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Abstract
SiO2@Ag nanocomposite (NC) has been synthesized by the chemical reduction and Stӧber method for Metal-enhanced 
fluorescence (MEF) of Rhodmine 6G (R6G) and Surface-enhanced Raman spectroscopy (SERS) of Malachite green (MG). 
As-synthesized SiO2@Ag NC indicated SiO2 nanosphere (NS) and Ag nanoparticle (NP) morphologies. The SiO2@Ag 
NC was high quality with a well-defined crystallite phase with average sizes of 24 nm and 132 nm for Ag NP and SiO2 
NC, respectively. By using SiO2@Ag NC, the photoluminescence (PL) intensity of the R6G (at 59.17 ppm) was increased 
approximately 133 times. The SERS of the MG (at 1.0 ppm) with SiO2@Ag NC as substrate clearly observed vibrational 
modes in MG dye at 798, 916, 1172, 1394, and 1616 cm−1. As a result, the SERS enhancement factor (EFSERS) at 1172 cm−1 
obtained 6.3 × 106. This initial study points to the potential of SiO2@Ag NC as a promising material for MEF and SERS 
substrates to detect dyes at low concentrations.
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Introduction

Nowadays, SiO2-combined Ag NPs have been widely 
applied in bio-medicine [1, 2], aesthetics [3], optoelectron-
ics [4, 5], pharmaceutical medicine [6], food technology [7, 
8], early diagnosis [9], disease treatment [10], and environ-
mental treatment [11–13]. The SiO2 ingredient possesses 

thermal-stable, chemical-inert, and non-toxic properties. In 
addition, the SiO2 nanostructure has been easily prepared 
in nanoparticle form and dispersed evenly in various solu-
tions. Due to the high biocompatibility and functionalized 
surface, SiO2 NPs can easily bond with pigments, metal 
ions, and biomolecules [11]. While Ag NPs- the rest of the 
NCs possess the surface plasmon resonance (SPR) peak at 
about 400 nm can produce SERS and MEF signals larger 
than that of metals with the absorption peak at visible or 
near-infrared regions [11, 14]. In the electromagnetic field 
of the incident light, the gap positions between Ag NPs are 
also known as hot spots, so the local electromagnetic field 
has been enhanced [11, 14, 15]. The intensity of the elec-
tromagnetic field gradually decreases from the center of the 
hot spots away.

SiO2@Ag NC structures have been successfully pre-
pared using different methods, which can control the mor-
phology and size of SiO2@Ag NCs, thereby affecting the 
MEF and SERS capabilities [16–20]. For example, SiO2@
Ag nanostructures were synthesized by sol–gel method 
with the decorated Ag NPs size of 35 nm on nano-sized 
SiO2 spheres of 20–60 nm [16]. The co-precipitation pro-
cess combined with polymerization created Ag@SiO2 NCs 
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with the spherical Ag core size in the order of micrometers 
within the SiO2 shell [17]. Using the Stӧber method, syn-
thesized Ag@SiO2 nanospheres had 80 nm sized Ag NPs 
on 800 nm sized SiO2 spheres [21], core–shell Ag@SiO2 
NCs were composed of 50 nm sized Ag cores and 75 nm 
sized SiO2 shells [22].

R6G is an organic dye widely used in industrial products 
for daily life. However, the release of the R6G dye into the 
environment will cause pollution and affect human health. 
R6G molecules always tend to form dimers or monomers. A 
charged redistribution in the molecules changes their fluo-
rescent property [23–26]. PL spectrum often appears as a 
wide band with a peak position in the range of 550–630 nm, 
which is the superposition of some bands [27]. PL intensity 
and maximum position depend on the R6G concentration 
in the solution. At low concentrations, R6G molecules are 
not agglomerated into big clusters, so PL is characterized 
by monomers, while at more significant concentrations, it 
is dominated by dimers [23]. In the electromagnetic field of 
incident radiation, R6G molecules at the hot spots between 
Ag NPs receive substantial PL enhancement because of 
the MEF effect [28, 29]. Several studies have also shown 
that MEF occurs for R6G [28, 29] and other organic com-
pounds [22]. Through supporting Ag nanoparticles, the MEF 
enhancement factor (EFMEF) can be increased many times 
[30–35].

