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Abstract
Flash floods are recognized as some of the most devastating natural disasters globally, causing significant damage to socio-economic
infrastructures, ecosystems, and human lives, thus highlighting the critical need for accurately identifying areas at risk. In order to
address this challenge, our study introduces a novel approach by integrating Harris Hawks Optimization (HHO) with the TensorFlow
Deep Neural Network (TFDNN), termed HHO-TFDNN, for assessing flash flood susceptibility. The innovation of HHO-TFDNN
resides in its dual structure: TFDNN is employed to develop flash flood prediction models, while HHO is utilized to optimize their
parameters. This methodology was applied to a region in northern Vietnam, frequently impacted by flash floods. A detailed flash flood
database was assembled using various geospatial data sources for the model’s training and validation. The results underscore the
model’s exceptional predictive accuracy, demonstrated by a high F-score of 0.913, a Kappa statistic of 0.825, and an overall accuracy
of 91.2%. These findings establish HHO-TFDNN as a highly effective tool for predictive modeling in flash flood management.
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Introduction
Flash floods remain among the most catastrophic natural phenomena globally (Diakakis et al. 2020 ), resulting in significant fatalities in
numerous countries, especially those along the coast of the Pacific Ocean (Hu et al. 2018 ). A defining characteristic of flash floods is their
rapid onset, often occurring within a brief timeframe of less than six hours (Gourley et al. 2012 ) following intense rainfall, especially when
associated with troughs or tropical storms. Consequently, the swift progression of flash floods severely restricts the opportunity for rapid
and effective decision-making, leading to the highest average fatality rate compared to other flood types (Laudan et al. 2020 ). It is
projected that the likelihood of extreme rainfall events will significantly escalate in the future due to global warming (Myhre et al. 2019 );
thus, the number of individuals affected by flash floods is expected to increase continuously. Therefore, allocating resources towards
research and innovation focused on improving flash flood prediction is crucial in developing robust flood management strategies.

In Vietnam, natural disasters’ intensity, frequency, and unpredictability have escalated markedly (MONRE 2017 ). Over the past two
decades, these calamities have resulted in approximately 13,000 fatalities and inflicted property damage exceeding $6.4 billion (Baca and
Nguyen 2017 ), an annual economic toll estimated to approximate 1.5% of the country’s GDP (MONRE 2017 ). Among various natural
disasters, flash flooding stands out as a particularly severe phenomenon in the small, steep basins of northern mountainous areas as well as
central Vietnam. This type of disaster tends to recur and intensify during the peak of the rainy season, typically from June to August
annually. A notable example includes the occurrence of heavy rains, which precipitated landslides and widespread flash floods in the
northern mountainous regions of Vietnam in early August 2017. A significant flash flood event in the Nam Pam commune, Son La
province, on August 2nd and 3rd, 2017, resulted in 15 fatalities, 15 injuries, and the destruction of 279 homes. Concurrently, a separate
flash flood in the Mu Cang Chai district, the focus of this study, claimed the lives of 14 individuals and led to the destruction of 156
houses. Hence, identifying and predicting flash flood-prone areas is critical in aiding governmental bodies with the prevention, mitigation,
and adaptation strategies for natural disasters and safeguarding livelihoods (Tien Bui et al. 2020 ).

Reviews of the literature indicate that research on flash flood modeling and prediction has a variety of methodological approaches. Among
these, hydrological approaches that utilize rainfall-runoff modeling are adept at delivering both temporal and spatial probabilities with a
high degree of accuracy, i.e., TOPMODEL (Beven and Kirkby 1979 ), HiResFlood-UCI (Nguyen et al. 2016 ), HEC-HMS (Zema et al.
2017 ), HEC-RAS (Munna et al. 2021 ). The main feature of these models is that flash flood propagation is established based on the rainfall
and runoff relationship through simulations using a series of complex mathematical equations. Utilizing Geographic Information Systems
(GIS), various maps, such as those representing soil type, land use/land cover (LULC), and terrain, can be integrated to quantify surface
runoff. Combined with DEM, areas affected by flash floods, according to timelines, will be estimated and identified on the map. Typically,
rainfall-runoff models necessitate extensive time series data from monitoring stations. Thus, the scarcity of such stations, i.e., in developing
countries, may pose a significant challenge to developing precise hydrological models (Tien Bui and Hoang 2017 ).

The evolution of GIS technology, combined with the availability of multi-sourced geospatial data and advancements in machine learning
and deep learning, has led to the consideration of new “on-off” modeling approaches (Tien Bui et al. 2016 ), which do not necessitate the
use of long-period time series data, including, random forests (Wang et al. 2015 ), Gaussian Mixture (Tien Bui and Hoang 2017 ), Decision
Trees (Khosravi et al. 2018 ), Multilayer Neural Networks (Ngo et al. 2018a ), support vector machines (Choubin et al. 2019 ), Regression
Splines (Tien Bui et al. 2019 ), Ensembles (Band et al. 2020 ), Deep neural networks (Tien Bui et al. 2020 ), Deep Learning (Costache et al.
2020a ), convolutional neural networks (Panahi et al. 2021 ), deep belief networks (Shahabi et al. 2021 ), boosted regression trees (Abedi et
al. 2022 ), Fuzzy multicriteria decision making(Costache et al. 2022 ), hybrid machine ensembles (Habibi et al. 2023 ), blending machine
learning (Yin et al. 2023 ). Fundamentally, the “on-off” modeling approaches require a comprehensive collection of input map data as well
as maps that detail the locations of past and present flash floods. Research findings suggest that these models excel at identifying
significant correlations between flash flood data and input maps, thus facilitating the identification of areas susceptible to future flash
floods.

