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ABSTRACT

In this study, we developed a probabilistic model using the surrogate mixed model ensemble (SMME) method to project temperature and

rainfall in Vietnam under the Representative Concentration Pathway (RCP) 4.5 and 8.5 scenarios. The SMME model combines patterns

from 31 global climate models participating in the Coupled Model Intercomparison Project Phase 5 (CMIP5) and their weighted model surro-

gates. Testing for the period of 2006–2018 demonstrated the SMME’s ability to encompass observed temperature and rainfall changes. By the

end of the 21st century, there is a 5% probability of average temperature increase exceeding 6.29 °C, and a 95% probability of minimum

temperature increasing by more than 2.21 °C during 2080–2099 under RCP8.5 compared to 1986–2005. Meanwhile, rainfall is projected to

slightly increase, with an average rise of 6.12% at the 5% probability level. The study also quantified the contributions of uncertainty sources

– unforced, forced, and scenario-related – to the projection results, revealing that unforced uncertainty dominates the total signal at the

beginning of the 21st century and gradually decreases, while forced uncertainty remains relatively moderate but increases gradually over

time. As we approach the end of the century, scenario uncertainty dominates, accounting for 75–80% of the total signal.
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HIGHLIGHTS

• A probabilistic dataset of daily temperature and rainfall in Vietnam has been constructed, providing valuable insights into future changes in

Vietnam.

• The dataset is accessible online at no cost.

• The contributions of three sources of uncertainty, namely, unforced uncertainty, forced uncertainty, and scenario uncertainty to the

projection results in Vietnam have been quantified.
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GRAPHICAL ABSTRACT

INTRODUCTION

Climate change is a global phenomenon with widespread impacts, posing significant challenges to our planet nowadays
(Arias et al. 2021). To cope with climate change, it is important to possess reliable future climate projections, typically derived
from outputs of global climate models (GCMs). Both studies on the impacts of climate change and response policies heavily

rely on information about potential climate extremes (Seneviratne et al. 2012; Supari et al. 2020). Nevertheless, it has been
demonstrated that GCMs often underestimate extreme values (Kitoh & Endo 2016; Iles et al. 2020; Nishant et al. 2022). Fur-
thermore, climate change assessments often employ projections directly from a set of GCMs, such as those utilized in the

Fifth Phase of the Coupled Model Intercomparison Project (CMIP5; Taylor et al. 2012), or from their downscaling products,
as practiced within the Coordinated Regional Climate Downscaling Experiment-Southeast Asia (CORDEX-SEA) framework
(Tangang et al. 2020; Herrmann et al. 2022). These sets of model outputs typically involve a limited number of models under a

constrained set of future greenhouse gas scenarios, leading to incomplete coverage of the entire range of future probabilities.
To address the aforementioned limitation, probabilistic approaches are applied (e.g., Rasmussen et al. 2016; Raftery et al.

2017; Vargas Zeppetello et al. 2022). Unlike relying solely on a limited set of GCM projections and specific scenarios, prob-
abilistic methods systematically integrate models, scenarios, and related uncertainty quantifications into projection results.

Thus, they can encompass all possible probabilities and consequences arising from diverse future scenarios, particularly
accounting for rare yet highly impactful extreme events that are often missed by GCMs (Rasmussen et al. 2016). While numer-
ous studies have focused on quantifying the probability distribution of future change on a large scale, such as the country-

specific level or above (Raftery et al. 2017; Liu & Raftery 2021; Chen et al. 2023), there have also been works focusing on
local changes (Schölzel & Hense 2011; Kopp & Rasmussen 2015; Rasmussen et al. 2016). For instance, Chen et al.
(2023) employed pattern scaling to refine global climate change projections to local scales, enabling them to obtain projec-

tions of long-term temperature for any region of the world. However, their method has a relatively coarse resolution (2.5°�
2.5°), limiting its applicability to large areas exclusively. On the other hand, Kopp & Rasmussen (2015) used the surrogate
mixed model ensemble (SMME) approach to estimate the probabilities of changes in both precipitation and temperature

at the U.S. county-level, achieving a higher horizontal resolution of up to 1/8°� 1/8° (∼14 km). The SMME method relies
on probabilistic projections from the Model for the Assessment of Greenhouse Gas Induced Climate Change (MAGICC)
(Meinshausen et al. 2011) of global mean temperature change to evaluate the GCM outputs. It then constructs a surrogate
model (SM) to capture the extreme portion of the probability distribution that GCMs cannot identify. The SMME has

been applied to quantitatively analyze economic risks posed by climate change in the United States (Houser et al. 2015;
Kopp & Rasmussen 2015). While other techniques, such as the Bayesian Model Averaging (Tebaldi et al. 2005) and the
Weighted Interval Combination (Luo et al. 2019) approaches, also combine multiple model projections, the SMME has

the advantage of being able to explicitly represent uncertainty contributors by integrating both parametric perturbation
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uncertainties from MAGICC and structural uncertainties through the use of SMs (Rasmussen et al. 2016). Thus, the SMME

can provide better coverage of potential futures that could be missed by raw GCM ensembles.
With over 3,200 km of coastline and many cities located in low-lying areas, Vietnam is highly vulnerable to climate change

