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Abstract
In this paper, we study the central limit theorem for the solutions of stochastic differential
delay equations with small noises. Our aim is to provide explicit estimates for the rate of
convergence in total variation distance. We also show that the convergence rate is of optimal
order.
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1 Introduction andMain Results

It is well known that stochastic dynamical systems with small noise have useful applications
in several fields including physics, chemistry, and biology [3], filtering problems [16] and
mathematical finance [7, 20], etc. Since the appearance of seminalwork [8], various properties
of such dynamical systems have been intensively studied. Among others, we cite [4] and
references therein for large deviation results, [11] for averaging principle, [13] for moderate
deviation results, [9, 12] for parameter estimators and [1] for abrupt convergence.

In the last years, the central limit theorem for stochastic dynamical systems with small
noise has been gained much attention, see e.g. [6, 10, 15, 18, 19]. However, in this research
line, most of the existing results are qualitative. We only find in the literature a recent preprint
[2] in which a quantitativeWasserstein boundwas obtained for multi-scale diffusion systems.
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In this paper, for any ε ∈ (0, 1), we consider the stochastic dynamical system governed
by stochastic differential delay equations with small noise of the form{

Xε,t = ϕ(0) + ∫ t
0 b(Xε,s, Xε,s−τ )ds + ε

∫ t
0 σ(Xε,s, Xε,s−τ )dBs, t ∈ [0, T ]

Xε,t = ϕ(t), t ∈ [−τ, 0], (1.1)

where the initial data ϕ : [−τ, 0] → R is a bounded deterministic function, (Bt )t∈[0,T ] is a
standard Brownian motion and b, σ are deterministic functions on R

2.

Intuitively, as ε tends to 0, Xε,t converges to xt , which solves the following deterministic
differential delay equation{

xt = ϕ(0) + ∫ t
0 b(xs, xs−τ )ds, t ∈ [0, T ]

xt = ϕ(t), t ∈ [−τ, 0]. (1.2)

Define

X̃ε,t := Xε,t − xt
ε

, t ∈ [−τ, T ]. (1.3)

It is known from [18] that X̃ε,t converges to Yt in L2(�) as ε → 0, where (Yt )t≥0 is unique
solution to the following linear stochastic differential equation{

Yt = ∫ t
0

(
b′
1(xs, xs−τ )Ys + b′

2(xs, xs−τ )Ys−τ

)
ds + ∫ t

0 σ(xs, xs−τ )dBs, t ∈ [0, T ]
Yt = 0, t ∈ [−τ, 0]. (1.4)

We observe that Yt is a normal random variable for each t ∈ [0, T ], see Remark 3.1 below.
Thus the sequence (X̃ε,t )ε∈(0,1) satisfies the central limit theorem as ε → 0, and hence, an
important problem arising here is to investigate the rate of convergence via certain distances.
There are three distances commonly used in the literature.
(i) The Wasserstein distance between the laws of X̃ε,t and Yt :

dW(X̃ε,t , Yt ) := sup
|g(x)−g(y)|≤|x−y|

|Eg(X̃ε,t ) − Eg(Yt )|.

(ii) The Kolmogorov distance between the laws of X̃ε,t and Yt :
dK(X̃ε,t , Yt ) := sup

x∈R
|P(X̃ε,t ≤ x) − P(Yt ≤ x)|.

(iii) The total variation distance between the laws of X̃ε,t and Yt :
dTV(X̃ε,t , Yt ) := sup

A∈B(R)

|P(X̃ε,t ∈ A) − P(Yt ∈ A)|

= 1

2
sup

‖g‖∞≤1
|Eg(X̃ε,t ) − Eg(Yt )|,

where B(R) is Borel σ -algebra on R and ‖g‖∞ := sup
x∈R

|g(x)|. The Wasserstein distance is

easy to bound. Indeed, Theorem 1 in [18] (see also Proposition 3.4 below) gives us

dW(X̃ε,t , Yt ) ≤ E |X̃ε,t − Yt | ≤ Cε, 0 ≤ t ≤ T ,

where C is a positive constant not depending on t and ε. On the other hand, we always have
the following relationship

dK(X̃ε,t , Yt ) ≤ dTV(X̃ε,t , Yt ).
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Thus our present work focuses on bounding the total variation distance dTV(X̃ε,t , Yt ). For
this purpose, we make the use the following assumption.

Assumption 1.1 b, σ : R2 → R are twice differentiable functions with the partial derivatives
bounded by L.

Notice that our Assumption 1.1 is slightly stronger than the conditions required in [18].
By employing a general result established in our recent paper [5] by means of Malliavin
calculus (see Lemma 2.1 below), we obtain the following quantitative estimate for the total
variation distance.

Theorem 1.1 Let Assumption 1.1 hold. Consider the stochastic processes (X̃ε,t )−τ≤t≤T and
(Yt )−τ≤t≤T defined by (1.3) and (1.4), respectively. Then, we have

dTV(X̃ε,t , Yt ) ≤ Ctε√
Var(Yt )

∀ ε ∈ (0, 1), 0 < t ≤ T , (1.5)

where C is a positive constant not depending on t and ε.

Our next theorem points out that rate of convergence O(ε) is of optimal order as ε → 0.

Theorem 1.2 Let Assumption 1.1 hold. We additionally assume that the second-order partial
derivatives of b are continuous. Then, for any continuous and bounded function g, we have

lim
ε→0

Eg(X̃ε,t ) − Eg(Yt )

ε
= 1

2Var(Yt )
E [g(Yt )δ (Zt DYt )] , 0 < t ≤ T , (1.6)

where Zt = 0 for t ∈ [−τ, 0] and

Zt =
∫ t

0
b′
1(xs, xs−τ )Zsds +

∫ t

0
b′
2(xs, xs−τ )Zs−τds

+
∫ t

0

(
b′′
11(xs, xs−τ )Y

2
s + b′′

12(xs, xs−τ )YsYs−τ + b′′
22(xs, xs−τ )Y

2
s−τ

)
ds

+2
∫ t

0

(
σ ′
1(xs, xs−τ )Ys + σ ′

2(xs, xs−τ )Ys−τ

)
dBs, t ∈ [0, T ]. (1.7)

In particular, we have

lim
ε→0

dTV(X̃ε,t , Yt )

ε
≥ 1

2Var(Yt )
E |E [δ(Zt DYt )|Yt ] |, 0 < t ≤ T . (1.8)

In the statement of the above theorem, D denotes Malliavin derivative operator and δ

denotes the divergence operator (or Skorohod integral). The definition of these operators will
be recalled in Sect. 2 below. We also use the notation: Given a differentiable function h of 2
variables, we denote

h′
i (x1, x2) := ∂h

∂xi
(x1, x2), h′′

i j (x1, x2) = ∂h

∂xi∂x j
(x1, x2), 1 ≤ i, j ≤ 2.

