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ABSTRACT
This study focuses on addressing the complexity inherent in various 
amplitude components of blast-induced ground vibration (BIGV), encom
passing vertical, radial, transversal, and the vectoral sum of PPVs of 
particle velocity. It takes into account their nonlinearity across diverse 
quarry environments, and aims to present an enhanced nonlinear intelli
gent system for accurate prediction of these components. Multiple artifi
cial intelligence models were explored and developed for this purpose, 
including a support vector machine (SVM), an adaptive neural network 
based on the fuzzy inference system (ANFIS), and a novel hybrid model 
that combines earthworm optimisation (EO) and ANFIS (EO-ANFIS). The 
study also leverages the empirical model offered by the United States 
Bureau of Mines. The outcomes highlighted that the predictions of the 
three individual components prove to be more accurate compared to the 
vectoral sum of PPVs of particle velocity. However, the latter remains 
a valuable metric for evaluating the magnitude of BIGV in open-pit 
mines. Notably, the hybrid EO-ANFIS model emerges as the most accurate, 
achieving an impressive ~ 75% accuracy across 10 quarries characterised 
by distinct geological conditions.
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1. Introduction

In open pit mining, the fragmentation of hard rocks is commonly achieved through blasting, owing 
to its cost-effectiveness and potent results, despite its notable economic and technical merits. 
Nonetheless, the potential negative repercussions of mine blasting on the surrounding environment 
have garnered substantial attention from state regulatory bodies, mining enterprises, and the 
scientific realm. These concerns encompass various factors, such as ground vibration (BIGV), air 
blasts, flyrock, dust, and harmful substances.

Among these factors, BIGV emerges as a foremost issue, with its impact evaluated using peak 
particle velocity (PPV). The apprehension surrounding this matter is amplified by the considerable 
damage it can cause to structures, residences, bench groupings, and slopes [1–3].
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When blast-induced ground vibrations are induced, particle movement occurs in three dimen
sions, and we measure these motions through specific components. These components encompass:

1. Radial or longitudinal: This component involves movement from the front to the back, aligned 
with the direction of wave propagation. It signifies the oscillation of particles in a direction parallel 
to the wave’s travel.

2. Vertical: This component entails movement in an upward and downward direction, perpen
dicular to the wave’s propagation. It represents the vertical displacement of particles as the wave 
passes through.

3. Transverse: In the case of the transverse component, particles move from side to side, 
perpendicular to both the wave’s direction and the vertical component. This kind of motion 
characterises waves where the oscillations are at right angles to the direction of wave travel.

These components and their associated wave types help us comprehend the intricate nature of 
particle motion and wave propagation during events like blast-induced ground vibrations Figure 1.

To control PPV, scholars have proposed various empirical formulas based on historical blasts 
[5]. Accordingly, the empirical equations were determined based on the mechanical and geological 
properties. Amongst, most of them are based upon the scaled distance between the explosive 
charged (W) and monitoring distance (D) [6–10]. In addition, Kumar, Choudhury and Bhargava 
[5] considered the rock properties to establish an empirical equation for predicting PPV. 
Nevertheless, previous researchers’ results and recommendations indicated that the empirical 
equations’ performance and accuracy might be varied or poorer in different areas due to the 
complex geological and geophysical conditions [11–15].

Lately, there has been a focus on employing cutting-edge methods like artificial intelligence 
(AI) for accurate PPV prediction in competitive settings. A noteworthy example is the work by 
Amiri, Amnieh, Hasanipanah and Khanli [16], who devised a novel approach. They fused an 
artificial neural network (ANN) with the k-nearest neighbour algorithm to forecast PPV at an 
Iranian dam. Impressively, their model achieved a remarkable determination coefficient (R2) of 
0.88, the highest reported so far. In another study, Hasanipanah, Faradonbeh, Amnieh, 
Armaghani and Monjezi [17] incorporated an additional machine learning approach utilising 
a decision tree model, specifically the Classification and Regression Trees (CART), to forecast 
the PPV resulting from blasting activities at an Iranian copper mine. This model achieved 

Figure 1. Illustration of PPV components of a borehole [4].
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a remarkable R2 value of 0.95, demonstrating its high predictive accuracy. Shang, Nguyen, Bui, 
Tran and Moayedi [18] harnessed AI technology employing the ANN model, fine-tuned by the 
firefly optimisation algorithm (FFA), achieving an impressive R2 of 96.6 in forecasting PPV at 
a Vietnamese quarry. Similarly, Chen, Hasanipanah, Rad, Armaghani and Tahir [19] introduced 
a variety of hybrid models by combining ANN, support vector machine (SVM), and optimisa
tion algorithms, such as FFA, PSO (particle swarm optimisation) [20], and GA (genetic 
algorithm) [21], to anticipate PPV. Their investigation revealed FFA-SVM as the optimal data- 
driven model for this purpose. Arthur, Temeng and Ziggah [22] employed the Gaussian 
programming (GP) method to remarkably precise PPV predictions.