(Dasgupta et al. 2007; MONRE 2020). According to the Climate Risk Index report of 2018 (David et al. 2018), Vietnam is

among the countries most impacted by extreme events, ranking fifth in 2016 and eighth for the period 1997–2016. Climate
change manifestations, such as increases in temperatures and altered precipitation patterns, significantly affect socioeco-
nomic activities and impede growth (Espagne et al. 2021; World Bank 2022). The cumulative direct impact on various
socioeconomic sectors in Vietnam leads to an average annual gross domestic product loss of 4.5, 6.7, and 10.8% for respective

increases in global warming levels of 1.5, 2, and 3 °C relative to the pre-industrial period of 1851–1900 (Espagne et al. 2021).
In Vietnam, future climate projections primarily rely on downscaled GCM outputs using both statistical methods (MONRE

2009, 2012; Tran-Anh et al. 2022, 2023) and dynamical approaches (MONRE 2012, 2016, 2020; Ngo-Duc et al. 2014; Katzfey
et al. 2016; Trinh-Tuan et al. 2019; Nguyen-Duy et al. 2023). However, it is important to note that these studies were con-
strained by the use of only a restricted number of CMIP GCMs. For example, in the national report on climate change
and sea level rise in Vietnam (MONRE 2020), only 16 dynamical downscaling experiments based on 10 CMIP5 GCMs

were employed. As discussed earlier, the existing projections for Vietnam cannot cover the entire range of future probabilities,
and they may particularly miss rare yet highly impactful extreme events. It is crucial to emphasize that projected information
on extremes is particularly vital for adaptation planning in a country highly vulnerable to climate change like Vietnam. There-

fore, in this study, we made a first attempt to provide probabilistic projections of temperature and rainfall in Vietnam using
the SMME approach. The results are expected to offer valuable inputs for studies assessing climate change and its impacts on
socioeconomic activities during the 21st century, supporting adaptation planning to cope with climate change in Vietnam.

DATA AND METHOD

Model and station data

To perform the probabilistic projection for Vietnam, we used outputs from 31 CMIP5 GCMs (Table 1). These outputs include

daily temperatures and rainfall for the baseline period 1986–2005, and projections for the future period 2006–2099, consider-
ing Representative Concentration Pathway (RCP) 4.5 and 8.5 scenarios (Moss et al. 2010). We chose RCP4.5 and RCP8.5 to
align with the scenarios used in the latest national report on climate change and sea level rise in Vietnam (MONRE 2020).

MONRE (2020) has prioritized these two scenarios: the moderate scenario RCP4.5, considering active international efforts to
mitigate climate change, and the high greenhouse gas concentration scenario RCP8.5, enabling preparation for a potential
worse-case future.

The daily temperatures (daily average, daily maximum, and daily minimum) and rainfall from the aforementioned 31
GCMs have been statistically downscaled to a 10-km resolution for Vietnam using the Bias Correction Spatial Disaggregation
(BCSD) technique (Tran-Anh et al. 2022). This downscaled dataset is referred to as CMIP5-VN. CMIP5-VN has undergone

validation, and the results demonstrate its overall good performance across different sub-climatic regions of Vietnam.
The observational gridded dataset, referred to as OBS, for rainfall and temperatures was described by Tran-Anh et al.

(2022). OBS is used to downscale the SMME results (explained below) from the average monthly scale to the daily temporal
resolution. OBS has a spatial resolution of 0.1°� 0.1° and covers the period 1986–2005. OBS’s temperature was constructed

using data from 147 stations and the Kriging interpolation method (Switzer 2014). Meanwhile, OBS’s rainfall was constructed
with the Spheremap method (Willmott et al. 1985), utilizing daily data from 481 rainfall stations across Vietnam.

For validation purposes, we randomly selected seven stations within the seven climate sub-regions of Vietnam, as identified

by Nguyen & Nguyen (2004). The observed changes in temperature and rainfall data from these seven stations between the
period 2006–2018 and the baseline period 1986–2005 are compared to the changes estimated by the newly constructed data-
set (see the next section for details). The locations of the seven selected station are displayed in Figure 1.