The rest of this article is organized as follows. In Sect. 2, we recall some fundamental concepts
of Malliavin calculus and a general estimate for the total variation distance between two
Malliavin differentiable random variables. In Sect. 3, we prove Theorems 1.1 and 1.2. The
conclusion is given in Sect. 4.
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2 Preliminaries

This paper is strongly based on techniques of Malliavin calculus. For the reader’s con-
venience, let us recall some elements of Malliavin calculus (for more details see [14]).
We suppose that(Bt )t∈[0,T ] is defined on a complete probability space (�,F,F, P), where
F = (Ft )t∈[0,T ] is a natural filtration generated by the Brownianmotion B. For h ∈ L2[0, T ],
we denote by B(h) the Wiener integral

B(h) =
∫ T

0
h(t)dBt .

Let S denote a dense subset of L2(�,F, P) that consists of smooth random variables of the
form

F = f (B(h1), B(h2), ..., B(hn)), (2.1)

where n ∈ N, f ∈ C∞
0 (Rn), h1, h2, ..., hn ∈ L2[0, T ]. If F has the form (2.1), we define its

Malliavin derivative as the process DF := Dt F, t ∈ [0, T ] given by

Dt F =
n∑

k=1

∂ f

∂xk
(B(h1), B(h2), ..., B(hn))hk(t).

More generally, for each k ≥ 1,we can define the iterated derivative operator on a cylindrical
random variable by setting

Dk
t1,...,tk F = Dt1 ...Dtk F .

For any 1 ≤ p, k < ∞, we denote by Dk,p the closure of S with respect to the norm

||F ||pk,p := E |F |p + E

[( ∫ T

0
|DuF |2du

) p
2
]

+... + E

[( ∫ T

0
...

∫ T

0
|Dk

t1,...,tk F |2dt1...dtk
) p

2
]

.

A random variable F is said to beMalliavin differentiable if it belongs toD1,2. The derivative
operator D satisfies the chain rule, i.e, Dφ(F) = φ′(F)DF for any differentiable function
φ with bounded derivative. Furthermore, we have the following relations between Malliavin
derivative and the integrals

Dr

( ∫ T

0
usds

)
=

∫ T

r
Drusds

and

Dr

( ∫ T

0
usdBs

)
= ur +

∫ T

r
DrusdBs, 0 ≤ r ≤ T ,

for all 0 ≤ r ≤ T , where (ut )t∈[0,T ] is an F-adapted and Malliavin differentable stochastic
process.

An important operator in theMalliavin calculus theory is the divergence operator δ. It is the
adjoint of derivative operator D.The domain of δ is the set of all functions u ∈ L2(�×[0, T ])
such that

E |〈DF, u〉L2[0,T ]| ≤ C(u)‖F‖L2(�),
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where C(u) is some positive constant depending on u. In particular, if u ∈ Domδ, then δ(u)

is characterized by following duality relationships

δ(uF) = Fδ(u) − 〈DF, u〉L2[0,T ] (2.2)

E[〈DF, u〉L2[0,T ]] = E[Fδ(u)] for any F ∈ D
1,2. (2.3)

We have the following general result.

Lemma 2.1 Let F1 ∈ D
2,4 be such that‖DF1‖L2[0,T ] > 0 a.s.Then, for any randomvariable

F2 ∈ D
1,2 and any measurable function g with ‖g‖∞ = sup

x∈R
|g(x)| ≤ 1, we have

|Eg(F1) − Eg(F2)|

≤ C

(
E‖DF1‖−8

L2[0,T ]E
(∫ T

0

∫ T

0
|Dθ Dr F1|2dθdr

)2

+(E‖DF1‖−2
L2[0,T ])

2
) 1

4 ‖F1 − F2‖1,2, (2.4)

provided that the expectations exist, where C is an absolute constant.

Proof This lemma is Theorem 3.1 in our recent paper [5]. Here we note that the inequality
(2.4) follows from the relation

Eg(F1) − Eg(F2) = E

[∫ F1

F2
g(z)dzδ

(
DF1

‖DF1‖2L2[0,T ]

)]

−E

[
g(F2)〈DF1 − DF2, DF1〉L2[0,T ]

‖DF1‖2L2[0,T ]

]
. (2.5)

We also have E

[(
δ

(
DF1

‖DF1‖2L2[0,T ]

))2
]

< ∞. 
�

3 Proofs of Main Results

Hereafter, we denote by C a generic constant which may vary at each appearance. For any
a, b ∈ R,we denote a∨b = max {a, b} and a∧b = min {a, b} . In our proofs, we frequently
use the fundamental inequality

(a1 + ... + an)
p ≤ n p−1(a p

1 + ... + a p
n ),

for all a1, ..., an ≥ 0 and p ≥ 2.

3.1 Some Fundamental Estimates

In this subsection, we collect some fundamental properties of the solution to (1.1). We first
note that, under Assumption 1.1, the functions b and σ are Lipschitz continuous and have
linear growth. Indeed, we have

|b(x1, y1) − b(x2, y2)| + |σ(x1, y1) − σ(x2, y2)| ≤ L(|x1 − x2| + |y1 − y2|) (3.1)
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for all x1, x2, y1, y2 ∈ R and

|b(x, y)| + |σ(x, y)| ≤ |b(0, 0)| + |σ(0, 0)| + |b(x, y) − b(0, 0)| + |σ(x, y) − σ(0, 0)|
≤ |b(0, 0)| + |σ(0, 0)| + L(|x | + |y|) ∀x, y ∈ R. (3.2)

Lemma 3.1 Let Assumption 1.1 hold. Consider the solution (Xε,t )t∈[−τ,T ] to the equation
(1.1). Then, for every p ≥ 2, we have

sup
0≤t≤T

E |Xε,t |p ≤ C ∀ ε ∈ (0, 1). (3.3)

where C is a positive constant not depending on ε.

Proof See Lemma 1 in [18]. 
�
Proposition 3.1 Let Assumption 1.1 hold. Consider the stochastic process (X̃ε,t )t∈[0,T ]
defined by (1.3). Then, for all p ≥ 2 we have

E |Xε,t − xt |p ≤ Ct
p
2 ε p ∀ ε ∈ (0, 1), 0 ≤ t ≤ T , (3.4)

where C is a positive constant not depending on t and ε.

Proof For every ε ∈ (0, 1), we have

Xε,t − xt =
∫ t

0

(
b(Xε,s, Xε,s−τ ) − b(xs, xs−τ )

)
ds + ε

∫ t

0
σ(Xε,s, Xε,s−τ )dBs, 0 ≤ t ≤ T .

Consequently,

E |Xε,t − xt |p ≤ 2p−1E

∣∣∣∣
∫ t

0

(
b(Xε,s, Xε,s−τ ) − b(xs, xs−τ )

)
ds

∣∣∣∣
p

+ 2p−1ε pE

∣∣∣∣
∫ t

0
σ(Xε,s, Xε,s−τ )dBs

∣∣∣∣
p

, 0 ≤ t ≤ T .