Innovative hybrid approaches blending the extreme gradient boosting (XGBoost) and optimisa
tion techniques such as grey wolf optimisation (GWO) [23], whale optimisation algorithm (WOA) 
[24], and biological optimisation (BO) [25] have been devised as cutting-edge models for PPV 
prediction [26]. Additionally, an ANN model rooted in gradient boosted trees (GBT) demonstrated 
its efficacy in PPV prediction due to its simplicity and reliability.

Furthermore, a range of other research initiatives have proposed AI-based models with favour
able outcomes for PPV prediction [27–39]. Over the past two decades, numerous AI-based models 
have emerged, with as many as 12 novel hybrid models specifically for PPV prediction introduced 
in 2021 (as cited in references [27–39]). This surge in research activity underscores the ongoing 
global concern among researchers regarding accurate PPV prediction.

An analysis of existing literature underscores the significance of PPV prediction within the 
mining domain, where numerous AI models showcasing promising outcomes have been intro
duced for this subject. Recent articles, however, have frequently directed their attention towards 
hybrid models, asserting that these hybrids can yield higher levels of accuracy compared to 
conventional models. Nevertheless, there remains a trove of unexplored hybrid models that 
might hold superior potential.

Furthermore, the majority of prior investigations have exclusively addressed the summation 
vector of PPV, disregarding the breakdown of its amplitude components, which include vertical 
PPV, transversal PPV, and radial PPV. Stated differently, preceding studies have concentrated 
solely on predicting the PPV peak point among the three mentioned constituents. This signifies that 
the peak point could be located within the vertical PPV, transversal PPV, or radial PPV. However, 
there are instances where the peak points are not located in the directions of wave propagation. This 
misalignment could significantly impact the structures near the blasting site. Consequently, in cases 
where the peak points are not located in wave propagation directions, the prediction of the normal 
PPV (peak point) and its accuracy are not meaningful. In addition, the application of AI models for 
PPV prediction has predominantly focused on single study sites, with scant attention given to 
extending predictions to encompass diverse regions, as seen in only a handful of studies involving 
multiple mines (e.g. three or four mines) [40,41].

Furthermore, the AI models developed or proposed thus far have exhibited limited generalisa
bility across different sites, and their true capabilities remain underexplored. To address these 
limitations, this study embarks on the following innovations:

● The amplitude components, including vertical PPV, transversal PPV, radial PPV, and the 
Vectoral sum of PPVs, are treated as distinct entities and predicted individually utilising AI 
techniques.

● Drawing from datasets collected from 10 quarries situated in various locations across Nigeria, 
the goal is to predict distinct amplitude components through a comprehensive intelligent model.

● Introducing the innovative EO-ANFIS model (earthworm optimisation – adaptive neuro- 
fuzzy inference system) as a means to forecast PPV amplitude components.

● A comparative analysis is undertaken, contrasting the proposed hybrid EO-ANFIS model with 
ANFIS (without optimisation), SVM, and empirical models in their respective predictions of 
PPV amplitude components.
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The choice of the ANFIS algorithm for hybridisation in predicting PPV resulting from mine 
blasting is rooted in a careful consideration of several factors. While there are indeed more robust 
machine learning (ML) algorithms available, the decision to employ ANFIS was based on 
a deliberate evaluation of the specific needs and characteristics of our prediction task, as well as 
the strengths of ANFIS in addressing those requirements.

ANFIS is particularly suited for this task due to its inherent ability to handle complex and non- 
linear relationships within the data. The prediction of PPV in mine blasting involves intricate 
interactions between various parameters, such as blast design, geological conditions, and explosive 
properties, resulting in a dataset characterised by non-linear dependencies. ANFIS excels in capturing 
these intricate relationships through its fusion of fuzzy logic and neural networks, allowing it to model 
the intricacies of PPV generation more effectively compared to traditional ML algorithms.

Furthermore, ANFIS has the advantage of being interpretable. This is crucial in the context of 
mining and geology, where understanding the underlying factors contributing to PPV is of 
paramount importance. The transparency of ANFIS enables us to gain insights into how different 
input parameters influence the PPV outcomes, aiding in informed decision-making during blast 
design and site management.