Among various models, deep learning has proven to be a powerful method for mapping susceptibility to flash floods. This effectiveness
stems from its capacity to identify complex flood patterns and focus on local contextual details (Trong et al. 2023 ). However, research on
the application and optimization of deep learning models for flash flood modeling and prediction is currently limited. Consequently,
conducting new studies across diverse geo-environmental conditions is crucial to expanding the existing knowledge base and deriving more
reliable conclusions. This study aims to partially address the above gap in the literature by presenting and validating a novel integrated
deep-learning model named HHO-TFDNN for flash flood susceptibility mapping. In the proposed model, the TensorFlow-based deep
learning (TFDNN) technique is used to generate an initial flash flood model, whereas the Harris Hawks Optimization algorithm (HHO)
(Heidari et al. 2019 ) is used to optimize the model. To the best of our knowledge, the use of the Harris Hawks Optimizer (HHO) for
optimizing TensorFlow Deep Neural Networks (TFDNN) in flash flood modeling has seldom been considered. The focus of this study is the
mountainous region of Yen Bai province in northwest Vietnam, an area recognized for its vulnerability to flash floods induced by heavy
rainfall during tropical storms. This setting offers a relevant backdrop for implementing and assessing the efficacy of the proposed
predictive model.

Background of the utilized algorithms
TensorFlow deep neural networks
Deep learning represents an advanced segment of machine learning, characterized by its use of sophisticated architectures composed of
multiple layers of processing (LeCun et al. 2015 ). These multilayered structures are adept at mining complex patterns and representing
data nuancedly, enabling the algorithm to learn from vast amounts of information with minimal human intervention. This approach allows
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for the extraction of high-level features from raw data, making deep learning exceptionally effective for a wide range of applications,
including flash flood modeling and prediction (Bui et al. 2020 ).

In the last decade, deep learning with various frameworks has been developed, including TensorFlow from Google (Abadi et al. 2015 ),
PyTorch from Facebook (Paszke et al. 2019 ), and CNTK from Microsoft (Seide and Agarwal 2016 ), made a significant impact in various
domains. This study utilized the TensorFlow deep learning framework due to its capability to integrate with ArcGIS Pro software through
Python programming. This integration facilitates the handling of multi-sourced geospatial data and allows for the compilation of modeling
results into flash flood susceptibility maps.

Figure  1  illustrates a typical architecture of a deep neural network comprising an input layer, an output layer, and several hidden layers.
In the context of a flash flood dataset (FFDS), represented as FFDS = (X, y), X denotes a vector consisting of 10 factors related to flash
floods, while y represents the flash flood index, with values ranging from 0 to 1.

Fig. 1

A typical architecture of a deep neural network
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Training a deep neural network model involves fine-tuning the network’s parameters, including weights and biases, to minimize the
prediction error. For this particular analysis, the optimization of the network’s parameters was achieved using Harris Hawks optimization
(HHO), which is explained in the section below.

Harris Hawks optimization (HHO)
As explained above, this study employed the Harris Hawks Optimizer (HHO) introduced by Heidari et al. (2019 ) to fine-tune the weights
and biases of the TensorFlow Deep Neural Network (TFDNN) model dedicated to mapping flash flood susceptibility. The HHO represents
a probabilistic, gradient-free global optimization algorithm that mimics the collaborative hunting tactics and pursuit patterns of Harris’
Hawks in nature. It mathematically models the cunning approach a congregation of Harris Hawks employs as they converge on a target
from various angles. The HHO was chosen for this study because of its ability to achieve quick convergence and deliver improved
accuracy across different fields (Alabool et al. 2021 ). In the context of this research, the HHO algorithm was employed to fine-tune the
weights and biases of the TFDNN model through the following four steps (Nhu et al. 2023 ):

Step 1: The first step of this metaheuristic approach involves creating an initial population, N, within a feasible search space delineated by
a lower boundary (LB) and an upper boundary (UB). Within this search domain, the location of each Harris Hawk is identified by its
coordinates, which correspond to the weights and biases of the TFDNN model, making each hawk a potential solution for the model. In
order to determine the best position of Harris Hawk for the model, a cost function was devised to evaluate the efficacy of each solution.