By the Hölder and Burkholder–Davis–Gundy inequalities, for all p ≥ 2, we deduce

E |Xε,t − xt |p ≤ Ct p−1
∫ t

0
E

∣∣b(Xε,s, Xε,s−τ ) − b(xs, xs−τ )
∣∣p ds

+ Cε pt
p
2 −1

∫ t

0
E |σ(Xε,s, Xε,s−τ )|pds, 0 ≤ t ≤ T ,

where C is a positive constant depending only on p. Recalling (3.1), (3.2) and (3.3), we get

E |Xε,t − xt |p ≤ Ct p−1
∫ t

0
E

(|Xε,s − xs | + |Xε,s−τ − xs−τ |
)p

ds

+ Cε pt
p
2 −1

∫ t

0
E(1 + |Xε,s | + |Xε,s−τ |)pds

≤ Ct p−1
∫ t

0

(
E |Xε,s − xs |p + E |Xε,s−τ − xs−τ |p

)
ds + Cε pt

p
2 ,

where C is a positive constant depending only on L and p. Since Xε,s = xs = ϕ(s), s ∈
[−τ, 0], it holds that ∫ t

0
E |Xε,s−τ − xs−τ |pds = 0 if t ≤ τ,
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and∫ t

0
E |Xε,s−τ − xs−τ |pds =

∫ τ

0
E |Xε,s−τ − xs−τ |pds +

∫ t

τ

E |Xε,s−τ − xs−τ |pds

=
∫ t

τ

E |Xε,s−τ − xs−τ |pds =
∫ t−τ

0
E |Xε,s − xs |pds

≤
∫ t

0
E |Xε,s − xs |pds, 0 ≤ τ ≤ t ≤ T .

Consequently,

E |Xε,t − xt |p ≤ Ct p−1
∫ t

0
E |Xε,s − xs |pds + Cε pt

p
2

≤ C
∫ t

0
E |Xε,s − xs |pds + Cε pt

p
2 , 0 ≤ t ≤ T ,

where C is a positive constant not depending on t and ε. Then, by Gronwall’s lemma, we get
the desired conclusion (3.4). Indeed,

E |Xε,t − xt |p ≤ Cε pt
p
2 eCt ≤ Cε pt

p
2 eCT ≤ Cε pt

p
2 , 0 ≤ t ≤ T .

So the proof of the proposition is complete. 
�
Proposition 3.2 Let Assumption 1.1 hold. Consider the solution (Xε,t )t∈[−τ,T ] to the Eq.
(1.1). Then, for each 0 ≤ t ≤ T , the random variable Xε,t is Malliavin differentiable.
Moreover, the derivative Dθ Xε,t satisfies
(i) When t ∈ [−τ, 0], Dθ Xε,t = 0 for all 0 ≤ θ ≤ T ,

(i i) When t ∈ (0, T ], Dθ Xε,t = 0 for θ > t and

Dθ Xε,t = εσ (Xε,θ , Xε,θ−τ ) +
∫ t

θ

b′
1(Xε,s, Xε,s−τ )Dθ Xε,sds

+
∫ t

θ+τ

b′
2(Xε,s, Xε,s−τ )Dθ Xε,s−τds

+ ε

∫ t

θ

σ ′
1(Xε,s, Xε,s−τ )Dθ Xε,sd Bs

+ ε

∫ t

θ+τ

σ ′
2(Xε,s, Xε,s−τ )Dθ Xε,s−τdBs, 0 ≤ θ ≤ t − τ, (3.5)

Dθ Xε,t = εσ (Xε,θ , Xε,θ−τ ) +
∫ t

θ

b′
1(Xε,s, Xε,s−τ )Dθ Xε,sds

+ ε

∫ t

θ

σ ′
1(Xε,s, Xε,s−τ )Dθ Xε,sd Bs, (t − τ) ∨ 0 < θ ≤ t, (3.6)

Here, we use the convention [0, t − τ ] = ∅ if t < τ.

Proof See Proposition 1 and Remark 2 in [17]. 
�
Proposition 3.3 Let Assumption 1.1 hold. Consider the solution (Xε,t )t∈[−τ,T ] to the equation
(1.1). Then, for each p ≥ 2, we have

sup
0≤θ≤t≤T

E |Dθ Xε,t |p ≤ Cε p ∀ ε ∈ (0, 1), (3.7)

where C is a positive constant not depending on ε.
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Proof For every ε ∈ (0, 1), it follows from equations (3.5) and (3.6) that the Malliavin
derivative Dθ Xε,t satisfies

Dθ Xε,t = εσ (Xε,θ , Xε,θ−τ )

+
∫ t

θ

b′
1(Xε,s , Xε,s−τ )Dθ Xε,sds +

∫ t

θ

b′
2(Xε,s , Xε,s−τ )Dθ Xε,s−τ11[θ+τ,t](s)ds

+ ε

∫ t

θ

σ ′
1(Xε,s , Xε,s−τ )Dθ Xε,sdBs + ε

∫ t

θ

σ ′
2(Xε,s , Xε,s−τ )Dθ Xε,s−τ11[θ+τ,t](s)dBs

(3.8)

for 0 ≤ θ ≤ t ≤ T . We therefore get

E |Dθ Xε,t |p ≤ 5p−1
(

ε pE |σ(Xε,θ , Xε,θ−τ )|p + E

∣∣∣∣
∫ t

θ

b′
1(Xε,s , Xε,s−τ )Dθ Xε,t ds

∣∣∣∣
p

+ E

∣∣∣∣
∫ t

θ

b′
2(Xε,s , Xε,s−τ )Dθ Xε,s−τ11[θ+τ,t](s)ds

∣∣∣∣
p

+ ε pE

∣∣∣∣
∫ t

θ

σ ′
1(Xε,s , Xε,s−τ )Dθ Xε,sdBs

∣∣∣∣
p

+ ε pE

∣∣∣∣
∫ t

θ

σ ′
2(Xε,s , Xε,s−τ )Dθ Xε,s−τ11[θ+τ,t](s)dBs

∣∣∣∣
p )

, 0 ≤ θ ≤ t ≤ T .

By the Hölder and Burkholder–Davis–Gundy inequalities and the boundedness of the partial
derivatives of b and σ, we deduce

E |Dθ Xε,t |p ≤ Cε pE |σ(Xε,θ , Xε,θ−τ )|p

+ C(1 + ε p)

∫ t

θ

E |Dθ Xε,t |pds + C(1 + ε p)

∫ t

θ

E |Dθ Xε,s−τ |pds

≤ Cε pE |σ(Xε,θ , Xε,θ−τ )|p + C
∫ t

θ

E |Dθ Xε,t |pds, 0 ≤ θ ≤ t ≤ T ,

where C is a positive constant not depending on ε. Furthermore, in view of the estimates
(3.2) and (3.3), we have

E |σ(Xε,θ , Xε,θ−τ )|p ≤ C ∀ 0 ≤ θ ≤ T . (3.9)

So it holds that

E |Dθ Xε,t |p ≤ Cε p + C
∫ t

θ

E |Dθ Xε,t |pds, 0 ≤ θ ≤ t ≤ T

Then, by using Gronwall’s lemma, we obtain

E |Dθ Xε,t |p ≤ Cε p, 0 ≤ θ ≤ t ≤ T .