While other ML algorithms might exhibit greater complexity or attain higher predictive accuracy 
in specific scenarios, ANFIS strikes a balance between accuracy and interpretability that aligns well 
with the requirements of this study. Additionally, there exists a plethora of ML algorithms and 
neural networks, creating a challenge in determining which algorithm or model is optimal. The 
most effective approach for tackling this task involves the utilisation of the ‘trial and error’ method. 
In this study, the ANFIS model was specifically trial, and its integration with the EO optimisation 
algorithm was investigated. This combination empowers us to craft a model that not only delivers 
precise predictions but also provides insights into the underlying dynamics. As a result, it emerges 
as a valuable tool for enhancing both the safety and efficiency of mine blasting operations.

2. Methodology

2.1. Earthworm optimisation (EO)

EO is a swarm-based metaheuristic algorithm proposed by Wang, Deb and Coelho [42], inspired by 
the behaviours of earthworms in nature. The EO can adopt optimisation problems based on the 
following behaviours:

● Every earthworm can produce offspring with two types of reproduction.
● The generated baby earthworms hold all the genes and length of their parents.
● Operators cannot alter the earthworm singular with the best fitness permit on straight next 

generation. Thus, the earthworm populations can increase in the generations.

For producing offspring, earthworms can carry out the two following ways:
Reproduction 1: The baby earthworm can be born by a single parent based on the hermaph

rodite’s mechanism. This reproduction is characterised by the position of the earthworm (P), and 
the mathematical formula is described in Equation (1): 

Pi1;n ¼ Pmax;n þ Pmin;n � ηPi;n (1) 

where i1 is the ith earthworm in the reproduction 1; n is the number of earthworms; η denotes the 
distance between the child and its parent, which is characterised by the similarity factor. When 
η ¼ 0, the algorithm implements a local search and η ¼ 1, it will implement a global search.

Reproduction 2: Suppose that the EO includes S generated offsprings with S ¼ 1; 2; . . . n. The 
position of the earthworm can be calculated using Equation (2): 
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Pi2 ¼
XS

n¼1
wnPS;n (2) 

with wn is the weight of offspring, and it can be determined using Equation (3): 

wn ¼
1

S � 1

PS

j¼1;j�n
fj

PS

j¼1
fj

¼
1

S � 1
f1 þ f2 þ . . .þ fn� 1 þ fnþ1 þ . . .þ fS� 1 þ fS

f1 þ f2 þ . . .þ fn� 1 þ fn þ fnþ1 þ . . .þ fS� 1 þ fS

(3) 

where fj is the fitness of the jth offspring.
Once the EO implements two types of reproduction, the position of the ith earthworm in the next 

generation is determined as follows: 

P
0

i ¼ βPi1 þ 1 � βð ÞPi2 (4) 

where β denotes the proportional coefficient of Px1 and Px2 , and it is described as follows: 

βtþ1 ¼ γβt (5) 

where t stands for the current generation of earthworm; γ is the cooling factor that was proposed by 
Kirkpatrick, Gelatt and Vecchi [43].

Mathematical model of the EO algorithm for optimisation problems is presented in Figure 2.

2.2. Anfis

ANFIS is a type of ANN that combines the fuzzy inference system (FIS). ANN extricates the fuzzy 
rules and membership functions based on the input information. This way, ANFIS can explain the 
complex relationships of the attributes in the dataset using learning algorithms. ANFIS is a multi- 
layer feedforward network developed based on five layers [44], as shown in Figure 3. Whereas the 
fuzzification and defuzzification layers have adaptive nodes, the nodes in the other layers are fixed. 
The FIS of ANFIS has a higher reasoning ability level using the IF-THEN rules as a knowledge base 
[45]. Through these rules and five layers, the inputs x1; x2; . . . xm from the dataset are forwarded and 
calculated errors.

The rule of the ANFIS can be described as follows:
Suppose that the ANFIS structure has n input variables (i.e. x1; x2; . . . xn), the corresponding 

fuzzy sets are Aj;Bj; . . . Cj. The output inside the defined fuzzy rule is defined as follows: 

Sj ¼ ajx1 þ bjx2 þ . . .þ cjxn þ gj (6) 

where aj; bj; . . . cj; gj are specified parameters of the training process.
Layer 1 now can be calculated as follows: 

L1;j ¼ λA1 x1; L1;j ¼ λB1 x2; L1;j ¼ λC1 xn (7) 

where λA1 x1; λB1 x2; λC1 xn are selected to obtain bell-shaped with the interval [0,1], and they can be 
determined using Equation (8): 

λA1 x1 ¼ λB1 x2 ¼ λC1 xn ¼
1

1þ x� rj
kj

� �2zj

0

B
@

1

C
A (8) 
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where rj; kj; zj denote the set of parameters.
Layer 2 is calculated using Equation (9): 

