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1 Introduction

For a point z = (z1, . . . , zn) ∈ C
n , we denote by z′ the vector of the first n − 1

components of z. Inwhat follows,we assignweights 1
2m1

, . . . , 1
2mn−1

, 1 to the variables
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On the Automorphism Groups of Finite Multitype Models 429

z1, . . . , zn−1, zn , respectively, and denote by wt (K ) := ∑n−1
j=1

k j
2m j

the weight of an

(n − 1)-tuple K = (k1, . . . , kn−1) ∈ Z
n−1
≥0 .

A real-valued polynomial P onCn−1 is called aweighted homogeneous polynomial
with weight (m1, . . . , mn−1) (or simply (1/m1, . . . , 1/mn−1)-homogeneous), if

P(t1/2m1 z1, . . . , t1/2mn−1 zn−1) = t P(z1, . . . , zn−1) for all z′ ∈ C
n−1 and t > 0.

In the case when m = m1 = . . . = mn−1, then P is called homogeneous of
degree m. What is more, we note that if P(z′) is a (1/m1, . . . , 1/mn−1)-homogeneous
polynomial, then

P(z′) =
∑

wt (K )+wt (L)=1

aK L z′K z̄′L , (1)

where aK L ∈ C with aK L = āL K (see Corollary 1 in Sect. 3).
In this paper, we establish an explicit description for the automorphism group of a

finite multitype (in the sense of Catlin) model in C
n which is defined by

MP = {z ∈ C
n : Re zn + P(z′) < 0},

where P is a real-valued weighted homogeneous plurisubharmonic polynomial in
C

n−1 without harmonic terms. The finite multitype hypersurface ∂ MP was defined
as a model hypersurface associated to a point of finite Catlin’s multitype (see [16]).
Moreover, the Lie algebra of all germs of infinitesimal automorphisms of ∂ MP at 0
was explicitly described by Kolar et al. [17] (see also [18]).

TheCatlin’smultitype has attracted considerable attention, largely due to the invari-
ant property under biholomorphic mappings and the global regularity issue on the
∂̄-Neumann problem (cf. [5,6]). For the comparison with other well-known finite
type conditions, we refer to [7,25,26] and the references therein. To elaborate our
motivation focused on the biholomorphic equivalence problem of the model MP , we
selectively present the following historical background: As a local version of a result
by Bedford and Pinchuk [2], it is a well-known result of Gaussier [10] that if a domain
� ⊂ C

n is convex of D’Angelo finite type near a boundary orbit accumulation point,
then � is biholomorphically equivalent to a rigid polynomial domain (see [10, Theo-
rem 1]). Recently, a characterization of finite multitype models was also established
by Rong and Zhang in [21]. For the case when� is strongly pseudoconvex,Wong [24]
and Rosay [22] showed that every bounded strongly pseudoconvex domain inCn with
non-compact automorphism group is biholomorphically equivalent to the complex
unit ball. In addition, when n = 2, the associated automorphism group of the model
MP was completely determined in [19].

We also consider two special classes of domains DP and Q P inCn (n ≥ 2) defined,
respectively, by

DP := {(z′, zn) ∈ C
n : |zn|2 + P(z′) < 1};

Q P := {(z′, zn) ∈ C
n : Re zn + P(z′) < 0},
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430 V. T. Ninh et al.

where
P(z′) =

∑

wt (K )=wt (L)=1/2

aK L z′K z̄′L , (2)

where aK L ∈ C with aK L = āL K .
We note that DP is bounded if and only if P(z′) > 0 for all z′ ∈ C

n−1 \{0} (cf. [13]
and Lemma 6). Moreover, if DP is bounded, then the automorphism group Aut(DP )

is non-compact since it contains {φa,θ : a ∈ �, θ ∈ R}, where φa,θ is defined by

(z′, zn) �→
(

(1 − |a|2)1/2m1

(1 − āzn)1/m1
z1, . . . ,

(1 − |a|2)1/2mn−1

(1 − āzn)1/mn−1
zn−1, eiθ zn − a

1 − āzn

)

,

where a ∈ � := {z ∈ C : |z| < 1} and θ ∈ R (see Lemma 7 in Sect. 4). As we can
see in the proof of Lemma 7, the weighted homogeneity of P and the special form (2)
allow us to obtain that φa,θ ∈ Aut(DP ).