The proof of the proposition is complete. 
�
We end this subsection by giving some remarks on the stochastic processes (Yt )−τ≤t≤T

and (Zt )−τ≤t≤T defined by (1.4) and (1.7), respectively.

Remark 3.1 (i) Since (xt )−τ≤t≤T is deterministic and bounded,
∫ t
0 σ(xs, xs−τ )dBs is a cen-

tered normal random variable with finite variance for each 0 ≤ t ≤ T . Hence, it is easy to
see that the linear integral equation (1.4) admits a unique solution (Yt )−τ≤t≤T satisfying

sup
0≤t≤T

E |Yt |p ≤ C < ∞, p ≥ 2.
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Moreover, for each t ∈ [0, T ], the random variable Yt is Malliavin differentiable and its
derivative is given by DθYt = 0 for θ > t and

DθYt = σ(xθ , xθ−τ ) +
∫ t

θ

b′
1(xs, xs−τ )DθYsds

+
∫ t

θ

b′
2(xs, xs−τ )DθYs−τds, 0 ≤ θ ≤ t − τ, (3.10)

DθYt = σ(xθ , xθ−τ ) +
∫ t

θ

b′
1(xs, xs−τ )DθYsds, t − τ ∨ 0 < θ ≤ t . (3.11)

(i i) We have

EYt =
∫ t

0

(
b′
1(xs, xs−τ )EYs + b′

2(xs, xs−τ )EYs−τ

)
ds, 0 ≤ t ≤ T .

This is a linear equation with the initial data EYt |t=0 = 0, and hence, EYt = 0 for all
0 ≤ t ≤ T .

(i i i) Note that DθYt is deterministic for all 0 ≤ θ ≤ t ≤ T . Hence, by Clark-Ocone formula
(see Proposition 1.3.14 in [14]), we have

Yt =
∫ t

0
E[DθYt |Fθ ]dBθ =

∫ t

0
DθYtdBθ

This representation formula shows that Yt is a normal random variable for each t ∈ (0, T ].
Moreover, we have Var(Yt ) = ‖DYt‖2L2[0,T ].

Remark 3.2 Denote by h(t) the sum of the last two addends in the right hand side of (1.7).
We can verify that

sup
0≤t≤T

E |h(t)|p ≤ C < ∞, p ≥ 2.

Hence, the linear integral equation (1.7) admits a unique solution (Zt )−τ≤t≤T satisfying

sup
0≤t≤T

E |Zt |p ≤ C < ∞, p ≥ 2.

3.2 Proof of Theorem 1.1

The proof of Theorem 1.1 will be given at the end of this subsection. In order to be able to
apply Lemma 2.1, we first need to prepare some technical results.

Proposition 3.4 Suppose Assumption 1.1. Let (X̃ε,t )−τ≤t≤T and (Yt )−τ≤t≤T be as in Theo-
rem 1.1. Then, for every p ≥ 2, we have

E |X̃ε,t − Yt |p ≤ Ct pε p ∀ ε ∈ (0, 1), 0 ≤ t ≤ T ,

where C is a positive constant not depending on t and ε.

Proof For every ε ∈ (0, 1), recalling (1.3) and (1.4), we have

X̃ε,t − Yt = 1

ε

∫ t

0

(
b(Xε,s, Xε,s−τ ) − b(xs, xs−τ )

)
ds

−
∫ t

0

(
b′
1(xs, xs−τ )Ys + b′

2(xs, xs−τ )Ys−τ

)
ds

123



   24 Page 10 of 20 N. T. Dung et al.

+
∫ t

0

(
σ(Xε,s, Xε,s−τ ) − σ(xs, xs−τ )

)
dBs, 0 ≤ t ≤ T . (3.12)

For each s ∈ [0, T ], using Taylor’s expansion, we get
b(Xε,s, Xε,s−τ ) − b(xs, xs−τ ) = b′

1(xs, xs−τ )
(
Xε,s − xs

)
+ b′

2(xs, xs−τ )
(
Xε,s−τ − xs−τ

) + 1

2
Rε,s,

where the remainder term Rε,s is given by

Rε,s = b′′
11

(
xs + ξ1(Xε,s − xs), xs−τ + ξ2(Xε,s−τ − xs−τ )

)
(Xε,s − xs)

2

+ 2b′′
12

(
xs + ξ1(Xε,s − xs), xs−τ + ξ2(Xε,s−τ − xs−τ )

)
(Xε,s − xs)(Xε,s−τ − xs−τ )

+ b′′
22

(
xs + ξ1(Xε,s − xs), xs−τ + ξ2(Xε,s−τ − xs−τ )

) (
Xε,s−τ − xs−τ

)2
, (3.13)

where ξ1, ξ2 are random variables lying between 0 and 1. We now can rewrite (3.12) as
follows

X̃ε,t − Yt =
∫ t

0
b′
1(xs, xs−τ )(X̃ε,s − Ys)ds +

∫ t

0
b′
2(xs, xs−τ )(X̃ε,s−τ − Ys−τ )ds

+ 1

2ε

∫ t

0
Rε,sds +

∫ t

0

(
σ(Xε,s, Xε,s−τ )

−σ(xs, xs−τ )) dBs, 0 ≤ t ≤ T . (3.14)

Hence, for every p ≥ 2, we obtain

E |X̃ε,t − Yt |p ≤ 4p−1
(
E

∣∣∣∣
∫ t

0
b′
1(xs , xs−τ )(X̃ε,s − Ys)ds

∣∣∣∣
p

+ E

∣∣∣∣
∫ t

0
b′
2(xs , xs−τ )(X̃ε,s−τ − Ys−τ )ds

∣∣∣∣
p

+ 1

2pε p
E

∣∣∣∣
∫ t

0
Rε,sds

∣∣∣∣
p

+ E

∣∣∣∣
∫ t

0

(
σ(Xε,s , Xε,s−τ ) − σ(xs , xs−τ )

)
dBs

∣∣∣∣
p )

.