Besides, MG dye is also studied in this study. It is popular 
in the dye industry and aquaculture. The MG dye can be 
recognized at dilute concentration via the SERS [36]. For 
our initial studies, MG has been used as a probe to check 
whether a material could be used in SERS. The SERS of the 
MG appears clearly with characteristic peaks for vibration of 
binding groups in the molecular, and the intensity depends 
on the interaction between MG and metal NCs. The charac-
teristic peaks of ring C–H in-plane bending and ring C–C 
stretching vibrations are usually very obvious and are chosen 
to calculate the enhancement factor [37, 38]. Enhancement 
factor determination allows it to appreciate the enhancement 
level of the SERS signal. Raman signals at low concentra-
tions can reach approximately 105–108 thanks to the SERS 
of Ag NPs [37, 39–42]. In fact, the SERS is used as a tool 
to detect the concentration of dye compounds in inspection 
samples. Another concern is that the facile solubility of both 
R6G and MG makes it spread in water sources and penetrate 
living organisms through the food chain [43]. Therefore, the 
influence of these dyes on human health has also been stud-
ied in many other works, thereby detecting the dyes, treating 
emitted residues, and making recommendations.

In this work, SiO2@Ag nanocomposite was synthesized 
through the principles of the Stӧber method with some mod-
ification technologies. As-synthesized SiO2@Ag NCs would 
be investigated in terms of their optical and structural char-
acteristics. At present, this SiO2@Ag NC with multitasking 

can be used in MEF and SERS to detect organic dyes at 
dilute concentrations of MG and R6G.

Experimental

Tetraethoxysilane (TEOS) Si(OC2H5)4 (99,98%), (3-aminopropyl) 
trimethoxysilane (APTMS) H2N(CH2)3Si(OCH3)3 (99,96%), 
silver nitrate AgNO3 (99,99%), sodium borohydride (NaBH4), 
ammoniac NH3 ( 25%), Rhodamine 6G (R6G), Malachite 
green (MG) (98%, solid, refractive index n = 1.5940, den-
sity ρ = 1.0448 g/cm3, and molecular weight M = 364.911 g), 
absolute ethanol were purchased from Merck. All used chem-
icals were analytical grade. Deionized (DI) water was used 
in all experiments.

For fabricating SiO2@Ag NCs, the processe is illustrated 
in Scheme 1 with two steps. Firstly, SiO2 particles were 
obtained according to the Stӧber method [19] with slight 
modification. 5 ml of TEOS was dissolved in 30 ml of the 
ethanol and DI water solvent with a volume rate of 1:1, and 
then this solution was ultrasonicated for 15 min at room tem-
perature to obtain an A solution. 3 ml of NH3 was added into 
the A solution and stirred for 4 h to obtain a B mixture. The 
B mixture was centrifuged and filtered by absolute ethanol 
and DI water three times, then dried as precipitation at 80 °C 
for 15 h to obtain SiO2 powder.

Secondly, 0.18 g of AgNO3 was dissolved in 10 ml of DI 
water and 3 ml of NH3 solution by magnetic stirring to make 
the C solution. Similarly, 0.01 g of NaBH4 was dissolved 
in 10 ml of DI water to make the D solution. 0.2 g of as-
synthesized SiO2 was ultrasonicated with 50 ml ethanol for 
15 min at room temperature to make an E solution. 0.1 ml of 
APTMS was added to the E solution and stirred for 15 h to 
produce the SiO2-APTMS mixture (F). Then, the F mixture 
was centrifuged to obtain SiO2-APTMS precipitations. The 
SiO2-APTMS precipitations were added to the C solution 
and stirred for 2 h to make the G mixture. After that, the D 
solution was added to the G mixture and stirred for 15 min 
to obtain SiO2@Ag precipitations. The precipitations were 
washed thrice with DI water and ethanol, then dried at 80 °C 
for 15 h to produce SiO2@Ag NCs. The formation processes 
of the SiO2@Ag nanocomposite are expressed in (1–5) as 
follows [2]:

(1)Si(OC2H5)4 + 2NH4OH → SiO2 + 4C2H5OH + 2NH3

(2)
AgNO3 + 3NH4OH → [Ag(NH3)2]OH + NH4NO3 + 2H2O

(3)
SiO2 + APTMS + [Ag(NH3)2]OH → SiO2 − APTMS@[Ag(NH3)2]OH

(4)NaBH4 + 4H2O → NaB(OH)4 + 4H2
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The synthesis process of SiO2@Ag is presented briefly in 
Step a of the Scheme 1.

Thirdly, in order to investigate the MEF of SiO2@Ag NCs 
for the R6G dye, SiO2@Ag NCs and R6G were dispersed 
into DI water to make two different solutions at concentra-
tions of 35.5 and 355 ppm, respectively. Two above solu-
tions were mixed together to get solutions with the SiO2@
Ag to R6G volume ratio of (0:1), (1:1), (2:1), (3:1), (4:1), 
(5:1), (6:1), and (7:1), containing the R6G concentrations of 
355, 177.5, 118.33, 88.75, 71, 59.17, 50.71, and 44.38 ppm, 
respectively. An equal amount of each solution was taken 
with a micropipette, deposited on the Si substrate, and let 
dry naturally. As-deposited Si substrates, samples, were 

(5)

2[Ag(NH3)2]OH + 4NaB(OH)4 + 6H2O → 2Ago

+ 15H2 + 4H3BO3 + 4NaNO3

denoted as R(0:1), R(1:1), R(2:1), R(3:1), R(4:1), R(5:1), 
R(6:1), and R(7:1) for MEF investigation.

Finally, with respect to preparations for the study of the 
SERS, the Si substrate with edge sizes of (1.0 cm × 1.0 cm) 
was cleaned in acetone, ethanol, and DI water, soaking in 
50% HNO3 for 15 min and in HF for 15 min. Let them dry 
naturally to get as-treated Si substrates. Then, a quantity 
of SiO2@Ag solution with the 35.5 ppm concentration was 
deposited on the above as-treated Si substrates and dried to 
get SERS substrates. Afterwards, 10 μl of the 1.0 ppm MG 
solution was deposited on the SERS substrate area of 12.46 
mm2, drying to get the 1.0 ppm MG SERS substrate. MG 
with concentrations of 103 and 106 ppm were also depos-
ited on Si substrate. As a result, there were four types of 
substrates: SiO2@Ag, 103 ppm MG, and 106 ppm MG on Si 
substrates and 1.0 ppm MG on SERS substrate, which were 

Scheme 1   The brief synthesis 
process of SiO2@Ag and sub-
strates preparation for MEF and 
SERS investigation
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used for the SERS research, labelled as SiO2@Ag, 103 ppm 
MG, 106 ppm MG, and 1.0 ppm MG, respectively. The 
preparation of substrates for the study of MEF and SERS is 
shown in Step b of the Scheme 1.

The microstructure and morphology of SiO2 and SiO2@
Ag NC were investigated by X-ray diffraction (XRD) on 
a PANalytical Empyrean device using Cu_Kα radiation 
(λ = 1.54056 Å, 2θ = 15o–70°) and high-resolution trans-
mission electron microscopy JEM-2100. The absorption 
spectra were recorded on the UV-2450 system. PL spectra 
were excited by the 325 nm radiation of the He-Cd laser on 
a Spectra Pro2500i system. Raman spectra were recorded 
on a portable � Raman-Ci (Technospex) spectroscopy using 
a diode laser with technical specifications of power (10 
mW), an excitation radiation (785 nm), a numerical aperture 
(NA = 0.5), and a laser spot area (2.9 μm2). All spectra were 
recorded at room temperature.