Our first aim is to prove that Aut(DP) is exactly generated by the set of all above
automorphisms and G P , where G P is the set of all automorphisms of the form
(z′, zn) �→ (Az′, zn), where A = diag(A1, . . . , Ak) is a block diagonal matrix with
the condition that each A j (1 ≤ j ≤ k) is an invertible (i j − i j−1) × (i j − i j−1)

matrix and P(Az′) ≡ P(z′), for integers i1, . . . , ik such that

m1 = . . . = mi1 > . . . > mi j−1+1 = . . . = mi j > . . . > mik−1+1 = . . . = mik = mn−1.

Our first main result is the following theorem.

Theorem 1 Let P be a real-valued weighted homogeneous plurisubharmonic poly-
nomial in C

n−1 given by (2) with a further assumption that P(z′) > 0 for all
z′ ∈ C

n−1 \ {0}. Then, Aut(DP ) is generated by G P and {φa,θ : a ∈ �, θ ∈ R}.
We sketch briefly themain ideas for the proof of Theorem 1 as follows. The positive

assumption on P on the set Cn−1 \ {0} implies that DP is bounded and |zn| < 1
on DP ; hence, the n-th component of φa,θ is contained in the unit disc in C. In
addition, we note that any automorphism of DP can be smoothly extended to the
boundary (see [3]). Then the above two facts imply that for any f ∈ Aut(DP ), the
restriction mapping f |DP∩{z′=0} ∈ Aut(�), where � is the unit disc in C. More
precisely, the n-th component of f is of the following form:

fn(z) = fn(0′, zn) = eiθn
zn − a

1 − āzn
,

where a ∈ � and θn ∈ R. Replacing f by φ−a,−θn ◦ f , we may assume that f (0) = 0.
Then Lemma 8 in Sect. 4 induced from the weighted homogeneity of the polynomial
P , implies that f ∈ Aut(DP ) with f (0) = 0 must be linear, that is, f ∈ G P ; thus
this concludes the proof of Theorem 1.

Furthermore, we note that DP is biholomorphically equivalent to Q P , where

Q P := {(z′, zn) ∈ C
n : Re zn + P(z′) < 0},
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On the Automorphism Groups of Finite Multitype Models 431

provided that P is a weighted homogeneous polynomial with weight (m1, . . . , mn−1)

given by (2) such that P(z′) > 0 for all z′ ∈ C
n−1 \ {0} (cf. Theorem 5 in Sect. 4).

Consequently, the group Aut(Q P ) is exactly generated by the translations Tt given
by Tt (z) = (z′, zn + i t) for t ∈ R, G P , and the set of all biholomorphisms of the
following form:

(z′, zn) �→
(

(α)1/2m1

(1 + iβzn)1/m1
z1, . . . ,

(α)1/2mn−1

(1 + iβzn)1/mn−1
zn−1,

αzn

1 + iβzn

)

,

where α > 0, β ∈ R.
Next we discuss our second main result concerning a description for the auto-

morphism group of a finite multitype model. First of all, we recall the definition of
WB-domain introduced by Ahn et al. (cf. [1]). A domain MP in C

n is called a WB-
domain (meaning “weighted-bumped”) if

MP = {z ∈ C
n : Re zn + P(z′) < 0},

where

(i) P is a real-valued, weighted homogeneous polynomial on C
n−1 with weight

(m1, . . . , mn−1);
(ii) MP is strongly pseudoconvex at every boundary point outside the set {∂ MP ∩

({0′} × iR)}.
It was also established in [1, Corollary 4.3] that every boundary point of WB-

domain MP admits a peak function for O(MP ), where O(MP ) := { f : MP → C :
f is holomorphic}. Consequently, its Kobayashi and Bergman metrics are moreover
complete (see [1,11]). In addition, there also exists a peak function at infinity for
O(MP ) (cf. Remark 1 in Sect. 2). We especially pay attention to the so-called generic
model which is not biholomorphically equivalent to any rotational model or to any
tubular model (cf. Definitions 2 and 3 in Sect. 5). Let Sλ (λ > 0) and Ts(s ∈ R) be
automorphisms of MP defined, respectively, by

Sλ(z) = (λ1/2m1 z1, . . . , λ
1/2mn−1 zn−1, λzn); Ts(z) = (z′, zn + is).

With the above notations, our second main result is the following theorem.

Theorem 2 Let MP be a generic model satisfying that MP is not biholomorphically
equivalent to Q P and P(z′) > 0 for all z′ ∈ C

n−1 \ {0}. If MP is a WB-domain, then
Aut(MP ) is generated by

{Tt , Sλ : t ∈ R, λ > 0} ∪ G P .