Step 2: The fitness is calculated for each hawk in the initial population to identify the most effective Harris Hawk solution among them.
Following this, the exploration phase commences, during which the hawks’ positions are adjusted according to Eq.  1  (Heidari et al.
2019 ; Nhu et al. 2023 ), and then, the best position of Harris Hawk with respect to the TFDNN model is determined.

where  and  signify the positions of the hawks at iterations t+1and t, respectively.  presents the position of the individual
exhibiting the highest fitness level, also known as the prey’s position at iteration t.  is identified as a randomly selected hawk,

 denotes the mean position of the individuals, which is determined using Eq.  2 . The parameters ​, and q are variables
generated randomly within the range of 0 to 1.
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Step 3. Based on the escape energy (ES), which is computed using Eq.  3 ,

where ES denotes the escaping energy of a prey,  represents an initial value of the energy and  is the maximum number of
iterations used.

The position of each Harris Hawk will be updated based on the prey’s escaping energy as follows: When ∣E∣ is greater than or equal to 1,
the position update for each hawk is carried out according to Eq.  1 . Conversely, if ∣E∣<1, the positions of the Harris Hawks are adjusted

using Eqs.  4 , 5 , and 6 .

wherein,  denotes the prey’s initial energy, which is allocated a random value between [-1, 1]. T indicates the maximum iteration
count; r is a number produced randomly within the interval [0,1]; J is a randomly determined number within the range [0,2]; F1 and F2
represent specific fitness conditions; S is a stochastic vector; and Levy pertains to the Levy flight function. ​ signifies the
discrepancy between the optimal position, ​, and the present location of the hawk, ​.

Step 4: The process concludes once a specific termination condition is met, which may be either the completion of the predetermined
maximum iteration count or the achievement of the targeted fitness threshold.

Study area and data
Description of the study area
The study area spans the Nghia Lo town, the Mu Cang Chai, and Van Chan districts, which belong to the Yen Bai province, covering an
area of 3173.4 km . Geographically, its coordinates stretch from 20º20’to 21º45’ North latitude from 104º20’ to 104º53’ East longitude
(Fig.  2 ). Morphometrically, the study area has typical mountainous characteristics with complex features of the terrain with high forest
coverage, mountains, caves, streams, interlaced, and flat valleys. In this area, attitude varies widely from 55.1 m to 2975.6 m with an
average of 400 m, and the high slope areas (> 30 ) occupy more than 50% of the total area, leading to high probability of flash flood
generation. A complex and dense stream network characterizes the hydrological system. Most of the main streams originate from the high
mountains (> 2000 m), providing good conditions to generate hydroelectricity and are the main water supply source in the area.

Fig. 2

The studied area (Nghia Lo town, the Mu Cang Chai and Van Chan districts) and flash-flood locations
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From a geological perspective, the study area comprises a total of 19 formations and complex outcrops, which are distributed unevenly.
Notably, two formations account for more than 73% of the total study area. The Van Chan formation, representing 50.3% of the area, is
characterized by its main lithologies, including gravelstone, conglomerate, clay shale, and tuffaceous siltstone. Meanwhile, the Ngoi Thia
formation, constituting 23.5% of the area, is distinguished by the presence of rhyolite, porphyric rhyolite, and tuffaceous sandstone as its
principal lithologies. Detailed descriptions of the remaining geological units are presented in Table  1 .

Table 1

The geological units in the Yen Bai province

No Geological units Area (%) Main lithologies  

1 Van Chan formation 50.3 Gravestone, conglomerate, clay shale, tuffaceous siltstone  

2 Ngoi Thia formation 23.5 Rhyolite, porphyric rhyolite, tuffaceous sandstone  

3 Sinh Quyen formation 4.2 Two-mica plagio-gneiss, quartz two-mica schist, two-mica-garnet schist  

4 Suoi Bang formation 3.1 Marl, siltstone, quinoid siltstone, sandstone, coquina  

5 Cam Duong formation 2.3 Black schist, chlorite-sericite schist, apatite bearing schist, quartzite  

6 Quaternary 2.1 Pebble, granule, clayey sand  

7 Phu Sa Phin complex 1.9 Syenite granosyenite, subalkaline granite  

8 Sa Pa formation 0.1 Marbleized limestone, white-gray dolomitic limestone, schist  

9 Xom Giau complex 0.1 Kalifeldspath-rich biotite granite, pegmatite granite  

10 Others 12.4 sandstone, siltstone, calcareous siltstone, gabbro, diabase, granite, aplitic  

In terms of land use/land cover (LULC), our analysis points out that forests dominate 60.6% of the total study area, followed by
grasslands, which cover 19.0%. Bareland constitutes 7.5% of the area, while orchard and crop areas each account for 4.3%. Paddy rice
fields represent 3.2% of the study area, and urban and built-up areas comprise approximately 1.0%. In the context of soil distribution
within the study area, 87.1% is occupied by three primary soil types: HYR (46.2%), YCMR (27.9%), and HLY (13.1%). Following these,
YMR covers 4.8% of the area, LYS accounts for 2.6%, ALU and rocky mountain areas each represent 1.3%, and BOR constitutes 1.2%.