Results and Discussions

Structure and Morphology of SiO2@Ag 
Nanocomposite

The crystalline structure phase of SiO2 and SiO2@Ag NCs is 
shown by XRD patterns in Fig. 1. For the SiO2, a broadband 
occurred at about 23.91o with weak intensity characterized 
by an amorphous structure phase. For the SiO2@Ag NCs, 
the diffraction peaks at 37.94, 44.28, and 64.38o attributed to 
(111), (200), and (220) atomic planes of a face-centered cubic 
structure phase of Ag NPs, respectively, according to PDF 
No: 96–901-3047, which belongs to Fm3m space group. The 
diffraction peak of the (111) plane is narrow and most robust 
in the others; it is predicted that Ag particles achieve high crys-
tallinity and big crystal sizes. While the characteristic band of 
the SiO2 structure phase at 23.91o is weak, it further highlights 
the presence of Ag particles. From the XRD pattern, using 
Debye Scherrer and Bragg’s formulas [3, 4, 16], the average 
particle size and lattice d-spacing of Ag NPs are calculated at 
about 24 nm and 2.38 Å, respectively. The characteristic peaks 
for the silver structural phase in the XRD pattern of SiO2@
Ag NCs showed that Ag NPs had been formed on the SiO2 
surface [21]. For easy visualization, the mechanism of Ag NP 
decorated on SiO2 NSs is described as follows: the F solution 
is a SiO2-APTMS colloidal system containing negative NH2- 
amin groups. When adding the Ag[(NH3)]2

+ ion solution to 
the F, Ag+ ions have been absorbed on the SiO2 surface due 
to the interaction between NH2- groups and Ag(NH3)+ ions to 
form the G mixture (SiO2-APTMS-Ag[(NH3)]2

+. Therefore, 
after the NaBH4 solution was added, Ag+ ions on the surface 
of SiO2 NSs were reduced to Ag NPs. Those are illustrated 
in Fig. 2 [44]. The structural phase, shape, and size of the 
SiO2@Ag NCs are shown in Fig. 3. The TEM image showed 

that SiO2 particles possessed spherical shape with sizes in the 
range of 100–180 nm (Fig. 3a), but the distributed SiO2 NSs 
concentrated at an average size of 132 nm (Fig. 3c). The inset 
showed that the Ag NPs on SiO2 spheres were not agglomer-
ated. HR-TEM image is observed that the lattice ridges are 
oriented in the same parallel direction representing a single 
grain (Fig. 3c). The d-spacing between two consecutive (111) 
planes was determined about 2.4 Å (the inset of Fig. 3c) likely 
an estimated result by the XRD pattern [13]. It also confirmed 
that Ag NPs were decorated on the SiO2 NSs. The SAED pat-
tern of Ag NP consists of bright spots representing the crystal 
structure phase (Fig. 3d) [5]. Basically, the bright spots are 
located on the concentric circle fringes, in which three fringes 
correspond to the (111), (200), and (220) planes in the XRD 
pattern [9].

The MEF and SERS Properties of SiO2@Ag 
Nanocomposites

Figure 4 presents the UV–Vis absorption spectrum (a) of 
SiO2@Ag NCs and R6G solutions and PL spectra (b) of 
SiO2@Ag NCs and R6G solutions deposited on Si substrate 
with the concentration of 35.5 and 355 ppm (R(1:0), R(0:1)), 
respectively. The Gaussian symmetry of the UV–Vis absorp-
tion spectrum of SiO2@Ag evidenced that Ag NPs have a 
quasi-spherical shape with a concentrated size distribution 
[16]. The maximum position of that absorption spectrum is 
centered at about 400 nm, derived from the SPR of Ag NPs 