The condition that P is positive on C
n−1 \ {0} plays a substantial role in proving

Theorem 2, namely, it is an essential condition of Theorem 6 as a crucial technical
lemma for the proof of Theorem 2. Thanks to this condition, the n-th component of
any automorphism of MP can be written as a Möbius transformation. Combining this
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432 V. T. Ninh et al.

fact with the invariance of MP under any dilation Sλ with λ > 0 and comparison of the
weighted orders of terms, an explicit form of Aut(MP ) can be described completely.

The organization of this paper is as follows: In Sect. 2 we recall the concept of the
Catlin’s multitype and the existence of a peak function at infinity for O(MP ) is also
given. In Sect. 3, we give some basics on weighted homogeneous polynomials. Then,
explicit descriptions for Aut(DP) and Aut(QP) are given in Sect. 4. Finally, we shall
prove Theorem 2 in detail; several examples are also investigated in Sect. 5.

2 Preliminaries

2.1 Catlin’s Multitype

For the convenience of the exposition, let us recall Catlin’s multitype (for more details,
we refer to [6,25] and the references therein). Let � be a domain in C

n and ρ be a
defining function for � near z0 ∈ ∂�. Let us denote by �n the set of all n-tuples of
numbers μ = (μ1, . . . , μn) such that

(i) 1 ≤ μ1 ≤ . . . ≤ μn ≤ +∞;
(ii) For each j , either μ j = +∞ or there is a set of non-negative integers k1, . . . , k j

with k j > 0 such that

j∑

s=1

ks

μs
= 1.

A weight μ ∈ �n is called distinguished if there exist holomorphic coordinates
(z1, . . . , zn) about z0 with z0 maps to the origin such that

Dα D
β
ρ(z0) = 0 whenever

n∑

i=1

αi + βi

μi
< 1.

Here Dα and D
β
denote the partial differential operators

∂ |α|

∂zα1
1 . . . ∂zαn

n
and

∂ |β|

∂ z̄β1
1 . . . ∂ z̄βn

n

,

respectively.

Definition 1 The multitype M(z0) is defined to be the smallest weight M =
(m1, . . . , mn) in �n (smallest in the lexicographic sense) such thatM ≥ μ for every
distinguished weight μ.

2.2 Peak Function at Infinity forO(MP )

Recently, G. Herbort proved the following result.
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On the Automorphism Groups of Finite Multitype Models 433

Theorem 3 (Lemma 3.3 in [12]) On a WB-domain MP there exist a zero-free holo-
morphic function F∞ and constants L∗ > 0 and N ∈ N such that

(i) −π/8 ≤ arg N
√

F∞ ≤ π/8;
(ii) L−1∗ σ̂ (z) ≤ |F∞(z)| ≤ L∗σ̂ (z);

(iii) 1/2
(
L−1∗ σ̂ (z)

)1/N ≤ 1/2|F∞(z)|1/N ≤ Re N
√

F∞(z) ≤ (
L∗σ̂ (z)

)1/N
,

where σ̂ (z) :=
n−1∑

j=1
|z j |2m j + |zn| for every z ∈ C

n.

Remark 1 The function ϕ(z) := exp
(
− 1

N√F∞(z)

)
is a peak function at infinity

for O(MP ) in the sense that ϕ ∈ O(MP ), |ϕ(z)| < 1 for every z ∈ MP and
lim

MP�z→∞ ϕ(z) = 1.

3 Polynomial of Weighted Homogeneous

In this section, we introduce some basic properties of weighted homogeneous poly-
nomials. First of all, Fu et al. [8] proved the following lemma.

Lemma 1 ([8]) Let f (x1, . . . , xr ) be a C∞-function in a neighborhood of the origin
in R

r . Suppose that there exist k j ∈ N, j = 1, . . . , r, such that

f (t1/k1x1, . . . , t1/kr xr ) = t f (x1, . . . , xr ),

for 1 ≤ t ≤ 1 + ε. Then f has the form of the following

f (x1, . . . , xr ) =
∑

l1,...,lr

bl1,...,lr xl1
1 . . . xlr

r ,

where bl1,...,lr ∈ R, and the sum is taken over all r-tuples (l1, . . . , lr ), l j ∈ Z, l j ≥ 0,

such that
∑r

j=1
l j
k j

= 1.

From Lemma 1, one can easily establish the following.