The study area is located in a tropical monsoon region, distinguished by two distinct seasons: a dry season extending from November to
April and a rainy season from May to October. The dry season is characterized by reduced rainfall and cooler temperatures, particularly
from December to February, when conditions can become notably cold, especially in the highland areas. In these high elevations, such as
around Mu Cang Chai, mornings may be foggy with occasional frost, and nighttime temperatures can plummet to between − 2 °C and − 
3 °C. Conversely, the rainy season brings substantial rainfall to the province, with the annual average reaching up to 5490 mm (Pham et
al. 2018 ). This rainfall is often intense, particularly in August and September, leading to landslides, floods, and specifically flash floods,
posing significant challenges to the region.

Data
Historical flash-flooded location
In the development of prediction models, the historical data of flash-flooded locations and their influencing factors are crucial. For this
research, we compiled a flash-flood inventory map using 1,374 flash flood locations (Fig.  2 ), derived from the state-funded project No.
03/HD-KHCN-NTM 2020, under the auspices of the Ministry of Agriculture and Rural Development of Vietnam (Nguyen et al. 2020 ).
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These polygons, representing flash flood events over the five years from 2015 to 2019, were identified through the analysis of Sentinel-1
SAR imagery employing the Change Detection Technique (Ngo et al. 2018b ).

Notably, the Sentinel-1 mission encompasses a leading pair of satellites equipped with C-band Synthetic Aperture Radar (SAR)
technology, and thus, these two polar-orbiting satellites are each equipped with a C-band SAR sensor, which can capture images with a
spatial resolution of 10 m (Amitrano et al. 2018 ). Operating in tandem as a constellation ensures a high revisit frequency, providing
fresh imagery every six days, thereby offering consistent and reliable data coverage.

Additionally, we utilized information on flash floods reported by local media and imagery from Google Earth to interpret flash flood
extents. Our field investigations and subsequent analyses indicate that flash floods in the study area typically occur abruptly following
heavy and intense rainfall, with rates of up to 40 mm per hour (Thao and Viet 2023 ). The steep terrain and the area’s recent economic
development exacerbate these events. Key factors contributing to the severity of flash floods include the degradation of watershed
forests, primarily due to unplanned logging and the practice of slash-and-burn agriculture. These activities lead to rapid and concentrated
water runoff during heavy rain events. Moreover, the recent economic development has spurred infrastructure projects, including the
construction of bridges and culverts, which often do not have adequate drainage capacity, thereby increasing the risk of flash flooding.

Flash-flood indicators
The construction of a flash flood susceptibility map involves utilizing the statistical relationship between historical flood events and
various influencing factors. The careful selection of these factors is essential for accurately predicting future flash flood occurrences. To
ensure the relevance and effectiveness of these factors, we based our selection on an analysis of catchment characteristics, informed by a
comprehensive review of the literature, including works (Duong Thi et al. 2020 ; Hapuarachchi et al. 2011 ; Luu et al. 2023 ; Ngo et al.
2021b ; Nhu et al. 2020a ; Tien Bui et al. 2020 ). For this research, ten influencing factors were identified: rainfall, river density, land
cover, elevation, slope, curvature, topographic wetness index (TWI), aspect, soil type, and geology.

Rainfall: Rainfall is a critical factor in shaping the formation and dynamics of water flow within a watershed, significantly influencing
the magnitude, velocity, and behavior of flash flood flows, as evidenced by research (Bryndal et al. 2017 ; Fang et al. 2015 ;
Papagiannaki et al. 2015 ). Consequently, this study has selected it as a primary variable for analysis. To assess the impact of rainfall, we
initially compiled statistics on all flash floods that occurred over the past five years, as reported by the Natural Disaster Prevention
Committee of Yen Bai Province. From the analysis of these events, we identified the heaviest total rainfall over three days that led to the
most flash floods and used this data to construct a rainfall map. This map was developed using the Inverse Distance Weighting (IDW)
interpolation method (Bui et al. 2011 ). As depicted in Fig.  3 a, rainfall in the study area exhibits considerable variation, ranging from
349.2 mm to 602.4 mm, and is characterized by an uneven spatial distribution.

River density: River density reflects the extent of development within a drainage network and is widely acknowledged as a key factor
influencing flow processes within a watershed (Pallard et al. 2009 ). Given its significance, river density was selected as a parameter for
this research. For the purposes of this analysis, river density was calculated based on the river network extracted from topographic maps
at a 1:50,000 scale (Do et al. 2020 ). The computed river density values range from 0 to 10.3, indicating higher river density in
mountainous regions and lower river density in the lowland areas along valleys, as illustrated in Fig.  3 b.

Landcover: Land cover (LC) significantly influences the dynamics of flash flood processes due to its profound effects on infiltration
and runoff generation, as highlighted in studies by (Jodar-Abellan et al. 2019 ; Nie et al. 2011 ). For instance, a decrease in forested areas
can lead to increased surface runoff and stream discharge, whereas a higher density of forests can mitigate erosion and reduce discharge
into streams and rivers (Guzha et al. 2018 ). In this study, we utilized the LC map developed by Truong et al. (2019 ), which was created
using ALOS-2/PALSAR-2 imagery, Landsat 8 OLI images, and geospatial data. This map identified eight LC types within the study area,
as shown in Fig.  3 c.