Probabilistic projection method

We employed the surrogate mixed model ensemble (SMME) technique, as described by Kopp & Rasmussen (2015), to quan-

tify the probability of temperature and rainfall changes in the 21st century in Vietnam. The SMME method utilizes
probabilistic projections of global mean temperature change from the simple MAGICC (Meinshausen et al. 2011) to
assign weights to GCM outputs. Subsequently, the SMME constructs model surrogates that capture the extreme tails of
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the MAGICC probability distribution. It is important to note that these extreme tails are generally not represented by the orig-
inal GCM ensemble. The key steps of the SMME method are summarized below.

Global warming projections by MAGICC

The MAGICC model (Meinshausen et al. 2011) is used to project global temperature changes under different greenhouse gas
scenarios. Various versions of the MAGICC model have been widely employed by the climate community, with MAGICC6

specifically utilized to establish the probability distribution of global temperature increase in the Fifth Assessment Report
(AR5) of the Intergovernmental Panel on Climate Change (IPCC) (Collins et al. 2013). For each RCP4.5 and RCP8.5 scenario
(Moss et al. 2010), the probability distribution of global temperature increases is constructed using MAGICC6 in probabilistic

Table 1 | The selected CMIP5 GCMs, SMs, their characteristics, bin assignments, and corresponding SMME probability weights used for the
RCP4.5 scenario

SMME bin Model ΔT_global (°C) MAGICC6’s quantile SMME weight

1 SM-GFDL-ESM2G 1.03 4 0.04
SM-GISS-E2-R-CC 1.03 4 0.04

2 SM-GFDL-ESM2G 1.13 10 0.02
SM-GISS-E2-R-CC 1.13 10 0.02

3 GFDL-ESM2G 1.17 12 0.04
GISS-E2-R-CC 1.28 19 0.04

4 GISS-E2-R 1.32 21 0.0667
GISS-E2-H-CC 1.49 31 0.0667
GISS-E2-H 1.62 38 0.0667

5 BCC-CSM1-1-M 1.69 43 0.02
MRI-CGCM3 1.7 44 0.02
NorESM1-M 1.72 44 0.02
CESM1-BGC 1.72 44 0.02
MPI-ESM-LR 1.73 45 0.02
IPSL-CM5B-LR 1.73 45 0.02
BCC-CSM1-1 1.76 45 0.02
CCSM4 1.83 49 0.02
MPI-ESM-MR 1.85 50 0.02
MIROC5 1.89 51 0.02

6 CNRM-CM5 2.06 61 0.0167
ACCESS1-3 2.25 71 0.0167
CMCC-CM 2.29 72 0.0167
CMCC-CMS 2.34 74 0.0167
IPSL-CM5A-LR 2.36 75 0.0167
CSIRO-Mk3-6-0 2.37 75 0.0167
BNU-ESM 2.37 75 0.0167
ACCESS1-0 2.38 76 0.0167
IPSL-CM5A-MR 2.4 77 0.0167
HadGEM2-CC 2.42 78 0.0167
CESM1-CAM5 2.45 79 0.0167
CanESM2 2.5 80 0.0167

7 MIROC-ESM 2.57 82 0.0267
MIROC-ESM-CHEM 2.66 85 0.0267
HadGEM2-ES 2.74 87 0.0267

8 GFDL-CM3 2.9 89 0.02
SM-MIROC-ESM-CHEM 2.93 90 0.02

9 SM-GFDL-CM3 3.49 96 0.03
SM-MIROC-ESM-CHEM 3.49 96 0.03

10 SM-GFDL-CM3 4.22 99 0.01
SM-MIROC-ESM-CHEM 4.22 99 0.01
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mode with 600 simulations (Meinshausen et al. 2011), wherein each simulation incorporates distinct input parameters. The

quantile ranges of MAGICC6 are then determined based on the outputs from these 600 runs. Accordingly, the 5th, 7th, 83rd,
and 90th percentiles of these 600 runs correspond to temperature increases of 1.5, 1.6, 4.9, and 5.9 °C per CO2 doubling,
respectively (Kopp & Rasmussen 2015).

Monthly SMME at global scale

When considering a projection from either a CMIP5 GCM or a MAGICC6 experiment, we denote the variable DTglobal (°C)

representing the change in global temperature at a future time point relative to the period 1986–2005. In addition, DTFF rep-
resents the average DTglobal for the far future period 2080–2099.