Corollary 1 If P is a weighted homogeneous polynomial with weight (m1, . . . , mn−1),
then

P(z′) =
∑

wt (K )+wt (L)=1

aK L z′K z̄′L , ∀z′ ∈ C
n−1,

where aK L ∈ C with aK L = āL K .

Now we prepare one more lemma which is known as Euler’s identity for weighted
homogeneous polynomials as follows.

123

Author's personal copy



434 V. T. Ninh et al.

Lemma 2 If P is a weighted homogeneous polynomial with weight (m1, . . . , mn−1),
then

2Re
n−1∑

j=1

∂ P

∂z j

z j

2m j
= P(z′), ∀ z′ ∈ C

n−1. (3)

The proof of this lemma easily follows from the weighted homogeneity condition
of P , and we omit it.
Notice that any WB-domain is of D’Angelo finite type. Consequently, its boundary is
variety-free at any boundary point, and hence the set {P = 0} contains no non-trivial
analytic set passing through the origin. The following lemma assures the uniqueness
of Euler’s identity for non-degenerate weighted homogeneous polynomials.

Lemma 3 Let P be a weighted homogeneous polynomial with weight (m1, . . . , mn−1)

given by (1) such that {P = 0} contains no non-trivial analytic set passing through
the origin. If there exist α1, . . . , αn−1 ∈ R such that

2Re
n−1∑

j=1

α j
∂ P

∂z j

z j

2m j
= P(z′), ∀ z′ ∈ C

n−1, (4)

then α1 = . . . = αn−1 = 1.

Proof Suppose that there exist α1, . . . , αn−1 ∈ R such that (4) holds. Then, from
Lemma 2 we immediately have

2Re
n−1∑

j=1

∂ P

∂z j

z j

2m j
= P(z′), ∀ z′ ∈ C

n−1.

Hence, combining this fact with (4) one gets

2Re
n−1∑

j=1

(1 − α j )
∂ P

∂z j

z j

2m j
= 0, ∀ z′ ∈ C

n−1;

this relation yields α1 = . . . = αn−1 = 1 since the set {P = 0} contains no non-trivial
analytic set passing through the origin, as desired. ��

Note that Kim and the first author in [14, Lemma 4] proved that Re (i z R(z)) = 0
if and only if R(z) = R(|z|) provided that R ∈ C1(�ε) for some ε > 0, where
�ε := {z ∈ C : |z| < ε}. The following lemma generalizes this result to the case of
weighted homogeneous polynomials.

Lemma 4 Let P be a weighted homogeneous polynomial with weight (m1, . . . , mn−1).
Then

2Re
n−1∑

j=1

i
∂ P

∂z j

z j

2m j
= 0, ∀ z′ ∈ C

n−1,
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On the Automorphism Groups of Finite Multitype Models 435

if and only if

P(z′) =
∑

wt (K )=wt (L)=1/2

aK L z′K z̄′L , ∀ z′ ∈ C
n−1, (5)

where aK L ∈ C with aK L = āL K .

Proof For the proof of “only if” part, it suffices to prove the assertion for P(z′) =
az′ I z̄′ J + āz′ J z̄′ I

(a ∈ C
∗), where I, J are (n − 1)-tuples with wt (I ) + wt (J ) = 1.

Indeed, since

2Re
n−1∑

k=1

i
∂ P

∂zk

zk

2mk
= 0, ∀ z′ ∈ C

n−1,

we have

0 =
(

n−1∑

k=1

ik

2mk

)

2Re
(

iaz′ I z̄′ J
)

+
(

n−1∑

k=1

jk
2mk

)

2Re
(

i āz′ J z̄′ I
)

=
(

n−1∑

k=1

ik

2mk
−

n−1∑

k=1

jk
2mk

)

2Re
(

iaz′ I z̄′ J
)

for all z′ ∈ C
n−1. This yields

wt (I ) =
n−1∑

k=1

ik

2mk
=

n−1∑

k=1

jk
2mk

= wt (J )

or

Re
(

iaz′ I z̄′ J
)

= 0, ∀z′ ∈ C
n−1.

The first case indicates that the conclusion holds. Then the conclusion follows imme-
diately since we must have I = J in the latter case.