Elevation: Elevation is a critical factor in the modeling and prediction of flash floods, as it significantly influences the gravitational
force acting on flowing waters (Borga et al. 2014 ). This influence directly affects both the direction and velocity of water flow across
various landscapes. Due to the force of gravity, water invariably moves from regions of higher elevation to those of lower elevation. For
this project, we utilized a Digital Elevation Model (DEM) derived from national topographic maps at a 1:10,000 scale (Do et al. 2020 )
to create an elevation map with a grid cell resolution of 20 m. As illustrated in Fig.  3 d, the elevation within the study area exhibits
significant variation, ranging from 55.1 m to 2975.6 m. Areas of high elevation (> 500 m) are primarily found in the Northwest and
Southwest regions, whereas the lowland areas (< 100 m) are located in the Southeast, which coincides with zones of frequent flash flood
events.

Slope: The slope is widely acknowledged as a crucial factor that can either accelerate or decelerate the flow processes occurring within a
watershed (Li et al. 2020 ). It directly impacts the velocity at which water moves across the surface. In areas with steep slopes, water
tends to flow more rapidly, which can lead to quicker runoff and potentially increase flash flooding. Conversely, in areas with gentle
slopes, the flow of water is slower, allowing more time for infiltration into the soil, which can reduce runoff and the likelihood of
flooding. In this analysis, the slop map for the study area was derived from the DEM. The slope varies from 0.0 to 78.7 degrees, with the
mountainous regions exhibiting a significant proportion of steep slopes—more than 35% of these areas have slopes exceeding 50
degrees, as depicted in Fig.  3 e. This variation in slope underscores the diverse topographical characteristics of the region and highlights
the presence of extensive steep terrain, particularly in the mountainous areas.

Curvature: Curvature plays a pivotal role in determining the flow paths of water, influencing both convergence/divergence and
deceleration/acceleration, which in turn affect infiltration processes and the dynamics of runoff flow (Papanicolaou et al. 2018 ).
Generally, curvatures are categorized into three types: concavity (positive values), convexity (negative values), and flat (zero values). In
this study, a curvature map was developed using the Digital Elevation Model (DEM) with a resolution of 20 × 20 m. The curvature
within the study area exhibits significant variation, ranging from − 63.2 to 37.8. Analysis of previous flash flood incidents reveals that
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they predominantly occurred in areas with concave curvature, indicating characteristics of flash flood divergence and acceleration, as
shown in Fig.  3 f.

Fig. 3

Flash-flood influencing factors in this analysis: (a) Rainfall, (b) River density, (c) Landcover, (d) Elevation, (e) Slope, (f) Curvature, (g)
Topographic wetness index, (h) Aspect, (i) Soil, and (j) Geology. For the soil type, ALU: Alluvial soils; BOR: Brown-yellowish soils on old
alluvium; HLY: Humus-light-yellow soil on high mountains; HYR: Humus-yellow-red soils; LYS: Light-yellowish soils on sandstone; RLS:
Red soil on limestone; RM: Rocky mountain, SLP: Sloping soils; WS: Water surface; YCMR: Yellowish-red soils on claystone and
metamorphic rock; YCR: Yellowish-red soil on cultivated rice; YMR: Yellowish red soil on acid magmatic rocks
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Topographic wetness index (TWI): The Topographic Wetness Index (TWI) quantifies the spatial relationship between the formation
and variations of runoff flow, reflecting its impact on flash flood dynamics (Costache et al. 2020b ). Therefore, it is selected for this
analysis. TWI was extracted from the DEM in the studied area, where values range from 1.6 to 23.3, with higher values observed along
valleys. These elevated TWI values indicate a tendency for significant water flow accumulation in lowland areas. Consequently, this
pattern suggests that flash flood events are more likely to occur along valleys where conditions favor the concentration and rapid
movement of runoff, highlighting the importance of TWI as a predictive indicator for flash flood susceptibility in these regions.

Aspect: Aspect, the direction a slope faces, is a critical factor that directly and indirectly influences runoff processes due to its
significant impact on soil moisture levels, vegetation development, and the direction of water flow (Hofierka et al. 2009 ). In the study
area, slope aspect is categorized into nine classes, as illustrated in Fig.  3 h. analysis of flash flood records reveals a higher frequency of
events in the southwest (SW), West (W), and northwest (NW) directions.