Fig. 1   XRD patterns of SiO2 and SiO2@Ag NCs
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(Fig. 4a) [14]. The SPR spectrum is only recorded on the 
metal surface, proving that the reduced Ag NPs are attached 
to the SiO2 surface. There are several factors responsible 
for the enhancement. The first is the effect of local field 
enhancement generated near metallic structures [45, 46]. 
Another factor is the plasmon-coupling effect mediated by 
a non-radiative interaction [47]. If the plasmonic structure 
and the fluorophore are at an optimal distance, the energy 
transfer between them is dominated. Those are explained 
by Förster (or fluorescence) resonance energy transfer, the 
mechanism of electron transfer through molecules. The 

non-radiative energy transfer between metal and fluorophore 
depends not only on the strength of the electric field but 
also on the degree of spectral overlap between the metal 
surface and the fluorophore [46]. A broad 525 nm absorp-
tion band appeared in the UV- Vis absorption spectrum of 
R6G (Fig. 4a). There is quite a good overlap between the 
absorption of R6G and SiO2@Ag.

Therefore, R6G is used to study the ability of fluores-
cence enhancement of SiO2@Ag NCs. In the R6G molecu-
lar structure, there are π-bonds of C = C, C = N, and C = O 
groups, as seen in the inset of Fig. 4a. The optical properties 

Fig. 2   Mechanism of as-deco-
rated Ag NPs on SiO2 surface

Fig. 3   a TEM image, b particle 
distribution histogram, c 
HR-TEM image, and d SAED 
pattern of SiO2@Ag NCs
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of the R6G are related to the electronic transitions between π 
and π* orbital states [48]. As observed in the PL spectrum of 
SiO2@Ag in Fig. 4b, the broadband at about 430 nm origi-
nated from different defect centers of SiO2 NSs [49, 50]. The 
PL spectrum of the R6G appears to be a band at 600 nm. 
However, it is robust in comparison with SiO2@Ag in terms 
of the PL intensity. This band is caused by the emission of 
dimers [23–26], but the nature is still related to the electric 
transitions from S1(π*) excited state to So(n, π) ground state 
[48]. Furthermore, the R6G concentration of 355 ppm seems 
quite dense, as the PL maximum peak is located at 600 nm, 
belonging to the sort of dimer [23].

Notably, there is a strong enhancement in both MEF 
and SERS using SiO2@Ag NCs. Figure  5 manifests 
the PL spectra of the R6G with different volume ratios 
between SiO2@Ag and R6G, in which the PL spectrum 
of R6G is redrawn. All PL spectra show a band with a 
maximum in the range of 553–560 nm but not at 600 nm, 
as explained in Fig. 4b. The shape of PL spectra is asym-
metric, left-steep, and right-gentle due to the overlap of 

dimer-monomer PL bands, herein, the monomer band is 
more dominant than the dimer one [27, 51]. In the case 
of a SiO2@Ag NCs absence, the PL spectrum of the R6G 
(R(0:1)) appears extremely weak, resembling a baseline. 
However, using SiO2@Ag NCs, the PL intensity of the 
R6G becomes much stronger, and the peak position of the 
PL band depends on the change of the SiO2@Ag to R6G 
volume ratio. In order to estimate the EFMEF, a compared 
calculation between the absolute PL intensity of the R6G 
at R(5:1) and the one at R(0:1) was expressed as [28, 29]:

In Eq. (6), IR(5:1), I(R(0:1), and ISiO2@Ag are absolute intensi-
ties according to the SiO2@Ag to R6G volume ratios and 
SiO2@Ag substrate. Note that the spectral signal from the 
Si substrate was feeble in the observed region under the 
excitation radiation of 325 nm; it was not mentioned. When 
the volume ratio is R(1:1), the absolute PL intensity of the 
560 nm band is 24 times as much as that of the 600 nm band 

(6)EFMEF =
(

IR(5∶1) − ISiO2@Ag

)

.
(

IR(0∶1) − ISiO2@Ag

)−1

Fig. 4   a UV–Vis absorption 
spectra of SiO2@Ag NCs and 
R6G solutions and inserted 
figure as R6G molecule, and b 
PL spectra of SiO2@Ag NCs 
and R6G on Si substrates