L2;j ¼ wpj ¼ λA1 x1 � λB1 x2 � λC1 xn; j ¼ 1; 2 (9) 

where pj is the jth rule firing strength of the second layer.
Layer 3 is calculated using Equation (10): 

L3;j ¼
wpj

wp1 þ wp2ð Þ
; j ¼ 1; 2 (10) 

Layer 4 is calculated as follows: 

L4;j ¼ wpjSj; j ¼ 1; 2 (11) 

Layer 5 is calculated as follows: 

L5;j ¼

Pn

j¼1
wpjSj

Pn

j¼1
wpj

(12) 

Figure 2. The EO’s pseudo code.
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Finally, the output of the ANFIS model is calculated based on the predefined threshold value ε, as 
follows: 

output ¼ error; Y < ε
no error; Y � ε

�

(13) 

More details of the ANFIS model can be found in the literature [46–50].

2.3. EO-ANFIS

For training the ANFIS model, the following algorithms were often used to adjust the parameters of 
the membership functions, such as backpropagation, gradient descent, and Runge-Kuta [51]. 
However, early convergence and being stuck in the local optima often occur for these algorithms, 
and the ANFIS model might not achieve global optimal. Therefore, optimisation algorithms can be 
potential solutions in this regard. Herein, the EO algorithm was used as an alternative training 
algorithm to train the ANFIS model, aiming to overcome the mentioned disadvantages of the 
traditional training algorithms.

Accordingly, the EO algorithm generates several solutions based on the optimisation mechan
isms of the earthworms. For training the ANFIS model, each generated solution is a set of weights 
for the membership function used. They are embedded in the network to predict PPV amplitude 
components. The number of solutions depends on the number of populations initialised before 
running the algorithm. RMSE was used as the objective function for each solution, and RMSE was 
calculated to evaluate the model’s fitness. The calculation is repeated with several iterations to 
determine the best fitness of the model (i.e. the lowest RMSE). Finally, the optimal EO-ANFIS 
model predicts PPV amplitude components, as shown in Figure 4.

Figure 3. Architecture of the general ANFIS network.
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3. Materials

To develop a generalised model to predict PPV amplitude components using the proposed EO- 
ANFIS framework, this study considered the PPV datasets collected from 10 various quarries in 
Nigeria. These quarries are located in the Abeokuta and Ibadan areas, as shown in Figure 5, and 
some quarries are shown in Figure 6. The dataset is available in Hammed, Popoola, Adetoyinbo, 
Awoyemi, Adagunodo, Olubosede and Bello [52]. However, the authors only evaluated the PPV 
components for each mine separately based on an empirical method.

In the Abeokuta and Ibadan areas, rock mass properties are pretty complex. The saturated- 
surface-dry mass is in the range of 80–130 grams; the saturated-submerged mass is in the range of 
60–100; the density is in the range of 2.0 to 3.0 g/cm3; the porosity is the interval [1.5, 3.0], uniaxial 
compressive strength (UCS) is in the range of 121.1 MPa to 400 MPa, and shear strength is in the 
range of 60.5 to 92.6 MPa.

For each quarry, we compiled data from 20 blasting patterns, including values for width (W), 
burden (D), vertical PPV (PPV_ver), transversal PPV (PPV_trans), radial PPV (PPV_rad), and the 
vectoral sum of PPVs (PPV_sum). The distance between blasting sites and residential buildings was 
determined using GPS devices. To monitor the amplitude components of PPV, a seismograph 
(specifically, the V9000 from Vibrock Limited) was employed.

The primary explosive used for rock fragmentation in these quarries is Ammonium Nitrate Fuel 
Oil (ANFO). As a result, we collected a total of 200 blasting events across 10 quarries, encompassing 
various geographical regions. It’s crucial to recognise that geological conditions can significantly 
differ between areas in mining and geology. Therefore, our dataset, containing 200 blasting events 
from diverse quarries, stands as a comprehensive and generalised representation suitable for various 
quarry settings.

We’ve summarised the statistical aspects of this dataset in Table 1, while the finer details are 
visually depicted in Figure 7. Among the parameters listed in Table 1, D and W were designated as 
input variables, while the remaining parameters were designated as output variables.

Figure 4. Proposing the EO-ANFIS framework for predicting PPV amplitude components.
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4. Results and discussion

4.1. ANFIS model

For predicting PPV amplitude components by the ANFIS model, the dataset was normalised using 
the MinMax scaling method interval [0,1] to improve the accuracy and the learning rate of the 
ANFIS model. Next, 160 blasting events (~80%) were randomly selected to develop the ANFIS 
model, and the remaining 40 blasting events were used to test the accuracy of the developed ANFIS 
model. The Gaussian membership functions (MFs) were used for valuation extension. To train the 
ANFIS model, the stochastic gradient descent (SGD) algorithm was utilised. The ANFIS model’s 
performance was assessed using a 10-fold cross-validation technique, with the goal of preventing 
the occurrence of overfitting issues.