In the initial step, the DTFF values projected by MAGICC6 are utilized to establish 10 percentile bins with unequal widths:

[0,8], [8,12], [12,20], [20,40], [40,60], [60,80], [80,88], [88,92], [92,98], and [98,100]. Notably, the low and high percentile bins are
defined with narrower widths to enhance the SMME model’s ability to identify extreme scenarios.

Subsequently, each CMIP5 GCMmodel is assigned to the corresponding percentile bin based on its projected DTFF value. It
may happen that certain percentile bins from MAGICC6 lack representation by any CMIP5 model, such as the 1st, 2nd, 9th,

and 10th bins in the RCP4.5 scenario, or may be represented by only one model, for example, the 8th percentile bin in the
RCP4.5 scenario (Table 1). In such cases, SMs are constructed to ensure that each of these percentile bins is represented by
two models in total. The CMIP5 GCMs selected to build the SM are those with DTFF values closest to the centered DTFF of

MAGICC6 for the missing bin.
Let us consider a GCM called A, which has been selected to construct an SM named SM-A. By utilizing a linear model, we

can fit the projected results of a climate variable XA from model A, given a specific scenario s, grid cell i, and future time t as

Figure 1 | Location of seven meteorological stations (red triangles) and seven climate sub-regions of Vietnam (blue lines) overlaid on a terrain
altitude map (shaded, in m), extracted from the HydroSHEDS data (Lehner et al. 2008).
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follows:

XA,s,i(DT , t) ¼ aA,s,i � DT þ bA,i þ 1A,s,i(t) (1)

where aA,s,i is the regression coefficient, bA,i is the average value of XA during the baseline period, 1A,s,i is the error of the
estimate, and DT denotes the change in global mean temperature relative to the baseline period 1986–2005. The term
aA,s,i � DT is referred to as the estimated forced climate change, while 1A,s,i(t) represents the estimated unforced climate

variability.
Then, the climate variable XSMA of SM-A is given by:

XSMA,s,i(DT , t) ¼ b� aA,s,i � DT þ bA,i þ 1A,s,i(t) (2)

where b ¼ DTMAGICC6,s,FF=DTA,s,FF is a multiplicative factor reflecting the difference between the mean global temperature

change in the given bin of MAGICC6 and the mean global temperature change of model A at the far future period 2080–2099.
Next, the variables of SM-A are downscaled to a 10-km resolution for the Vietnam territory using the BCSD method, which

was also applied to generate the CMIP5-VN dataset (Tran-Anh et al. 2022). The downscaled dataset derived from these SMs is

referred to as SM-VN.
Thereafter, a probability weight is assigned to each model based on two factors: the width of the percentile bin and the

number of models sharing that bin (Table 1, Supplemental Table S1). Models falling within the same bin are given equal
weights. For instance, in Table 1, the fourth bin corresponds to the percentile range [20, 40], which includes three models:

GISS-E2-R, GISS-E2-H-CC, and GISS-E2-H. Consequently, these three models are assigned equal weights (0.0667), calcu-
lated as the width of the bin (20%) divided by the total number of models (3).

Finally, the SMME model is constructed by synthesizing the patterns of the CMIP5 GCMs and SMs using their respective

probability weights. It is worth noting that only monthly values at global scale are used in the above-mentioned steps.
We observe that DTglobal, as represented by the GCMs, only covers the 12th–89th percentiles of the MAGICC6 results (cor-

responding to 1.13–2.9 °C increases in global temperature at the end of the 21st century) for RCP4.5 (Table 1) and 12th–83rd

percentiles (equivalent to 2.59–6.53 °C increases) for RCP8.5 (Supplemental Table S1). Meanwhile, the SMMEmodels, which
include both the CMIP5 GCMs and SMs, can encompass the entire range of DTglobal represented in MAGICC6 for both scen-
arios (Supplemental Figure S1). This demonstrates that the SMs could well capture the extreme intervals not represented by

the CMIP5 GCMs, thus enhancing the coverage of future climate projections.

Daily SMME for Vietnam

The local warming probability distribution for Vietnam is derived from the global SMME results, applying the pattern scaling
technique (Santer et al. 1990; Tebaldi & Arblaster 2014). The local changes of a variable X from either a CMIP5-VN or an

SM-VN experiment can be expressed using Equation (1) where i indicates a specific 10-km resolution grid cell in Vietnam and
DT represents the estimation based on a 30-year moving average. Subsequently, the monthly SMME projections for each
10-km grid cell in Vietnam are obtained by aggregating the results from the component CMIP5-VN and SM-VN experiments,

using weights received from the respective global models.
The monthly SMME projections, once generated, are further downscaled to daily temporal resolution using the random

resampling technique of the BCSD approach outlined by Wood et al. (2002, 2004). This temporal-downscaling process

involves selecting a random year from the historical period (1986–2005 in this study) as a reference for a given future
year. Then, the monthly averages of the future year are disaggregated into daily data by adjusting the daily gridded OBS data-
set. Temperature adjustments are made using addition, while rainfall adjustments employ multiplication, ensuring that the
monthly mean of the future data remains unchanged. The final daily dataset is referred to as SMME-VN.

