automation and Energy Efficiency. 2020, pp. 375 377.

- 33. Looney C. G. Advances in feed-forward neural networks: demystifying knowledge acquiring black boxes. *IEEE Transactions on Knowledge and Data Engineering*. 1996, vol. 8, no. 2, pp. 211 226.
- 34. Swingler K. Applying neural networks: a practical guide. Academic Press. New York, 1996, 303 p.
- 35. Zorlu K., Gokceoglu C., Ocakoglu F., Nefeslioglu H. A., Acikalin S. Prediction of uniaxial compressive strength of sandstones using petrography-based models. *Engineering Geology*. 2008, vol. 96, pp. 141 158. [In Russ].

ИНФОРМАЦИЯ ОБ АВТОРАХ

Буй Мань Тунг 1 — канд. техн. наук, доцент,

e-mail: buimanhtung@humg.edu.vn,

ORCID ID: 0000-0003-3559-0656,

Hгуен Чи Tхань 1 — канд. техн. наук, доцент,

e-mail: nguyenthanh.xdctn47@gmail.com,

ORCID ID: 0000-0003-4455-0234,

Господариков Александр Петрови 4^2 — д-р техн. наук,

зав. кафедрой, e-mail: kvm1823@mail.ru,

ORCID ID: 0000-0003-1018-6841,

Зацепин Михаил Александрович² — канд. физ.-мат. наук,

доцент, e-mail: zatsepin ma@pers.spmi.ru,

ORCID ID: 0000-0002-6304-8349,

1 Ханойский университет горного дела и геологии, Ханой, Вьетнам,

² Санкт-Петербургский горный университет императрицы Екатерины II.

Для контактов: Зацепин M.A., e-mail: zatsepin_ma@pers.spmi.ru.

INFORMATION ABOUT THE AUTHORS

Bui Manh Tung¹, PhD (Eng.),

e-mail: buimanhtung@humg.edu.vn,

ORCID ID: 0000-0003-3559-0656,

Nguyen Chi Thanh¹, PhD (Eng.),

e-mail: nguyenthanh.xdctn47@gmail.com,

ORCID ID: 0000-0003-4455-0234,

A.P. Gospodarikov², Dr. Sci. (Eng.),

Head of Chair, e-mail: kvm1823@mail.ru,

ORCID ID: 0000-0003-1018-6841.

M.A. Zatsepin², Cand. Sc. (Phys.-Math.),

Assistant Professor,

e-mail: zatsepin ma@pers.spmi.ru,

ORCID ID: 0000-0002-6304-8349,

- ¹ Hanoi University of Mining and Geology, Hanoi, Vietnam,
- ² Empress Catherine II Saint-Petersburg Mining University,

199106, Saint-Petersburg, Russia.

Corresponding author: M.A. Zatsepin, e-mail: zatsepin ma@pers.spmi.ru.

Получена редакцией 04.08.2022; получена после рецензии 13.03.2024; принята к печати 10.05.2024. Received by the editors 04.08.2022; received after the review 13.03.2024; accepted for printing 10.05.2024.