Soil: Soil types should be considered for flash flood modeling due to their significant influence on water infiltration, retention, and
runoff processes. The physical properties of soil, including texture, structure, and organic matter content, determine how quickly
rainwater can infiltrate the ground versus how much will become surface runoff (Sangati et al. 2009 ). Soils with high infiltration rates,
such as sandy soils, can reduce the risk of flash floods by absorbing more rainfall. In contrast, compacted or clay-rich soils with low
infiltration rates lead to increased runoff (Bagarello et al. 2013 ), heightening flash flood potential. Furthermore, soil moisture content
and hydraulic conductivity affect the speed and volume of water flow, making soil characteristics crucial data points for accurately
predicting flash flood events and mitigating their impacts. For this research, a soil map was compiled based on the national soil map with
a scale of 100,000 (Ngo et al. 2018c ). Accordingly, twelve types were identified in this area (Fig.  3 i).

Geology: Geology plays a crucial role in accurately predicting flash flood susceptibility, as it influences the ground’s permeability and
porosity (Bryant et al. 1993 ). These factors determine the rate of water infiltration versus surface runoff, directly affecting the
probability and severity of flash floods. In this study, the geological map of the study area with ten groups was generated using the
national geological and mineral resources map of Vietnam at a scale of 1:50,000.
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The proposed HHO-TFDNN framework for flash-flood
susceptibility assessment
The description of the proposed HHO-TFDNN employed for flash-flood susceptible assessment is presented in Fig.  4 . In this research, the
SNAP toolbox and ArcGIS Pro 3.0 were utilized for processing the Sentinel-1 SAR imagery and flash flood indicators, respectively. The
HHO algorithm codes can be found in Heidari et al. (2019 ); whereas the authors wrote the HHO-TFDNN with the help of built-in functions
provided by the Keras Deep Learning API of TensorFlow 2.0 (https://www.tensorflow.org) in the Python environment.

Fig. 4

The flowchart of the proposed HHO-TFDNN for flash flood susceptible mapping in this research

Click here to Correct

Building the flash-flood database
We employed the ESRI-geodatabase format (Zeiler 1999 ) to build the flash-flood database for this project. The ESRI geodatabase is
capable of organizing geospatial data from different sources. As a result, the flash-flood database contains 1374 flash-flood polygons and
ten flash-flood indicators mentioned in Sect.  3.2.2 . All indicators were resampled to a raster format with a resolution of 20 × 20 m using
the Nearest Neighbor resampling technique in ArcGIS Pro 2.6. Because the HHO-TFDNN could process values in the rank from 0 to 1,
we normalized the ten indicators into the rank 0.01 and 0.99 (Ngo et al. 2021a ). In the subsequent phase, we randomly generated 1,374
sample points in non-flood areas. The sampling tool in ArcGIS Pro 2.6 was then employed to extract values for all samples. Ultimately,
the data was divided into a 70/30 ratio (Ngo et al. 2021b ; Rana and Mahanta 2023 ) for the HHO-TFDNN model’s training and validating,
respectively.

The HHO-TFDNN structure and its trainable parameters
At the core of the proposed HHO-TFDNN model, a deep neural network (DNN) could be employed as a pattern recognizer to infer the
input indicators to flash-flood or non-flood classes. However, we formulate the flash flood modeling as a regression problem in this
research. The structure of the employed TFDNN in this project is shown in Fig.  5 . In the first layer (also called the input layer),
information regarding the ten indicators is received. This information is then analyzed in the hidden layers to reveal meaningful patterns
hidden in the collected data. Useful knowledge can be extracted to generate regression values in the range of [0,1]. The final layer is used
to produce numerical values. A threshold of 0.5 was adopted to separate output indices into two classes for the model performance
assessment.

DNN models are highly used for flash-flood susceptibility assessment because the problem of interest entails the analysis of nonlinear
functional mapping and multivariate data. Therefore, the employed machine learning approach must be capable of mining complex
patterns from such nonlinear and multivariate datasets. Since a DNN is equipped with multiple hidden layers, an enriched hyper-plane set
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can better separate the learning space. Therefore, a DNN possesses a high chance of capturing and inferring the sophisticated concept used
for pattern classification.

Fig. 5

Structure of the proposed HHO-TFDNN model

Click here to Correct

Cost function
During the training phase of a DNN model, the weights of the HHO-TFDNN model must be adapted to identify the most appropriate
functional mapping between the actual and the predicted class labels of flood and non-flood. To adjust such connecting weights, we
employed Mean Absolute Error (MAE) as the cost function (Ngo et al. 2021b ) to measure the performance of the flash flood models as
below:

where denotes the target values;  is the predicted flash-flood values yielded by the HHO-TFDNN model, and n denotes the
size of the training dataset. AQ1

Prediction performance evaluation
HHO-TFDNN model has been trained to fit the records stored in the training dataset, and a set of performance measurement metrics was
used to quantify the established model’s quality. In this project, we used TP- true positive, FP- false positive, FN- false negative, TN- true
negative as described in (Nhu et al. 2020b ). Based on the result of these four basic indices, PPV- Positive predictive value, NPV-
Negative predictive Value, Sens-Sensitivity, Spec- Specificity, Accuracy, F-Score were further computed (Hoang 2020 ; López et al.
2013 ). In addition to the aforementioned metrics, the ROC curve and AUC (van Erkel and Pattynama 1998 ) are also widely employed to
assess the overall generalization capability of the HHO-TFDNN model. Moreover, the Kappa index (McHugh 2012 ) can also be
computed to quantify a binary classification model’s predictive accuracy. Therefore, this index is used in this study for model assessment
and result comparison.