The interest in producing the daily SMME-VN dataset arises from the need to quantitatively assess future climate change
risks and extremes (MONRE 2020), typically represented by a set of extreme indices, using daily information. For instance,
the joint World Meteorological Organization Commission on Climatology (CCl) and the Climate Variability and Prediction

(CLIVAR) Expert Team on Climate Change Detection and Indices (ETCCDI) has worked to define 27 core climate indices
from daily temperature and rainfall data (Karl et al. 1999). Given that the advantage of probabilistic projections lies in the
ability to account for extreme events, daily data becomes essential, among other reasons, for subsequently estimating
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associated extreme indices. These indices not only aid in quantifying future extremes but can also be used as inputs for further

impact assessment studies.
We acknowledge that the BCSD approach applied in this study, along with its random resampling technique, does not

maintain the daily correspondence of the coarse spatial resolution GCMs. Despite this limitation, BCSD has been extensively

employed for temporal disaggregation of GCMs’ projections in impact assessments worldwide (e.g., Zhang et al. 2017; Duan
et al. 2021; Tran-Anh et al. 2022; Atiah et al. 2023; Michalek et al. 2024; Rabezanahary Tanteliniaina & Andrianarimanana
2024). Some prior studies have compared the performance of this temporal disaggregation method with traditional daily-pre-
serving downscaling approaches (e.g., Maurer and Hidalgo 2008; Yang et al. 2019). For instance, Maurer and Hidalgo (2008)

indicated that both methods exhibit some skill in reproducing daily variability of observed rainfall and temperature extremes,
with a certain advantage for the latter approach. It is worth noting that recently developed downscaling approaches, such as
the Quantile-Preserving Localized-Analog Downscaling (Gergel et al. 2024), allow for the efficient preservation of GCMs’
daily variability. These approaches could be considered in our future studies.

Sources of uncertainty

Besides the importance of probabilistic projections for temperature and rainfall, determining the uncertainty associated with
the projections’ results is also crucial. Hawkins & Sutton (2009) divided the sources of the total model uncertainty (referred to
as UC) into three distinct components: the forced uncertainty of the model (referred to as F, arising from variations in climate
model responses to external radiative forcing, such as greenhouse gases); the intrinsic uncertainty, also known as the

unforced uncertainty component (referred to as U, arising from the natural internal variability of the climate system); and
the scenario uncertainty (referred to as S, arising from uncertainties in future greenhouse gas scenarios, as the exact evolution
of future emission remains unknown):

UC(t) ¼ F(t)þU(t)þ S(t) (3)

Assuming that the scenarios have equal probabilities of occurring, the forced uncertainty of the models is estimated by cal-
culating the weighted sum of the variances associated with the forced change of each model. Similarly, the unforced
uncertainty component of the models is estimated by calculating the weighted sum of the variances associated with the

unforced change of each model. The scenario uncertainty is then estimated as the absolute difference between the average
values of the weighted models (N models in total) for the two scenarios RCP4.5 and RCP8.5:

S(t) ¼ 1
N

X
Model

(wM �M)RCP8:5 � (wM �M)RCP4:5

 !�����
����� (4)

where N represents the number of models, M is the average model value, and wM represents the weight assigned to model M
for scenario s, as identified during the SMME model building step (Table 1, Supplemental Table S1).

In this study, we assume zero forced uncertainty (F¼ 0) and zero uncertainty of the scenarios (S¼ 0) at the beginning of the
future period, with the unforced uncertainty representing 100% of the total model uncertainty.