Herein, the ANFIS model was designed with four MFs, and RMSE was used to evaluate the error 
of the ANFIS model. The model was deployed within 1000 epochs. The training and testing 
performance curves, fuzzy memberships with errors, and the outcome predictions on the training 
dataset of the PPV amplitude components are shown in Figures 8,9,10,11.

4.2. EO-ANFIS model

To enhance the ANFIS model, the EO algorithm was applied to optimise ANFIS’s weights. The 
optimised EO-ANFIS model was then used to predict PPV amplitude components. Besides, the 
same topology network of the ANFIS model was used and the EO optimised this structure by 

Figure 5. Major quarry sites in the field surveys.
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generating solutions with optimised weights. Before the framework in Figure 4 is applied, the 
parameters of EO were initiated with the crossover = 0.9, mutation = 0.01, number of earthworms =  
2, similarity factor = 0.98, proportional factor = 1 and cooling factor = 0.9. The EO-ANFIS model’s 
performance was also assessed using a 10-fold cross-validation technique, like those used for the 
ANFIS model, with the goal of preventing the occurrence of overfitting issues.

Once the EO’s parameters were established, the number of populations (i.e. earthworms) were 
generated with the different number of earthworms, such as 50, 100, 150, 200, 250, 300, 350, 400, 

Figure 6. Some quarries in the Abeokuta and Ibadan areas (source: internet).

Table 1. Summary of the PPV amplitude components.

Statistics D W PPV_ver PPV_rad PPV_trans PPV_sum

Min. 300 650 4.67 4.55 4.63 8
1st Qu. 537.5 1250 16.24 16.07 16.09 28.14
Median 775 1500 27.18 27 27.32 46.94
Mean 775 1518 37.23 37.13 37.04 64.17
3rd Qu. 1012.5 1800 48.69 48.4 48.19 83.9
Max. 1250 2950 142.91 142.94 142.89 247.53
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Figure 7. Plots of the dataset used (a) vertical PPV; (b) radial PPV; (c) transversal PPV; (d) vectoral sum of PPV.
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450, 500. RMSE was used to measure the error of the EO-ANFIS model during training progress. 
The EO algorithm then generated various sets of weights. They were then optimised and imported 
to the ANFIS model for predicting PPV amplitude components with 1000 iterations, as shown in 
Figure 12.

The training results in Figure 12 show that the EO algorithm seems to be very good in learning 
the errors of the ANFIS model, and the EO-ANFIS model’s convergence is also excellent. To 
evaluate the good fitness of the EO-ANFIS model in the training phase, the MFs of the ANFIS 
model, after being optimised by the EO algorithm, was diagnosed, as shown in Figure 13. 
Accordingly, it is conspicuous that the shapes of the MFs after optimising by the EO algorithm 
are bell-shaped. Meanwhile, the shapes of MFs of the traditional ANFIS model are not normal, as 
depicted in Figures 8, 9, 10, 11. In other words, the mean and standard errors of the ANFIS model 

Figure 8. Training performance and the accuracy of the ANFIS model for predicting vertical PPV (a) performance curves; (b) 
Trained MFs.
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are higher than the optimised EO-ANFIS model, and this finding was demonstrated through the 
prediction of PPV amplitude components. However, to have a good reason to interpret the 
effectiveness of the EO-ANFIS model, it needs to be further validated by the testing dataset and 
compared to the other models. These issues are presented and discussed in detail below paragraphs.

4.3. SVM model

In the SVM model, the kernel function is considered the main part of the model. The radial basis 
function was applied to determine the shape of the hyperplane and calculate the error from the 
datasets to the hyperplane through the support vectors. Accordingly, sigma σð Þ and cost cð Þwere 
used to tune the performance of the SVM model through the RMSE and 10-fold cross-validation 
technique. A grid search with different values of σ (e.g. 0.025, 0.05, 0.075, 0.1) and c was set in the 
range of 1 to 50, as shown in Figure 14. The lowest RMSE values were selected as the best 
parameters of the SVM model for predicting PPV amplitude components.

Figure 9. Training performance and the accuracy of the ANFIS model for predicting transversal PPV.
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4.4. USBM model

This study selected the USBM model as the primary empirical model for predicting PPV values and 
compared it with the AI-based models. The formula of USBM was introduced by Duvall and Petkof 
[6], as described in Equation (14). 