Fig. 5   a PL spectra of R6G 
using SiO2@Ag NCs, and b 
Peak position and enhancement 
factor versus SiO2@Ag to R6G 
volume ratios
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of R(0:1). From R(2:1) to R(4:1), the PL intensity also goes 
up while the maximum position shifts towards to the shorter 
wavelength. At the volume ratio of R(5:1), the PL intensity 
reaches the maximum and rises by 133 times in comparison 
with the intensity of R(0:1). Afterwards, the PL intensity 
decreases despite increasing the volume ratio from R(6:1) 
to R(7:1). The maximum position and EFMEF as functions 
of volume ratios are delineated in Fig. 5b. The change in 
optical R6G spectra according to the SiO2@Ag to R6G vol-
ume ratio can be explained, based on the distance change 
between R6G and Ag NPs. It is known that a suitable dis-
tance between R6G and Ag NPs will exist for the best energy 
transfer process so that the PL intensity is the strongest. Yet 
the PL intensity will be quenched if the formed distance 
differs from the above suitable one [25, 52]. In the case of 
R(5:1), about 59.17 ppm of the R6G, the distance between 
R6G and Ag NPs can be the most suitable for the energy 
transfer, increasing the PL [25]. In addition, it can also be 
due to the change of SiO2@Ag to R6G volume ratio, as the 
R6G concentration is changed, leading to the change of the 
energy transfer distance [53]. The energy transfer process 
between coated polymers and nanoparticles of composite 
materials has also been known [54, 55]. It can be seen that, 
herein, the surface-functionalized SiO2 spheres possessed 
the functional -NH2 groups of APTMS molecules as anchors 
attracting both Ag NPs and R6G molecules on the surface 
of the SiO2 NSs, so there always ensured a suitable distance 
between them for the MEF effect. Therefore, Ag NPs deco-
rated SiO2 NSs also have a good MEF in comparison with 

Ag NPs [29–31, 33], coated Ag NPs [28, 32], core–shell 
Ag@SiO2 structures [22, 34], and Ag multilayers [35], as 
shown in Table 1.

As-synthesized SiO2@Ag NCs have not only the ability 
of MEF but also SERS. Figure 6 presents Raman spectra 
of SiO2@Ag, 103, 106, and 1.0 ppm MG on different sub-
strates. In the case of SERS (at 1.0 ppm MG), a series of 
peaks appear clearly at 798, 916, 1172, 1365, 1394, and 
1613 cm−1

, which are attributed to vibrations, respectively, 
ring C–H out-of-plane bending (798 and 916 cm−1), ring 
C–H in-plane bending (1172 cm−1), N-phenyl stretching 
(1365  cm−1), C-N symmetrical stretching (1394  cm−1), 
and ring C–C stretching (1613 cm−1) [36, 56]. While the 
Raman signals of SiO2@Ag and 103 ppm MG are recorded 
too weak, peaks are not shown obviously in Fig. 6a. It is 
affirmed that the peaks at 798, 916, 1172, 1365, 1394, and 
1613 cm−1 do not belong to the SiO2@Ag and Si substrates. 
The SERS was not caused by the Si substrate, even though 
the MG concentration was utilized to be 103 ppm [57], or 
owing to the characteristic peak of the Si substrate in differ-
ent wavenumber regions [58]. Only if the MG concentration 
is equal to 106 ppm, a series of peaks at 1172, 1394, and 
1613 cm−1 are observed in the normal Raman spectrum. 
As seen in the 1172 cm−1 mode in Fig. 6b, the intensity of 
the SERS signal is stronger than that of the normal Raman 
signal; this is also true for the others. The cause of the SERS 
is due to the resonance of the vibrational modes with the 
electromagnetic field at the hot spots, as mentioned above. 
To evaluate the enhancement factor of the SERS intensity on 