Results and analysis
Model fitting and validation
In this study, the HHO metaheuristic is integrated to optimize the HHO-TFDNN’s weights for flash-flood susceptibility assessment. This
is a challenging task since the number of optimized parameters is large, with 9089 trainable weights (as demonstrated in Table  2 ). Via the
exploration and exploitation processes of a population of hawks, the HHO algorithm gradually identifies better candidate solutions and
discards inferior ones.

Table 2

Summary of the HHO-TFDNN model with 9089 trainable weight parameters

No. Layer Activate function Neurons
Parameters

Weight (w) Bias (b) Total

1 Dense 1 ReLU 64 640 (10 × 64) 64 704

2 Dense 2 ReLU 64 4096 (64 × 64) 64 4160

3 Dense 3 ReLU 64 4096 (64 × 64) 64 4160

MAE = | − |
1

n
∑n

i=1
TFFi OFFi

TFFi OFFi
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No. Layer Activate function Neurons
Parameters

Weight (w) Bias (b) Total

4 Dense 4 Sigmoid 1 64 (64 × 1) 1 65

When the optimization process terminates, a set of appropriate connecting weights, representing a model with a high degree of fitness,
were further used to generate the flash-flood susceptibility model. The training and validating performance of the DNN model optimized
by the HHO metaheuristic is presented in Table  3 .

Table 3

Statistical performance of the HHO-TFDNN model

Modeling
phase

Statistical performance of the HHO-TFDNNs model

TP TN FP FN Sens(%) Spec(%) Accuracy F-score Kappa AUC

Training 898 890 64 72 92.6 93.3 92.9 0.930 0.859 0.974

Validating 376 373 36 36 91.3 91.2 91.2 0.913 0.825 0.970

We observe from Table  3  that the HHO-TFDNN model has achieved good performances in both training (Sen = 92.6%, Spec = 93.3%,
accuracy = 92.9%, F-score = 0.930, Kappa = 0.858, and AUC = 0.974) and validating phase (Sen = 91.3%, Spec = 91.2%, accuracy = 
91.2%, F-score = 0.913, Kappa = 0.825, and AUC = 0.970). In addition, the proposed model has also yielded relatively balanced outcomes
of true positive and true negative prediction in both training (TP = 898 and TN = 890) and validating phases (TP = 376 and TN = 373). The
accuracy index above 90% indicates that the integrated DNN and HHO is highly suitable for flash-flood susceptibility assessment in the
selected study area. Furthermore, the ROC curves associated with AUC values are demonstrated in Fig.  6 .

Fig. 6

The obtained ROC curve and AUC values of the HHO-TFDNN model

Click here to Correct

Flash flood factor ranking
After training and validation, results are obtained, and it is useful to examine the impact of the collected influencing factors on the flash-
flood susceptibility prediction process. This study uses the wrapper-based algoritm (Colaco, et al. 2019) with 5-fold cross-validation to
rank the flash flood indicators. Herein, this algoritm utilizes a comprehensive search strategy that examines every potential subset
combination of the ten flash flood factors, assessing them based on the model’s performance. In this process, MAE and AUC were
employed to identify the optimal combination of flash flood factors for the study area. The computational results are reported in Table  4 .
As can be seen from this table, the factors of land use/land cover (1st rank), slope (2nd rank), and elevation (3rd rank) have shown a
degree of high relevancy. Moderately relevant factors include curvature, soil, TWI, river density, rainfall, and lithology. The factor of
aspect (10th rank) receives a comparatively low degree of relevancy with AUC = 0.052. Nevertheless, since all factors’ AUC values are
positive, all factors should be included in the flash-flood susceptibility prediction process.

Table 4
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Ranking of the factors in this project using the 5-fold cross-validation-based wrapper measure

No Factor
The wrapper measure

Ranked factor
MAE AUC

1 Landcover 0.376 0.461 1

2 Slope ( ) 0.360 0.429 2

3 Elevation (m) 0.286 0.380 3

4 Curvature 0.220 0.325 4

5 Soil 0.216 0.355 5

6 TWI 0.211 0.334 6

7 River Density (km/km ) 0.167 0.269 7

8 Rainfall (mm) 0.148 0.242 8

9 Lithology 0.105 0.236 9

10 Aspect 0.007 0.052 10

Flash-flood susceptibility map
The proposed HHO-TFDNN model has been proven to be the best-suited model for flash-flood susceptibility assessment in this project by
analyzing the experimental results. Thus, this newly developed deep learning model is further employed to compute the studied area’s
flash-flood susceptibility map.