PPV ¼ k
D
ffiffiffiffiffi
W
p

� �� b

(14) 

where k and b are the site coefficients that the multivariate regression analysis can determine 
through the field measurements. Herein, various amplitude components of PPV were considered 
based on D and W. The empirical equations for these components finally are defined as described in 
Equations (15-18). The experimental PPV components as the functions of scaled distance are 
shown in Figure 15. 

Figure 10. Training performance and the accuracy of the ANFIS model for predicting radial PPV (a) performance curves; (b) 
Trained MFs.
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PPVvertical ¼ 2219:373
D
ffiffiffiffiffi
W
p

� �� 1:493

(15) 

PPVtransversal ¼ 2217:421
D
ffiffiffiffiffi
W
p

� �� 1:496

(16) 

PPVradial ¼ 2258:486
D
ffiffiffiffiffi
W
p

� �� 1:501

(17) 

PPVsum ¼ 3848:351
D
ffiffiffiffiffi
W
p

� �� 1:497

(18) 

Figure 11. Training performance and the accuracy of the ANFIS model for predicting the vectoral sum of PPVs (a) performance 
curves; (b) Trained MFs.
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4.5. Comparison and evaluation of the developed models

Predicting blast-induced PPV components is challenging due to the effects of uncontrollable 
parameters, e.g. geological and geographical conditions. Therefore, the PPV predictive models’ 
accuracy is challenging for researchers worldwide. The development of the predictive models for 
PPV components based on the training dataset only provides the training point of view with 
insufficient. Therefore, evaluating the developed PPV predictive models based on the testing dataset 
is necessary to check whether the developed PPV models are good/valuable in practical engineering. 
Subsequently, they should be used to compare and select the best one among the developed models. 
The predicted PPV amplitude components by the individual models are shown in Figure 16.

The columns in Figure 16 indicate that the predicted PPV components by the EO-ANFIS model 
are more closely the measured PPV components than the other models. Remarkably, the shapes of 
the graphs are not too dissimilar. However, the range values of the PPV_sum are much larger than 
the three components separately. Consistency was also confirmed with the wide range of PPVs 

Figure 12. Training performance of the EO-ANFIS model for predicting PPV amplitude components (a) vertical PPV prediction; (b) 
transversal PPV prediction; (c) radial PPV prediction; (d) vectoral sum of PPV prediction.
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based on the predicted PPV components by individual models. However, it is hard to determine 
which model best predicts various components. Therefore, statistical criteria are necessary and 
should be used to evaluate the performance of the developed models quantitatively. Herein, the 
accuracies and errors of the developed models were computed and evaluated through various 
statistical metrics, including RMSE, MAPE (mean absolute error), R2, and VAF (variance 
accounted for), as described in Equations (19-22). The computed statistical metrics are shown in 
Table 2. 

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn

i¼1
ðyi PPVs � ŷi PPVsÞ

2

s

(19) 

MAPE ¼
1
n

Xn

i¼1

yi PPVs � ŷi PPVs
yi PPVs

�
�
�
�

�
�
�
�� 100% (20) 

R2 ¼ 1 �

P

i
ðyi PPVs � ŷi PPVsÞ

2

P

i
ðyi PPVs � �yPPVsÞ

2 (21) 

VAF ¼ 1 �
var yi PPVs � ŷi PPVs
� �

var yi PPVsð Þ

� �

� 100 (22) 

Considering the criteria outlined in Table 2, a straightforward evaluation and comparison 
of the developed models’ performance becomes feasible across each distinct PPV 

Figure 13. The shapes of the MFs optimized by the EO algorithm (a) optimized MFs of the PPV_ver; (b) optimized MFs of the 
PPV_trans; (c) optimized MFs of the PPV_rad; (d) optimized MFs of the PPV_sum.
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component and the vectoral sum of PPVs. Upon scrutinising the model errors, which 
encompass RMSE and MAPE, for the separate prediction of the three components and 
the vectoral sum of PPVs, a noticeable pattern emerges: the errors linked to the models’ 
PPV_sum predictions markedly surpass those associated with the prediction of the three 
individual components. To put it simply, the predictive models that focus on individual 
PPV components (namely, PPV_ver, PPV_rad, and PPV_trans) exhibit notably higher levels 
of accuracy than the models targeting the prediction of the vectoral sum of PPVs 
(PPV_sum). This revelation holds significance for mining companies and engineers, as it 
aids in the selection of the most suitable model for addressing a given PPV challenge within 
practical engineering contexts.

In the context of open-pit mines, only three distinct wave components were recorded for each 
blast, namely, PPV_ver, PPV_rad, and PPV_trans. Depending on geological conditions and rock 
properties, the intensity and frequency of these components can vary. Furthermore, their roles and 
intensities differ based on the relative positioning of buildings, benches, and slopes in relation to the 
blast site. In certain scenarios, vertical PPV exhibits the highest intensity, whereas in others, radial 
PPV takes precedence, as visually depicted in Figure 1. This multifaceted interplay underscores the 
complexities that must be considered for accurate predictive modelling in mining operations.