RESULTS AND DISCUSSION

Performance of the SMME projections

To the best of our knowledge, although the SMME method has been applied in various studies, there has been no study to
date that validates the accuracy of projected temperature and rainfall. Here, for the first time, we attempt to assess the
reliability of the SMME projections over specific locations of Vietnam for the projection period 2006–2018, a timeframe

for which we already have observed data. We compare the projected products with observed data obtained from seven ran-
domly selected meteorological stations (refer to Figure 1 for the station locations). Figure 2 displays temperature anomalies
during the period 2006–2018 relative to the baseline period 1986–2005 for these seven stations. There is a significant increase

in average temperature during 2006–2018 compared to the baseline period. The observed data exhibit a minimum rise of
0.37 °C at the Da Nang station and a maximum increase of 0.65 °C at the Hanoi station. The SMME models well depict
the range of temperature increase for both RCP4.5 and RCP8.5 scenarios during 2006–2018, effectively encompassing the
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observed values at all seven stations. The observed data points are generally close to the median model within the SMME

models under RCP8.5, although they can fall outside the interquartile range of the SMME models under RCP4.5 at certain
stations such as Can Tho and Da Nang. In all cases, the observed data points consistently fall within the 5th to 95th percentile
interval of the SMME models, which ranges from 0.21 °C (0.22°C) at Can Tho (Dien Bien) station to 0.28 °C (0.32 °C) at

Hanoi (Buon Me Thuot) station under RCP4.5 (RCP8.5).
It should be noted that despite RCP8.5 representing a scenario with higher radiative forcing, its divergence from RCP4.5

becomes clear only from the mid-21st century (Collins et al. 2013; Xin et al. 2013). Previous studies indicated that projection

signals over a specific area, particularly in the near future period, typically exhibit uncertainties due to various factors such as
projected greenhouse gas concentrations, model imperfections, and natural variability (Sorteberg & Kvamstø 2006; Deser
et al. 2012; de Elía et al. 2013). Nguyen-Thuy et al. (2021) estimated the time of emergence (TOE), i.e. the time that the cli-

mate change signal exceeds the above uncertainties, for projected temperature and rainfall in Vietnam under RCP4.5 and
RCP8.5. They found that the TOE of annual and seasonal average temperatures generally started after 2018 for both scen-
arios. This implies that the selected period for comparison with observational data in our present study, 2006–2018,
predates the time when the TOE could be detected for both RCPs. As a consequence, the impact of the chosen RCP on temp-

erature changes could be indistinguishable from the impact of other factors mentioned above. This elucidates why, despite
RCP8.5 depicting an extreme future scenario, its median model can still exhibit a closer proximity to the observational
data points compared to RCP4.5 during the early-century period (2006–2018).

The SMME projections for rainfall anomalies during 2006–2018 are shown in Figure 3. Except for the Hanoi station
under RCP4.5 and the Buon Me Thuot station under RCP8.5, the projected rainfall generally shows an increase compared
to the baseline period. The changes in rainfall, according to the SMME median model (observed data), at the seven

Figure 2 | Box plots of temperature anomalies projected by the SMME models at seven meteorological stations for the period 2006–2018
relative to the period 1986–2005 under RCP4.5 (top) and RCP8.5 (bottom). The lower and upper ends as well as the black horizontal line inside
the box, respectively, indicate the first quartile, third quartile, and median. Cross signs denote the 17th and 83rd percentiles. The black
vertical line extends to the 5th and 95th percentiles. Black dots represent the observations.
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stations range from approximately �5.5% under RCP8.5 (�1.5% under RCP4.5) at the Ban Me Thuot station to approxi-

mately 19.5% under RCP4.5 (23% under RCP4.5) at the Dien Bien station, reflecting significant spatial variability in
rainfall. For both scenarios, the SMME model members demonstrate consistency among themselves, as indicated by
the narrow 5th–95th percentile range for future rainfall estimates, varying from 2.18% at the Can Tho station under

RCP4.5 to 7.09% at the Dien Bien station under RCP4.5. Generally, the observed changes fall within the SMME
range. It is noteworthy that changes in rainfall at three out of seven stations in both RCP4.5 and RCP8.5 scenarios fall
outside the SMME 5th–95th percentile range, highlighting the importance of the SMME ensemble in representing rainfall

extreme values that may occur in the tail of the distribution.

Temperature and rainfall projections

Figure 4 presents the projected warming trend of global and Vietnam average temperatures based on the CMIP5 GCMs
and CMIP5-VN downscaled experiments. The median of the temperature anomaly between the period 2080–2099 and

the baseline period 1986–2005 is projected to increase by 2.06 and 3.78 °C under RCP4.5 and RCP8.5, respectively. In
Vietnam, the warming trend is slightly less severe compared to the global scale, with a median temperature anomaly of
1.98 °C (3.56 °C) under RCP4.5 (RCP8.5), as projected by the CMIP5-VN downscaled experiments. This result aligns
with previous findings (e.g., Arias et al. 2021; Tran-Anh et al. 2022) since Vietnam is located in a relatively lower lati-

tude zone, resulting in less ice–albedo feedback compared to colder regions in the high latitude areas. The ensemble
average of the SMME models exhibits slightly warmer conditions than those of the CMIP5 GCMs and CMIP5-VN
experiments for both global and Vietnam average temperatures, particularly in the far future. The projected tempera-

ture for Vietnam displays higher variability compared to the global scale. By the end of the century, the uncertainty
range of the CMIP5-VN experiments is larger than that of the CMIP5 GCM ensemble for the global scale. However,
the uncertainty range of the SMME models is rather similar for both Vietnam and the global scale. It is also important