Then, by using the Hölder and Burkholder-Davis-Gundy inequalities, we deduce

E |X̃ε,t − Yt |p ≤ 3p−1
(
L pt p−1

∫ t

0
E |X̃ε,s − Ys |pds + L pt p−1

∫ t

0
E |X̃ε,s−τ − Ys−τ |pds

+ t p−1

2pε p

∫ t

0
E |Rε,s |pds + Ct

p
2 −1

∫ t

0
E |σ(Xε,s , Xε,s−τ ) − σ(xs , xs−τ )|pds

)
,

where C > 0 depending only on p. By the boundedness of the partial derivatives of b, we
have

|Rε,s | ≤ 2L(Xε,s − xs)
2 + 2L

(
Xε,s−τ − xs−τ

)2
, 0 ≤ s ≤ T .

This, combined with the estimate (3.4) and the fact Xε,s−τ = xs−τ for s ≤ τ, gives us

E |Rε,s |p ≤ Cs pε2p, 0 ≤ s ≤ T (3.15)

for some C > 0 not depending on s and ε. Similarly, recalling the estimate (3.1), we also
have

E |σ(Xε,s, Xε,s−τ ) − σ(xs, xs−τ )|p ≤ Cs
p
2 ε p, 0 ≤ s ≤ T .

123



Optimal Total Variation Bounds for Stochastic... Page 11 of 20    24 

Consequently, we get

E |X̃ε,t − Yt |p ≤ Ct pε p + C
∫ t

0
E |X̃ε,s − Ys |pds +

∫ t

0
E |X̃ε,s−τ − Ys−τ |pds

≤ Ct pε p + C
∫ t

0
E |X̃ε,s − Ys |pds, 0 ≤ t ≤ T ,

where C is a positive constant not depending on t and ε. By using Gronwall’s lemma, we
obtain

E |X̃ε,t − Yt |p ≤ Ct pε p, 0 ≤ t ≤ T .

The proof of the proposition is complete. 
�
Proposition 3.5 Suppose Assumption 1.1. Let (X̃ε,t )−τ≤t≤T and (Yt )−τ≤t≤T be as in Theo-
rem 1.1. Then we have

E‖DX̃ε,t − DYt‖2L2[0,T ] ≤ Ct2ε2 ∀ ε ∈ (0, 1), 0 ≤ t ≤ T , (3.16)

where C is a positive constant not depending on t and ε.

Proof We consider two cases separately.
Case 1. 0 ≤ θ ≤ t − τ. From the equations (3.5) and (3.10), we have

Dθ X̃ε,t − DθYt = σ(Xε,θ , Xε,θ−τ ) − σ(xθ , x(θ − τ))

+
∫ t

θ

b′
1(Xε,s , Xε,s−τ )Dθ X̃ε,sds −

∫ t

θ

b′
1(xs, xs−τ )DθYsds

+
∫ t

θ+τ

b′
2(Xε,s , Xε,s−τ )Dθ X̃ε,s−τds −

∫ t

θ+τ

b′
2(xs, xs−τ )DθYs−τds

+
∫ t

θ

σ ′
1(Xε,s , Xε,s−τ )Dθ Xε,sdBs +

∫ t

θ+τ

σ ′
2(Xε,s , Xε,s−τ )Dθ Xε,s−τdBs .

We therefore deduce

E |Dθ X̃ε,t − DθYt |2 ≤ 5E
∣∣σ(Xε,θ , Xε,θ−τ ) − σ(xθ , x(θ − τ))

∣∣2
+ 5E

∣∣∣∣
∫ t

θ

(
b′
1(Xε,s, Xε,s−τ )Dθ X̃ε,s − b′

1(xs, xs−τ )DθYs
)
ds

∣∣∣∣
2

+ 5E

∣∣∣∣
∫ t

θ+τ

(
b′
2(Xε,s, Xε,s−τ )Dθ X̃ε,s−τ − b′

2(xs, xs−τ )DθYs−τ

)
ds

∣∣∣∣
2

+ 5E

∣∣∣∣
∫ t

θ

σ ′
1(Xε,s, Xε,s−τ )Dθ Xε,sd Bs

∣∣∣∣
2

+ 5E

∣∣∣∣
∫ t

θ+τ

σ ′
2(Xε,s, Xε,s−τ )Dθ Xε,s−τdBs

∣∣∣∣
2

:=
5∑

k=1

Ik . (3.17)

Using the estimates (3.1) and (3.4), we have

I1 ≤ 5L2 (
E |Xε,θ − xθ |2 + E |Xε,θ−τ − xθ−τ |2

) ≤ Cθε2.

For I2, we use the Cauchy-Schwarz inequality to get

I2 = 5E

∣∣∣∣
∫ t

θ

(
b′
1(Xε,s, Xε,s−τ )Dθ X̃ε,s − b′

1(xs, xs−τ )DθYs
)
ds

∣∣∣∣
2
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≤ 10E

∣∣∣∣
∫ t

θ

(
b′
1(Xε,s, Xε,s−τ ) − b′

1(xs, xs−τ )
)
Dθ X̃ε,sds

∣∣∣∣
2

+ 10E

∣∣∣∣
∫ t

θ

b′
1(xs, xs−τ )

(
Dθ X̃ε,s − DθYs

)
ds

∣∣∣∣
2

≤ 10(t − θ)

∫ t

θ

√
E |b′

1(Xε,s, Xε,s−τ ) − b′
1(xs, xs−τ )|4

√
E |Dθ X̃ε,s |4ds

+ 10(t − θ)

∫ t

θ

E |Dθ X̃ε,s − DθYs |2ds.

So, by using Lipschitz property of b′
1 and the estimates (3.4) and (3.7), we obtain

I2 ≤ 10L2(t − θ)

∫ t

θ

√
E |Xε,s − xs |4 + E |Xε,s−τ − xs−τ |4

√
E |Dθ X̃ε,s |4ds

+ 10(t − θ)

∫ t

θ

E |Dθ X̃ε,s − DθYs |2ds

≤ C(t − θ)3ε2 + C(t − θ)

∫ t

θ

E |Dθ X̃ε,s − DθYs |2ds

≤ Ct3ε2 + C
∫ t

θ

E |Dθ X̃ε,s − DθYs |2ds,

where C is a positive constant not depending on t and ε. For the term I3, by using the same
arguments as in the estimate of I2, we also have

I3 = 5E

∣∣∣∣
∫ t

θ+τ

(
b′
2(Xε,s, Xε,s−τ )Dθ X̃ε,s−τ − b′

2(xs, xs−τ )DθYs−τ

)
ds

∣∣∣∣
2

≤ Ct3ε2 + C
∫ t

θ

E |Dθ X̃ε,s − DθYs |2ds.

On the other hand, by the Itô isometry and the estimate (3.7), we deduce

I4 + I5 = 5
∫ t

θ

E
∣∣σ ′

1(Xε,s , Xε,s−τ )Dθ Xε,s
∣∣2 ds + 5

∫ t

θ+τ

E
∣∣σ ′

2(Xε,s , Xε,s−τ )Dθ Xε,s−τ

∣∣2 ds
≤ 10L2

∫ t

θ

E |Dθ Xε,s |2ds ≤ Ctε2.