The primary objective of this study is to forecast various components of PPV resulting from 
open-pit mine blasting while assessing the accuracy of these predictions. As presented in Table 2, 
the EO-ANFIS model showcased the least errors across all PPV components, including PPV_sum. 
Impressively, its MAPE values lie within the narrow range of 0.398 to 0.4. It’s noteworthy that 

Figure 14. Training performance of the SVM model for predicting PPV amplitude components (a) vertical PPV; (b) transversal PPV; 
(c) radial PPV; (d) vectoral sum of PPVs.
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although the SVM and USBM models exhibit lower MAPE values than the EO-ANFIS model, their 
RMSE, R2, and VAF metrics fall short of those achieved by the EO-ANFIS model.

Observing the performance of the ANFIS and EO-ANFIS models, it becomes evident that the EO 
algorithm significantly enhances the accuracy of the ANFIS model in predicting PPV components. 
Indeed, this improvement ranges from 5% to 8% when compared to the traditional ANFIS model in 
terms of PPV prediction. The optimisation outcomes are also vividly demonstrated in Figures 8 to 
13. This reaffirms the robustness of the EO algorithm and its pivotal role in refining the precision of 
our predictive model.

In addition, considering the overfitting problem of the developed models, we need to observe 
consistent performance metrics between the training and testing datasets. Overfitting occurs when 
a model learns the training data too well, capturing noise and resulting in poor generalisation to 
new data. To determine the absence of overfitting, we look for similar or reasonably close values of 
these metrics between the two datasets for each model-amplitude component combination. Upon 
reviewing the results, we found that the RMSE, MAPE, R2, and VAF values for each model and 
amplitude component are comparable between the training and testing datasets. This indicates that 
the models are not exhibiting significant discrepancies in their performance when applied to unseen 
data, thus suggesting that overfitting is not a prominent concern. Observing all the developed 
models for all components and their performance metrics on both training and testing datasets in 
Table 2, it is conspicuous that the consistent performance metrics across the training and testing 
datasets for this component and model demonstrate the model’s robustness and its ability to 
generalise well to new data, indicating that overfitting is not an issue. Similarity in performance 

Figure 15. Experimental PPV components as the functions of scaled distance.
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Figure 16. Comparisons of the actual and predicted PPV amplitude components (a) vertical PPV; (b) transversal PPV; (c) radial 
PPV; (d) vectoral sum of PPVs.

20 H. NGUYEN ET AL.



metrics for both datasets across models and amplitude components affirms that the developed 
models are not suffering from overfitting and can provide reliable predictions when applied to 
unseen data.

To understand the distribution law of the predicted PPVs compared to the measured PPVs, 
Figure 17 shows their correlations with an 80% confidence level.

In Figure 17, the outcome predictions of PPV components were compared to the measured PPVs 
with an 80% confidence level. The PPVs predictions by the EO-ANFIS model are better than the 
other models, with the density of data points in the 80% confidence level being more significant 
than what the other models provided. Taking a closer look at the data points that outside of the 80% 
confidence level, most of the predicted PPVs by the EO-ANFIS model are more precise than those 
of the predicted PPVs by the other models. It is interesting to see that this dataset’s recorded PPVs 
are in a wide range. However, the developed models worked well with such a wide range, as 
interpreted in Figure 17. Remarkably, the PPVs predictions in the range of 4.55 mm/s to 25 mm/s 
are outside the 80% confidence level (i.e. more significant than the measured PPVs) on all 
developed models. According to the recommendation of USBM, PPVs should not exceed 50.8  
mm/s. Thus, given the safety aspect, the predictions in the range of 4.55 mm/s to 25 mm/s, with the 
errors of the developed models, are acceptable. However, in the viewpoint of the wasted explosive 
energy, this issue is still needed to consider and optimised to minimise the damage to the 
surroundings.

Considering the generalisability of the developed models for predicting PPV components, it is 
worth it if the percentage error (PE) and its frequency are evaluated in practical engineering. 
Therefore, the outcome predictions by the individual models were considered, and their PE was also 
calculated. Besides, the frequency of PE ranges was also analysed, as shown in Figure 18. 
Accordingly, the PE of the EO-ANFIS model is much better than the ANFIS, SVM, and USBM 
models in predicting PPV components, with most of the PEs in the low range. Meanwhile, the 
frequency of high errors of the ANFIS, SVM, and USBM models is larger than the EO-ANFIS 
model. Observing the PE of the predicted PPV components, we can see that some predicted values 
by the EO-ANFIS model are highest over the other models. However, considering the entire model 
with the whole testing dataset, it is clear that the PE of the EO-ANFIS model is smaller than the 
remaining models.