The proof of “if” part directly follows from differentiating both sides of (5) with
respect to z j , 1 ≤ j ≤ n − 1. This completes the proof of this lemma. ��

In the remaining of this section, we shall recall some known results on the holo-
morphic extension of a biholomorphism to a neighborhood of a given boundary point,
and then we prove a key lemma which will be used in proving Theorem 2. First of all,
we define the cluster set as follows. If f : D → C

N is a holomorphic function on a
domain D ⊂ C

n and z0 ∈ ∂ D, we denote by C( f, z0) the cluster set of f at z0:

C( f, z0) = {w ∈ C
N : w = lim f (z j ), z j ∈ D, and lim z j = z0}.

A. B. Sukhov [23] proved the following:
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436 V. T. Ninh et al.

Lemma 5 (See Corollary 1.4 in [23]) Suppose that D and G are C∞-smooth domains
in C

n. Suppose that D and G are pseudoconvex of finite type near z0 ∈ ∂ D and
w0 ∈ ∂G, respectively. Let f be a biholomorphic mapping from D onto G such that
w0 ∈ C( f, z0). Then f and f −1 extend smoothly to ∂ D in some neighborhoods of the
points z0 and w0, respectively.

Concerning proper holomorphic maps between bounded domains, we recall the fol-
lowing theorem given in [20, Theorem 2’]

Theorem 4 Let D, D′ ⊂ C
n, n ≥ 2, be bounded domains and let f : D → D′

be a proper holomorphic map such that f extends as a holomorphic correspondence
to a neighborhood U ⊂ C

n of a point a ∈ ∂ D. Suppose that ∂ D ∩ U, ∂ D′ ∩ U ′
are real analytic hypersurfaces of finite type, where U ′ ⊂ C

n is a neighborhood of
f (a) ∈ ∂ D′. Then f extends holomorphically to a (possibly smaller) neighborhood
of a ∈ ∂ D.

As a generalization of a result in [4, Lemma 3.2] considered in C
2, we have the

following proposition in Cn which is a main ingredient in proving Theorem 2.

Proposition 1 Let MP and MQ be two WB-domains. Suppose that ψ : MP → MQ

is a biholomorphism. Then there exist t0 ∈ R and z0 ∈ ∂ MQ such that ψ and ψ−1

extend to be holomorphic in neighborhoods of (0, i t0) and z0, respectively.

Proof Thanks to Remark 1, there exists a holomorphic function φ on MQ which is
continuous on MQ such that |φ| < 1 for z ∈ MQ and tends to 1 at infinity. Let
ψ : MP → MQ be a biholomorphism. We claim that there exists t0 ∈ R such that
lim infx→0− |ψ(0′, x + i t0)| < +∞. Indeed, if this would not be the case, the function
φ◦ψ would be equal to 1 on the half plane {(z′, zn) ∈ C

n : Re zn < 0, z′ = 0} and this
is impossible since |φ| < 1 for |z| � 1. Therefore, we may assume that there exists a
sequence {xk} such that xk < 0, limk→∞ xk = 0 and limk→∞ ψ(0′, xk + i t0) = z0 ∈
∂ MQ . Hence, the conclusion follows from Lemma 5 and Theorem 4. ��

4 Automorphism Groups of DP and QP

This section is devoted to the explicit descriptions for the automorphism groups of
DP and Q P , where DP and Q P are, respectively, defined by

DP := {(z′, zn) ∈ C
n : |zn|2 + P(z′) < 1};

Q P := {(z′, zn) ∈ C
n : Re zn + P(z′) < 0},

where
P(z′) =

∑

wt (K )=wt (L)=1/2

aK L z′K z̄′L , (6)

where aK L ∈ C with aK L = āL K .
It is well-known that if DP is bounded, then P(z′) ≥ 0 for all z′ ∈ C

n−1 (cf. [13]).
Moreover, we have the following lemma, which is a generalization of this fact.
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On the Automorphism Groups of Finite Multitype Models 437

Lemma 6 Let P be a weighted homogeneous polynomial with weight (m1, . . . , mn−1)

given by (1). Then, the domain D̃P , defined by

D̃P := {(z′, zn) ∈ C
n : |zn|2 + P(z′) < 1},

is bounded in C
n if and only if P(z′) > 0 for all z′ ∈ C

n−1 \ {0}.

Proof Let P be a weighted homogeneous polynomial with weight (m1, . . . , mn−1)

given by (1). First of all, we shall prove the “only if” part of the lemma. Suppose that
D̃P is bounded. Then, one can show that P(z′) > 0 for all z′ ∈ C

n−1 \ {0}: suppose
otherwise. Then, there exists a point z′ ∈ C

n−1 \ {0} such that P(z′) ≤ 0. Since P is
a weighted homogeneous polynomial with weight (m1, . . . , mn−1), it follows that

P(t1/2m1 z1, . . . , t1/2mn−1 zn−1) = t P(z1, . . . , zn−1) ≤ 0, ∀t > 0.