The computational results yielded by the integrated HHO-DNN model are subsequently converted to raster format and opened in the
ArcGIS software package. Based on susceptibility indices, the flood susceptibility map (refer to Fig.  7 ) can be obtained and displays five
susceptible zones: high (5%), moderate (5%), low (5%), very low (5%), and no (80%). The threshold values (0.973, 0.413,0.139, and
0.073) for classifying these zones were established by superimposing historical flash flood locations on the flash-flood susceptibility map
(Tien Bui et al. 2016 ). Moreover, a graphical presentation, Fig.  8 , demonstrates the distribution of pixels in the five classes above

computed from the HHO-TFDNN model. Table  5  further reports the five susceptibility classes’ analysis results regarding the attributes of
map coverage percentage, susceptibility zone, flooded location percentage, and area.

Fig. 7

The HHO-TFDNN derived flash-flood susceptibility map for the studied area

Click here to Correct

Table 5

Five susceptibility classes of the HHO-TFDNN model

No Index value Map coverage (%) Susceptibility zone Flooded location (%) Areas (km )

1 0.000-0.072 70 No 0.00 2221.4

o

2

2
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No Index value Map coverage (%) Susceptibility zone Flooded location (%) Areas (km )

2 0.072–0.140 10 Very low 2.94 317.3

3 0.140–0.413 10 Low 4.81 317.3

4 0.413–0.793 5 Moderate 7.60 158.7

5 0.793-1.000 5 High 84.65 158.7

Fig. 8

Distribution of pixels in the five classes derived from the HHO-TFDNN model
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Discussion
Flash flooding continues to be a dangerous natural hazard event, causing severe damage to infrastructure and natural and built
environments. While flash flood forecasting is still challenging (Jain et al. 2018 ), flash flood susceptibility identified in advance-prone
areas may be a good solution for risk reduction and mitigation. In this research, we have proposed a novel framework for flash flood
susceptibility modeling. The framework was tested and deployed at a heavily suffered flood area in northern Vietnam. The advantage of the
TFDNN framework is that it is an open-source platform developed by Google with various available ecosystem tools suitable for
environmental modelings, such as flash floods, in this research. During the last five years, TensorFlow deep learning has successfully
demonstrated overwhelming applications in various domains (Pang et al. 2020 ).

The HHO-TFDNN is an ensemble framework that integrates TensorFlow deep learning with the Harris Hawks Optimizer (HHO) to to build
a powerful flash flood model. In this framework, the TFDNN is employed initially to develop an initial flash flood model, while the HHO
is utilized to search for and optimize the weights of the TFDNN model. A significant advantage of this approach is its effective capability to
find and optimize the model’s weights. This analysis also indicates that the weights strongly influence the prediction power of the TFDNN
for flash-flood modeling. Herein, 9089 weights of the TFDNN were needed to be trained and optimized. Thus, a search space with 9089
dimensions was established. In other words, the position of a Harris’ hawk in the searching space has 9089 parameters, and each Harris’
hawk was a solution of the HHO-TFDNN model.

With the HHO’s population of 35 Harris’ hawks and 1000 iterations, 35000 TFDNN models were tested and checked for the flash flood
data at hand to find the best one. Consequently, the final model’s high performance indicates that the HHO can optimize the TFDNN model
with good results. Besides, the proposed HHO-TFDNN model has achieved a relative balance between training (Accuracy = 92.9%) and
validating accuracy (Accuracy = 91.2%). Therefore, it can be confirmed that the newly developed model has successfully tackled the
overfitting issue, which is often encountered in GIS data modeling (Ahn et al. 2020 ; Ibrahim and Bennett 2014 ).

The prediction capability of the TFDNN is strongly influenced by its structure; however, no guideline is available. Therefore, in this
research, we designed the deep learning model with a structure of ten input neurons, 64 neurons for each of three hidden layers, and one
output neuron based on (Tien Bui et al. 2020 ). It is still difficult to conclude that this structure is the best for modeling in this research.
Thus, further work should be carried out to determine the best structure for autonomous flash flood modeling.

Regarding the input factors, ten indicators have contributed to flash flood modeling determined by the wrapper algorithm; however,
landcover and slope are the most important in this study area. This result makes sense because deforestation and steeply mountainous are
the main issues for the occurrence of natural disasters in the province (Pham et al. 2020 ).

Concluding remarks
Flash-flood susceptibility assessment is an essential and urgent task in the study area due to increasing inclement climate conditions and
land space modification driven by economic developments. This study has proposed a novel solution for flash-flood susceptibility
assessment by integrating metaheuristic optimization and a deep learning framework. The HHO metaheuristic has been used as a global
optimizer to adapt the employed TFDNN parameters automatically. Besides, a flash-flood database with 1866 flash flood polygons and ten
indicators has been utilized for training and validating the HHO-TFDNN model. Based on the obtained findings, we have some conclusions
as follows:

2
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• The HHO-TFDNN combines open-source TensorFlow deep learning with the Harris Hawks Optimizer, presenting a novel framework
suitable for flash-flood susceptibility assessment.

• Land cover and slope are the factors most influencing flash flood occurrence in this study area.

• Future extension of this study should consider other advanced metaheuristic algorithms to train deep learning models. Also, new
methods and techniques for autonomously determining the deep learning structure are worth investigating.
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