We now insert the estimates of Ik, k = 1, ..., 5 into (3.17) and we obtain

E |Dθ X̃ε,t − DθYt |2 ≤ Ctε2 + C
∫ t

θ

E |Dθ X̃ε,s − DθYs |2ds, 0 ≤ t ≤ T .

Case 2. (t − τ) ∨ 0 < θ ≤ t . From the equations (3.6) and (3.11), we have

Dθ X̃ε,t − DθYt = σ(Xε,θ , Xε,θ−τ ) − σ(xθ , x(θ − τ))

+
∫ t

θ

b′
1(Xε,s, Xε,s−τ )Dθ X̃ε,sds −

∫ t

θ

b′
1(xs, xs−τ )DθYsds

+
∫ t

θ

σ ′
1(Xε,s, Xε,s−τ )Dθ Xε,sd Bs, 0 ≤ t ≤ T ,

and hence,

E |Dθ X̃ε,t − DθYt |2
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≤ I1 + I2 + I4

≤ Ctε2 + C
∫ t

θ

E |Dθ X̃ε,s − DθYs |2ds, 0 ≤ t ≤ T .

Thus we always have

E |Dθ X̃ε,t − DθYt |2 ≤ Ctε2 + C
∫ t

θ

E |Dθ X̃ε,s − DθYs |2ds, 0 ≤ θ ≤ t ≤ T ,

where C is a positive constant not depending on t and ε. As a consequence,

E‖DX̃ε,t − DYt‖2L2[0,T ] =
∫ t

0
E |Dθ X̃ε,t − DθYt |2dθ

≤ Ct2ε2 + C
∫ t

0
E‖DX̃ε,s − DYs‖2L2[0,T ]ds, 0 ≤ t ≤ T .

An application of Gronwall’s lemma gives us

E‖DX̃ε,t − DYt‖2L2[0,T ] ≤ Ct2ε2, 0 ≤ t ≤ T .

This completes the proof of the proposition. 
�

Proof of Theorem 1.1 Fixed ε ∈ (0, 1) and t ∈ (0, T ], we consider the random variables
F1 = Yt and F2 = X̃ε,t . Thanks to Propositions 3.4 and 3.5 we have

‖F1 − F2‖1,2 = ‖X̃ε,t − Yt‖1,2
=

(
E |X̃ε,t − Yt |2 + E‖DX̃ε,t − DYt‖2L2[0,T ]

) 1
2

≤ (
Ct2ε2 + Ct2ε2

) 1
2 ≤ Ctε.

We recall that DθYt are deterministic for all 0 ≤ θ ≤ t ≤ T . Hence, Dr Dθ F1 = Dr DθYt =
0, 0 ≤ r , θ ≤ t ≤ T .On the other hand, we have ‖DF1‖2L2[0,T ] = ‖DYt‖2L2[0,T ] = Var(Yt ).

Now, for any measurable function g with ‖g‖∞ = sup
x∈R

|g(x)| ≤ 1, we apply Lemma 2.1

to get the following

|Eg(X̃ε,t ) − Eg(Yt )| = |Eg(F1) − Eg(F2)|

≤ C

(
E‖DF1‖−8

L2[0,T ]E
( ∫ t

0

∫ t

0
|Dθ Dr F1|2dθdr

)2

+
(
E‖DF1‖−2

L2[0,T ]
)2) 1

4 ‖F1 − F2‖1,2 ≤ Ctε√
Var(Yt )

.

Taking the supremum over all measurable functions g bounded by 1 yields

dTV(X̃ε,t , Yt ) ≤ Ctε√
Var(Yt )

.

The proof of Theorem 1.1 is complete. 
�
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3.3 Proof of Theorem 1.2

Theorem 1.2 will be proved by using the interpolation formula (2.5). We will carry out the
proof in three steps.
Step 1. In this step, we show that for all p ≥ 2,

lim
ε→0

E

∣∣∣∣∣ X̃ε,t − Yt
ε

− 1

2
Zt

∣∣∣∣∣
p

= 0, 0 ≤ t ≤ T . (3.18)

It follows from (3.14) that, for each 0 ≤ t ≤ T ,

X̃ε,t − Yt =
∫ t

0
b′
1(xs, xs−τ )(X̃ε,s − Ys)ds

+
∫ t

0
b′
2(xs, xs−τ )(X̃ε,s−τ − Ys−τ )ds + 1

2ε

∫ t

0
Rε,sds

+
∫ t

0
σ ′
1(xs, xs−τ )

(
Xε,s − xs

)
dBs

+
∫ t

0
σ ′
2(xs, xs−τ )

(
Xε,s − xs

)
dBs + 1

2

∫ t

0
Qε,sd Bs,

where Rε,s is defined by (3.13) and Qε,s is given by

Qε,s = σ ′′
11

(
xs + ξ3(Xε,s − xs), xs−τ + ξ4(Xε,s−τ − xs−τ )

)
(Xε,s − xs)

2

+ 2σ ′′
12

(
xs + ξ3(Xε,s − xs), xs−τ + ξ4(Xε,s−τ − xs−τ )

)
(Xε,s − xs)(Xε,s−τ − xs−τ )

+ σ ′′
22

(
xs + ξ3(Xε,s − xs), xs−τ + ξ4(Xε,s−τ − xs−τ )

) (
Xε,s−τ − xs−τ

)2
for some random variables ξ3, ξ4 lying between 0 and 1. Hence, recalling (1.7), we get

X̃ε,t − Yt
ε

− 1

2
Zt =

∫ t

0
b′
1(xs, xs−τ )

(
X̃ε,s − Ys

ε
− 1

2
Zt

)
ds

+
∫ t

0
b′
2(xs, xs−τ )

(
X̃ε,s−τ − Ys−τ

ε
− 1

2
Zs−τ

)
ds

+ 1

2

∫ t

0
b′′
11

(
xs + ξ1(Xε,s − xs), xs−τ + ξ2(Xε,s−τ − xs−τ )

)
X̃2

ε,sds

− 1

2

∫ t

0
b′′
11(xs, xs−τ )Y

2
s ds + 1

2

∫ t

0
b′′
22(

(
xs + ξ1(Xε,s − xs), xs−τ

+ξ2(Xε,s−τ − xs−τ )
)
)X̃2

ε,s−τds

− 1

2

∫ t

0
b′′
22(xs, xs−τ )Y

2
s−τds +

∫ t

0
b′′
12

(
xs + ξ1(Xε,s − xs), xs−τ

+ξ2(Xε,s−τ − xs−τ )
)
X̃ε,s X̃ε,s−τds

−
∫ t

0
b′′
12(xs, xs−τ )YsYs−τds +

∫ t

0
σ ′
1(xs, xs−τ )X̃ε,sd Bs

−
∫ t

0
σ ′
1(xs, xs−τ )YsdBs +

∫ t

0
σ ′
2(xs, xs−τ )X̃ε,s−τdBs

−
∫ t

0
σ ′
2(xs, xs−τ )Ys−τdBs + 1

2ε

∫ t

0
Qε,sd Bs, 0 ≤ t ≤ T .
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As a consequence, by using the Hölder and Burkholder—Davis–Gundy inequalities, we
deduce