Figure 3 | Same as Figure 2 but for rainfall.
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to note that the SMME models well preserve the temperature trends observed in both the CMIP5-VN and CMIP5 GCM
ensembles.

The SMME models can capture extreme probability distributions that the CMIP5 models cannot represent. Indeed, the
SMME cumulative distribution functions (CDFs) generally display more weight in the tails of the distribution functions
(Figure 5(a)–5(d)) for both global and Vietnam temperature averages. Similarly, Figure 5(e)–5(h) demonstrates that the
SMME models notably focus more on the extreme tails of changes in rainfall, not only for annual values but also for seasonal

averages in both Northern and Southern Vietnam under both RCP4.5 and RCP8.5, compared to the combined CMIP5-VN
models. With its larger projection range over the traditional ensemble method, the SMME approach is expected to yield
more comprehensive results in studying future extreme climate conditions in Vietnam.

Figure 6 displays the probabilistic projection results of temperature warming under RCP8.5 for Vietnam using the SMME-
VN dataset. The trend of increasing temperatures across Vietnam is evident for all percentiles. There is a considerable differ-
ence in temperature rise between the 5th (2.27 °C) and 95th percentile (6.29 °C), indicating a large uncertainty range in the

projected future outcomes. Moreover, the spatial and temporal distribution of temperature increase differs significantly.
Northern Vietnam is projected to experience the highest level of warming in the country (2.46–6.93 °C), whereas moving
toward lower latitudes results in lower temperature increases, with Southern Vietnam showing the least warming (2.16–

5.82 °C). Regarding seasonal temperature distribution, the average warming in March–April–May (MAM) and September–
October–November (SON) surpasses that of June–July–August (JJA) and December–January–February (DJF), with the highest
projected in MAM (2.25–6.38 °C) and the lowest in DJF (2.24–6.21 °C).

The SMME-VN also reveals a slight upward trend in average annual rainfall across Vietnam at the end of the 21st century

(Figure 7), with an increase of 2.18–6.12% corresponding to the 5th–95th percentile interval. Unlike temperatures, which
exhibit significant increases in both space and time, the distribution of increased rainfall occurs only in specific areas and
seasons. Notably, annual rainfall is projected to increase most significantly in the South-Central Coast (5.7–14.2%, corre-

sponding to the 5–95th percentile), followed by the North-Central Coast (4.54–10.18%), the Central Highlands (2.77–
7.51%), and the northern mountains in Northwest Vietnam (0.13–3.85%). Meanwhile, the southern region shows no obvious
change in annual rainfall. As for seasonal rainfall distribution, the increasing trend is prominent across Vietnam during JJA,

Figure 4 | Temperature anomaly relative to 1986–2005, represented by 5-year moving average lines. Box plots on the right side depict the
uncertainty ranges for temperature anomaly projections during 2080–2099, with the box representing the interquartile range, the middle red
line indicating the median, and the upper and lower ends of the vertical black lines representing the 95th and 5th quantiles, respectively. In
addition, the 83rd and 17th quantiles are indicated by blue dots.
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followed by SON. During MAM, there is no clear trend in rainfall. Regarding DJF, the South-Central Coast region is projected
to experience a remarkable increasing trend in rainfall. In brief, more extreme rainfall is projected to occur in the future, par-
ticularly over the central regions of Vietnam.