Based upon all the analysis and discussions, there are good reasons to believe that the EO-ANFIS 
model is the best paradigm to predict PPV components in the current study. The obtained results 

Table 2. The accuracies and errors of the AI and empirical models.

Amplitude component Model

Training dataset Testing dataset

RMSE MAPE R2 VAF RMSE MAPE R2 VAF

PPV_ver ANFIS 13.206 0.326 0.796 79.633 14.286 0.416 0.675 67.473
EO-ANFIS 12.104 0.313 0.829 82.888 12.816 0.398 0.746 74.004
SVM 12.891 0.322 0.810 81.063 14.090 0.367 0.705 70.126
USBM 13.710 0.293 0.785 78.429 15.227 0.381 0.654 65.181

PPV_trans ANFIS 13.402 0.329 0.788 78.827 14.670 0.427 0.657 65.675
EO-ANFIS 12.159 0.313 0.826 82.572 12.859 0.403 0.743 73.785
SVM 12.886 0.325 0.809 80.883 14.056 0.376 0.700 69.722
USBM 13.768 0.296 0.781 78.073 15.323 0.382 0.651 64.919

PPV_rad ANFIS 13.478 0.339 0.788 78.813 14.370 0.422 0.672 67.154
EO-ANFIS 12.255 0.314 0.825 82.485 12.937 0.399 0.741 73.510
SVM 12.914 0.333 0.810 80.081 14.011 0.375 0.698 69.684
USBM 13.737 0.296 0.784 78.376 15.256 0.381 0.651 64.980

PPV_sum ANFIS 22.882 0.322 0.795 79.476 24.714 0.413 0.676 67.535
EO-ANFIS 21.218 0.315 0.824 82.355 22.314 0.400 0.744 73.732
SVM 22.625 0.319 0.802 79.876 24.403 0.368 0.704 70.022
USBM 24.018 0.297 0.779 77.817 26.519 0.379 0.652 65.009
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demonstrated that its accuracy and reliability were improved significantly compared to the other AI 
models or the empirical model (i.e. the USBM model). Furthermore, using the EO-ANFIS model 
for predicting different PPV components is meaningful in practical engineering.

While the EO-ANFIS model proposed in this study is characterised as a black-box model, it can 
be conveniently exported as an API or a tool. This enables engineers and researchers to employ it 
for predicting PPV components in practical engineering applications, as illustrated in Figure 19. 
However, opening the inner workings of this black-box model, along with other analogous models 
in similar studies, remains a significant challenge. This opening could potentially assist engineers 
and researchers in optimising input parameters with the goal of minimising PPV components 
resulting from open-pit mine blasting.

5. Conclusion and remarks

Due to complex and ambiguous factors, PPV components are a considerable concern in open pit 
mines. A generalised model that can predict different PPV components with high accuracy and 
reliability is necessary for such open pit mines. Not only the PPV_sum is necessary to consider and 
predict, but also the other components (e.g. vertical PPV, radial PPV, transversal PPV) are 
necessary to take into account to have a strict control plan for PPV. This study considered different 

Figure 17. Measured versus predicted amplitude components of PPV (a) vertical PPV; (b) transversal PPV; (c) radial PPV; (d) 
vectoral sum of PPVs PVS.
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Figure 18. Percentage error of PPV amplitude components predictions and the histogram of percentage errors (a) vertical PPV; (b) 
transversal PPV; (c) radial PPV; (d) vectoral sum of PPVs PVS.
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Figure 18. (Continued).
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PPV components adequately and proposed a new soft computing model (i.e. EO-ANFIS) for 
predicting different PPV components. The empirical model (i.e. USBM) and other soft computing 
models (i.e. ANFIS, SVM) were also compared to the proposed EO-ANFIS model on all PPV 
components prediction. The following conclusions and remarks are drawn based on the obtained 
results of this study:

(1) The prediction models for three components of PPV provided higher accuracy than what 
they predicted for the Vectoral sum of PPVs.

(2) The AI models (i.e. ANFIS, SVM) are potential alternative solutions for predicting PPV 
components with higher accuracies.

(3) The EO algorithm is a robust optimisation solution to improve the accuracy of the ANFIS 
model for predicting PPV components in this study. The proposed EO-ANFIS model can be 
used as the generalised model for quarries in Nigeria.

(4) Other influential parameters should be investigated to enhance the PPV predictive models, 
aiming to prevent wasted explosive energy and harmful damage to nearby structures, 
including slopes in open pit mines.
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