E

∣∣∣∣∣ X̃ε,t − Yt
ε

− 1

2
Zt

∣∣∣∣∣
p

≤ C
∫ t

0
E

∣∣∣∣∣ X̃ε,s − Ys
ε

− 1

2
Zt

∣∣∣∣∣
p

ds + C(K1,ε + K2,ε), 0 ≤ t ≤ T

(3.19)

for some C > 0 and for all ε ∈ (0, 1), where K1,ε, K2,ε are given by

K1,ε :=
∫ T

0
E

∣∣∣σ ′
1(xs, xs−τ )(X̃ε,s − Ys)

∣∣∣p ds
+

∫ T

0
E

∣∣∣σ ′
2(xs, xs−τ )(X̃ε,s−τ − Ys−τ )

∣∣∣p ds + C

ε p

∫ T

0
E |Qε,s |pds,

K2,ε :=
∫ T

0
E

∣∣b′′
11

(
xs + ξ1(Xε,s − xs), xs−τ

+ξ2(Xε,s−τ − xs−τ )
)
X̃2

ε,s − b′′
11(xs, xs−τ )Y

2
s

∣∣∣p ds
+

∫ T

0
E

∣∣b′′
22

(
xs + ξ1(Xε,s − xs), xs−τ

+ξ2(Xε,s−τ − xs−τ )
)
X̃2

ε,s−τ − b′′
22(xs, xs−τ )Y

2
s−τ

∣∣∣p ds
+

∫ T

0
E

∣∣∣b′′
12

(
xs + ξ1(Xε,s − xs), xs−τ + ξ2(Xε,s−τ − xs−τ )

)
X̃ε,s X̃ε,s−τ

−b′′
12(xs, xs−τ )YsYs−τ

∣∣p ds.
Using the same arguments as in the proof of (3.15), we have E |Qε,s |p ≤ Cs pε2p, 0 ≤ s ≤
T . Hence, from Proposition 3.4, it is easy to see that K1,ε → 0 as ε → 0. To estimate K2,ε,
we observe that∫ T

0
E

∣∣∣b′′
11

(
xs + ξ1(Xε,s − xs), xs−τ + ξ2(Xε,s−τ − xs−τ )

)
X̃2

ε,s − b′′
11(xs , xs−τ )Y 2

s

∣∣∣p ds
≤ 2p−1

∫ T

0
E

∣∣∣b′′
11

(
xs + ξ1(Xε,s − xs), xs−τ + ξ2(Xε,s−τ − xs−τ )

)
(X̃2

ε,s − Y 2
s )

∣∣∣p ds
+ 2p−1

∫ T

0
E

∣∣(b′′
11

(
xs + ξ1(Xε,s − xs), xs−τ + ξ2(Xε,s−τ − xs−τ )

) − b′′
11(xs , xs−τ )

)
Y 2
s

∣∣p ds
≤ 2p−1L p

∫ T

0

√
E |X̃ε,s − Ys |2p E |X̃ε,s + Ys |2pds

+ 2p−1
∫ T

0

√
E

∣∣(b′′
11

(
xs + ξ1(Xε,s − xs), xs−τ + ξ2(Xε,s−τ − xs−τ )

) − b′′
11(xs , xs−τ )

)∣∣2p E |Ys |4pds.

We recall that sup0≤t≤T E |Yt |p + sup0≤t≤T E |X̃ε,s |p < ∞ for all p > 1. Hence, by Propo-
sition 3.4 and the dominated convergence theorem, we get∫ T

0
E

∣∣b′′
11

(
xs + ξ1(Xε,s − xs), xs−τ + ξ2(Xε,s−τ

−xs−τ )) X̃
2
ε,s − b′′

11(xs, xs−τ )Y
2
s

∣∣∣p ds → 0

as ε → 0. Similarly, we also have∫ T

0
E

∣∣b′′
22

(
xs + ξ1(Xε,s − xs), xs−τ + ξ2(Xε,s−τ − xs−τ )

)
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X̃2
ε,s−τ − b′′

22(xs, xs−τ )Y
2
s−τ

∣∣∣p ds → 0

and ∫ T

0
E

∣∣b′′
12

(
xs + ξ1(Xε,s − xs), xs−τ + ξ2(Xε,s−τ − xs−τ )

)
X̃ε,s X̃ε,s−τ − b′′

12(xs, xs−τ )YsYs−τ

∣∣∣p ds → 0.

Those imply that K2,ε → 0 as ε → 0. From (3.19), an application of Gronwall’s lemma
gives us

E

∣∣∣∣∣ X̃ε,t − Yt
ε

− 1

2
Zt

∣∣∣∣∣
p

≤ C(K1,ε + K2,ε)e
Ct , 0 ≤ t ≤ T .

This finishes the proof of Step 1.
Step 2. In this step, we prove (1.6). For simplicity, we write 〈., .〉 instead of 〈., .〉L2[0,T ] and
‖.‖ instead of ‖.‖L2[0,T ]. Fix t ∈ (0, T ], by using the formula (2.5), we get

E[g(X̃ε,t )] − E[g(Yt )] = E

[∫ X̃ε,t

Yt
g(z)dzδ

(
DYt

‖DYt‖2
)]

− E

[
g(X̃ε,t )〈DX̃ε,t − DYt , DYt 〉

‖DYt‖2
]

.

We recall that ‖DYt‖2 = Var(Yt ) =: β2
t and δ

(
DYt

‖DYt‖2
)

= Yt/β2
t . So we obtain

E[g(X̃ε,t )] − E[g(Yt )] = 1

β2
t
E

[
Yt

∫ X̃ε,t

Yt
g(z)dz

]
− 1

β2
t
E

[
g(X̃ε,t )〈DX̃ε,t − DYt , DYt 〉

]
.