Figure 5 | CDFs of temperature and rainfall anomalies for the period 2080–2099 relative to the 1986–2005 norms. (a) and (b) display CDFs of
global temperature averages, while (c) and (d) show results for Vietnam. (e) and (f) depict CDFs of DJF and JJA seasonal rainfall over southern
Vietnam, respectively. (g) and (h) illustrate CDFs of MAM and SON seasonal rainfall over the Red River Delta in northern Vietnam. Each panel
presents results from both SMME models and CMIP5 GCMs (CMIP5-VN).
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Uncertainty sources of the projections’ results

The proportion of uncertainty sources in the CMIP5 GCMs and SMME models for projecting temperature increases at the

global scale and in four major cities in Vietnam is depicted in Figure 8. These cities include Hanoi and Quang Ninh in the
north, Da Nang in the central region, and Ho Chi Minh in southern Vietnam. At the beginning of the 21st century, unforced
uncertainty dominates the total model uncertainty. However, it rapidly diminishes over time as uncertainty from the

Figure 6 | Projected changes in seasonal and annual temperature for the period 2080–2099 under RCP8.5, relative to the baseline period.
The SMME-VN results for quantiles ranging from the 5th to the 95th percentile are shown from left to right.
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scenarios and forced climate change increases, especially from the RCP scenarios. By the end of the century, unforced climate
change uncertainty nearly disappears, and the primary contributor to total uncertainty becomes scenario uncertainty,
accounting for approximately 75–80% of the total signal. Forced uncertainty, although tending to increase over time, remains

relatively moderate, reaching a maximum of 20–25% in the period 2080–2099. In the four major cities of Vietnam, the chan-
ging trend of climate change uncertainty sources is expected to be similar to that at the global scale, but the trend of increasing
uncertainty from the two RCP scenarios is lower. Notably, the proportion of scenario uncertainty (forced uncertainty) in the

Figure 7 | Same as Figure 6 but for rainfall.
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SMME models is smaller (higher) than that in the CMIP5 GCMs for the future period. Meanwhile, unforced uncertainty
remains quite consistent over time between the two sets of models.

CONCLUSIONS

This study has successfully developed the SMME-VN dataset for future probabilistic projections of climate change in Viet-

nam, with a specific focus on temperature and rainfall. The dataset was constructed using the SMME method and the
outputs of 31 CMIP5 GCMs. Each GCM was assigned a probability weight based on its estimated global temperature
anomaly relative to the MAGICC6 temperature probability distribution. Furthermore, SMs were established to capture temp-

erature probabilities in the extreme tails that were not accurately represented by the GCMs. The pattern scaling method was
then applied to build the probabilistic model for Vietnam, i.e., the SMME-VN dataset, based on the probability of climate
change on a global scale, corresponding to the 5th, 17th, 25th, 50th, 75th, 83rd, and 95th percentiles.

Figure 8 | Ratio of temperature anomaly projection uncertainty sources in the simulation outputs of two model ensembles, the CMIP5 GCMs
(CMIP5-VN) (solid line) and the SMME models (dashed line). The red, blue, and yellow lines represent the uncertainty values of forced climate
change, unforced climate change, and uncertainty between scenarios, respectively, for (a) the global scale, (b) Hanoi, (c) Ho Chi Minh,
(d) Quang Ninh, and (e) Da Nang.
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The SMME models demonstrate satisfactory performance in representing temperature and rainfall changes for the period

2006–2018, under both scenarios RCP4.5 and RCP8.5, when compared to the baseline period 1986–2005. Across the seven
randomly selected stations, the observed changes generally fall within the SMME ranges. However, it is noticeable that
changes in rainfall at three out of the seven stations, under both RCP4.5 and RCP8.5 scenarios, fall outside the SMME

5th–95th percentile range. This highlights the importance of the SMME ensemble’s ability to represent extreme values that
may occur in the tail of the distribution.

The projected SMME temperature for Vietnam, with a 5% probability of occurrence (corresponding to the 95th percentile),
exhibits an increase of 5.41–7.13 °C during the period 2080–2099 under the RCP8.5 scenario compared to the baseline period

1986–2005. The northern region is projected to experience more warming compared to the central and southern regions.
SMME-VN projects a slight increase in average rainfall across the country, with the largest increase occurring in the central
region, reaching a maximum of 14.2% at the 95th percentile. Regarding the sources of uncertainty in future projections,

unforced uncertainty dominates the total signal during the early part of the 21st century. Forced uncertainty remains rela-
tively moderate but increases gradually over time, reaching a maximum of 20–25% by the period 2080–2099. As we
approach the end of the century, the proportion of unforced uncertainty decreases, giving way to uncertainty associated

with greenhouse gas scenarios, which accounts for 75–80% of the total signal.
The SMME-VN dataset is accessible online and offers significant potential for diverse applications. We highly recommend

employing this dataset for further studies, specifically in quantitatively assessing climate change risks and their impacts on

socioeconomic activities in Vietnam. By benefiting from the high-resolution and probabilistic nature of the dataset, policy-
makers, researchers, and other users can gain valuable insights into a wide range of potential climate outcomes. This, in
turn, facilitates more informed decision-making and effective addressing of the challenges posed by future climate change
in Vietnam.
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