Table 1   Comparison of EFMEF and EFSERS values of various materials for organic compounds

¯  Nonivestigation

Materials Organic compounds EFMEF EFSERS References

Ag@SiO2@RITC@SiO2 Rhodamine B isothiocyanate 5 - [22]
SiO2-Ag-cicada wing R6G 1.99 - [28]
Flowerlike silver
nanostructures

R6G 71 - [29]

Silver nanostructures SH-oligomer-Cyanine 5 25 - [30]
Silver islands films Rhodamine B 6 - [31]
Ag@SiO2 NCs Glucose 4.9 - [32]
Silver NPs Fluorescein, Cyanine 3, and Cyanine 5 10–20 - [33]
Ag@SiO2 NCs Rhodamine 800 20 - [34]
Silver-SiO2-Silver Nanoburger Fluorescein isothiocyanate 35 [35]
SiO2@Ag NCs R6G 133 - This work
Starch-coated Ag NPs MG - 5.11 × 105 [38]
Ag decorated microstructured PDMS MG - 2.06 × 105 [39]
Ag NPs MG - 7.9 × 106 [40]
Ag NPs modified glass fiber paper MG - 1.3 × 108 [41]
Ag NPs MG - 1.5 × 105 [42]
SiO2@Ag NCs MG - 6.3 × 106 This work
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the SiO2@Ag substrate in comparison with normal Raman 
intensity on the Si substrate, the EFSERS can be determined 
by the following formula (7) [59]:

where ISERS and IRaman are the integrated intensities of the 
SERS and the normal Raman spectrum, respectively. CSERS 
and CRaman are the concentrations of MG solutions depos-
ited on the SiO2@Ag substrate for SERS analysis and the 
Si substrate for normal Raman analysis. Note that the diode 
laser worked under the same experimental conditions for 
all SERS and normal Raman analyses. Used MG volume 
and MG-covered surface area on both substrates are 10 μl 
and 12.46 mm2, respectively, as presented in experiments. 
Consider that SiO2@Ag NCs and MG molecules are dis-
tributed uniformly on the surface of Si substrates. Thus, the 
CSERS and CRaman equal 1.0 and 106 ppm, respectively. For 
the 1172 cm−1 peaks, by integrating the intensity, the EFSERS 
was estimated to be approximately 6.3 × 106. The calculated 
EFSERS value is sensitive to 1.0 ppm MG and close to the 
other results in Table 1 [38–42].

Thus, it can be concluded that the as-fabricated SiO2@
Ag NCs have the capabilities for MEF and SERS. Ag NPs 
were glued to the spherical SiO2 surface by APTMS mol-
ecules via the reduction process, so Ag NPs are fixed on 
the surface of SiO2 NSs. Consequently, hot spots were also 
created where the dye molecules were located at a suitable 
distance to enhance fluorescence and Raman scattering sig-
nals. The PL intensity of the R6G increased strongly when 
the SiO2@Ag content was small at the R(1:1). It reached 
maximum and was observed easily at the R(5:1) with the 
R6G concentration of 59.17 ppm. Besides, the SERS signal 
is obtained so strongly for probing MG dye at the concentra-
tion of 1.0 ppm.

(7)EFSERS =
(

ISERS.CRaman

)

∕
(

IRaman.CSERS

)

Conclusion

In summary, we have demonstrated a facile way to synthe-
size SiO2@Ag nanocomposite based on Stӧber’s method and 
a chemical reduction process. As-formed Ag nanoparticles 
in quasi-spherical shapes with an average crystallite size of 
24 nm were decorated on the SiO2 surfaces. The decora-
tion of the Ag nanoparticle is necessary to create a suitable 
distance for the energy transfer between the dye and the Ag 
nanoparticle. The PL intensity increased by 133 times at 
the SiO2@Ag to R6G volume ratio of (5:1) for probing the 
R6G at 59.17 ppm. The SERS enhancement factor reached 
approximately 6.3 × 106 to detect the MG concentration at 
1.0 ppm.
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