Then, for ε ∈ (0, 1),

E[g(X̃ε,t )] − E[g(Yt )]
ε

− 1

2β2
t
E [g(Yt )ZtYt ] + 1

2β2
t
E [g(Yt )〈DZt , DYt 〉]

= 1

β2
t
E

[(
1

ε

∫ X̃ε,t

Yt
g(z)dz − 1

2
g(Yt )Zt

)
Yt

]

− 1

β2
t
E

[
(g(X̃ε,t ) − g(Yt ))

〈
DX̃ε,t − DYt

ε
, DYt

〉]

− 1

β2
t
E

[
g(Yt )

〈
DX̃ε,t − DYt

ε
− DZt

2
, DYt

〉]
, 0 < t ≤ T . (3.20)

We observe that

1

ε

∫ X̃ε,t

Yt
g(z)dz − 1

2
g(Yt )Zt = X̃ε,t − Yt

ε

∫ 1

0
g(Yt + z(X̃ε,t − Yt ))dz − 1

2
g(Yt )Zt

=
(
X̃ε,t − Yt

ε
− Zt

2

) ∫ 1

0
g(Yt + z(X̃ε,t − Yt ))dz

+ Zt

2

∫ 1

0
(g(Yt + z(X̃ε,t − Yt )) − g(Yt ))dz,
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and hence,

E

∣∣∣∣
(
1

ε

∫ X̃ε,t

Yt
g(z)dz − g(Yt )Zt

)
Yt

∣∣∣∣
≤ ‖g‖∞E

∣∣∣∣
(
X̃ε,t − Yt

ε
− Zt

2

)
Yt

∣∣∣∣
+ 1

2
E

∣∣∣∣ZtYt

∫ 1

0
(g(Yt + z(X̃ε,t − Yt )) − g(Yt ))dz

∣∣∣∣ .
Because the random variables Yt and Zt belong to L2(�), we have

lim
ε→0

E

∣∣∣∣∣
(
X̃ε,t − Yt

ε
− Zt

2

)
Yt

∣∣∣∣∣ = 0 by the limit (3.18).

By the dominated convergence theorem, we also have

lim
ε→0

E

∣∣∣∣ZtYt

∫ 1

0
(g(Yt + z(X̃ε,t − Yt )) − g(Yt ))dz

∣∣∣∣ = 0

So it holds that

lim
ε→0

E

[(
1

ε

∫ X̃ε,t

Yt
g(z)dz − 1

2
g(Yt )Zt

)
Yt

]
= 0. (3.21)

On the other hand, we have

E

[
(g(X̃ε,t ) − g(Yt ))

〈
DX̃ε,t − DYt

ε
, DYt

〉]
≤ 1

βt
E

[
|g(X̃ε,t ) − g(Yt )|‖DX̃ε,t − DYt‖

ε

]

≤ 1

βt
(E |g(X̃ε,t ) − g(Yt )|2) 1

2

(
E‖DX̃ε,t − DYt‖2

ε2

) 1
2

.

Once again, by (3.16) and the dominated convergence theorem, we derive

lim
ε→0

E

[
(g(X̃ε,t ) − g(Yt ))

〈
DX̃ε,t − DYt

ε
, DYt

〉]
= 0. (3.22)

In view of Lemma 1.2.3 in [14], it follows from (3.16) and (3.18) that

lim
ε→0

E

[
g(Yt )

〈
DX̃ε,t − DYt

ε
− DZt

2
, DYt

〉]
= 0. (3.23)

Combining (3.20)–(3.23) yields

lim
ε→0

E[g(X̃ε,t )] − E[g(Yt )]
ε

= 1

2β2
t
E [g(Yt )ZtYt ] − 1

2β2
t
E [g(Yt )〈DZt , DYt 〉] .

Then we obtain (1.6) by using the duality relationship (2.2).
Step 3. In this step, we verify (1.8). We consider the function g(x) = sign(
E

[
δ (Zt DYt )

∣∣Yt = x
])

for x ∈ R. Then, ‖g‖∞ ≤ 1 and by the routine approximation
argument, we can approximate g by a sequence (gn(x))n≥1 of continuous functions bounded
by 1. Indeed, for example, we can use the following sequence

gn(x) =
∫ ∞

−∞
11{|y|<n}g(y)ρn(x − y)dy, n ≥ 1,
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where ρn is the standard mollifier: ρn(x) = nρ(nx), where ρ(x) = C11{|x |<1}e
1

x2−1 and C
is a constant such that

∫ ∞
−∞ ρ(x)dx = 1.

We obtain from (1.6) that, for all n ≥ 1,

lim
ε→0

dTV(X̃ε,t , Yt )

ε
≥ 1

2Var(Yt )
E [gn(Yt )δ (Zt DYt )]

= 1

2Var(Yt )
E [gn(Yt )E[δ (Zt DYt ) |Yt ]] .

Letting n → ∞ we obtain

lim
ε→0

dTV(X̃ε,t , Yt )

ε
≥ 1

2Var(Yt )
E [g(Yt )E[δ (Zt DYt ) |Yt ]]

= 1

2Var(Yt )
E |E[δ (Zt DYt ) |Yt ]|.

The proof of Theorem 1.2 is complete. 
�

4 Conclusion and Example

The central limit theorem for stochastic dynamical systems with small noise has been exten-
sively studied. However, most of the existing results are qualitative. In this paper, we used
the techniques of Malliavin calculus to provide quantitative total variation estimates in the
central limit theorem for stochastic differential delay equations with small noises. The sig-
nificance of our results lie in the fact that we not only obtain explicit estimates for the rate of
convergence, but also prove the optimality of these rates of convergence.

We also would like to emphasize that Lemma 2.1 is a key tool in the present paper. The
proof of this lemma heavily relies on dimension one and hence, our results only hold true for
one dimensional equations. The generalization to higher dimensions will be a difficult and
interesting problem.

Example 4.1 Let us provide an explicit example to illustrate the theory. For any ε ∈ (0, 1),
we consider the following equation{

Xε,t = 1 + ∫ t
0 Xε,sds + ε

∫ t
0

(
2 + sin(Xε,s + Xε,s−τ )

)
dBs, t ∈ [0, T ]

Xε,t = et , t ∈ [−τ, 0], (4.1)

It is easy to see that the functions b(x, y) = x and σ(x, y) = 2 + sin(x + y) satisfy
Assumption 1.1. Moreover, we have{

xt = 1 + ∫ t
0 xsds, t ∈ [0, T ]

xt = et , t ∈ [−τ, 0]. (4.2)

and {
Yt = ∫ t

0 Ysds + ∫ t
0 (2 + sin(xs + xs−τ )) dBs, t ∈ [0, T ]

Yt = 0, t ∈ [−τ, 0]. (4.3)

Solving the equations (4.2) and (4.3) gives us xt = et for t ∈ [−τ, T ] and

Yt =
∫ t

0
et−s (

2 + sin(es + es−τ )
)
dBs, t ∈ [0, T ].
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Furthermore, we have Var(Yt ) = ∫ t
0 e

2(t−s)
(
2 + sin(es + es−τ )

)2
ds ≥ t, t ∈ [0, T ]. We

now define X̃ε,t := Xε,t−xt
ε

= Xε,t−et

ε
, t ∈ [−τ, T ]. Then, thanks to Theorem 1.1, we

conclude that

dTV(X̃ε,t , Yt ) ≤ Ctε√
Var(Yt )

≤ Ct
1
2 ε ∀ ε ∈ (0, 1), 0 < t ≤ T ,

where C is a positive constant not depending on t and ε.
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