Then, this yields (t1/2m1 z1, . . . , t1/2mn−1 zn−1, 0) ∈ D̃P for all t > 0, which contra-
dicts the boundedness of D̃P . Hence, we obtain P(z′) > 0 for all z′ ∈ C

n−1 \ {0}.
Next, we shall prove the “if” part of the lemma. Suppose that P(z′) > 0 for all

z′ ∈ C
n−1 \ {0}. Then, since D̃P ⊂ {(z′, zn) ∈ C

n : 0 ≤ P(z′) < 1; |zn| < 1}, it
suffices to show that the domain {z′ ∈ C

n−1 : 0 < P(z′) < 1} is bounded. Aiming
for a contradiction, suppose that there exists a sequence {z′k}∞k=1 ⊂ {z′ ∈ C

n−1 : 0 <

P(z′) < 1} such that z′k := (zk
1, . . . , zk

n−1) → ∞ as k → ∞. Choose a sequence

{tk}∞k=1 such that each tk is positive and ‖(t1/2m1
k zk

1, . . . , t1/2mn−1
k zk

n−1)‖ = 1, where
‖·‖ denotes the Euclidean norm inCn−1. Notice that tk → 0+ as k → ∞. Then, since
P is aweighted homogeneous polynomialwithweight (m1, . . . , mn−1), it follows that

P(t1/2m1
k zk

1, . . . , t1/2mn−1
k zk

n−1) = tk P(zk
1, . . . , zk

n−1) → 0

as k → ∞, which is absurd since P is continuous on the sphere {z′ ∈ C
n−1 : ‖z′‖ = 1}.

Altogether, the proof of this lemma is complete. ��

We note that Aut(DP ) is non-compact by virtue of the following lemma.

Lemma 7 Let P be a weighted homogeneous polynomial with weight (m1, . . . , mn−1)

given by (6) such that P(z′) > 0 for all z′ ∈ C
n−1 \ {0}. Then, Aut(DP ) contains the

following automorphisms φa,θ defined by

(z′, zn) �→
(

(1 − |a|2)1/2m1

(1 − āzn)1/m1
z1, . . . ,

(1 − |a|2)1/2mn−1

(1 − āzn)1/mn−1
zn−1, eiθ zn − a

1 − āzn

)

,

where a ∈ � and θ ∈ R.
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Proof Indeed, a direct computation shows that

∣
∣
∣
∣

zn − a

1 − āzn

∣
∣
∣
∣

2

− 1 = |zn − a|2 − |1 − āzn|2
|1 − āzn|2

= |zn|2 + |a|2 − 1 − |a|2|zn|2
|1 − āzn|2

= (|zn|2 − 1)(1 − |a|2)
|1 − āzn|2 .

Moreover, since P has the form as in (6), it follows that

P(φ̃a,θ (z)) = 1 − |a|2
|1 − āzn|2 P(z′),

where φa,θ (z) = (φ̃a,θ (z), (φa,θ )n(z)). Therefore, one can deduce that

|(φa,θ )n(z)|2 − 1 + P(φ̃a,θ (z)) < 0

if and only if

|zn|2 − 1 + P(z′) < 0.

Hence, the conclusion can be derived easily from the previous relation. ��
In what follows, let i1, . . . , ik be integers such that m1 = . . . = mi1 > . . . >

mi j−1+1 = . . . = mi j > . . . > mik−1+1 = . . . = mik = mn−1.Denote byG P the set of
all automorphisms of the form (Az′, zn), where A = diag(A1, . . . , Ak) is an invertible
block diagonal matrix such that each A j (1 ≤ j ≤ k) is an (i j − i j−1) × (i j − i j−1)

matrix and P(Az′) ≡ P(z′). In addition, denote by hs(z) a germ at the origin of
holomorphic functions with weighted order greater than s (s > 0).

Before proceeding further, we now prepare a crucial technical lemma for the proofs
of Theorems 1 and 2.

Lemma 8 Let P be a weighted homogeneous polynomial with weight (m1, . . . , mn−1)

given by (1) such that {P = 0} contains no non-trivial analytic set passing through the
origin. Let f̃ = ( f1, . . . , fn−1) be a biholomorphism on a neighborhood of 0 ∈ C

n−1

with f̃ (0) = 0. If P( f1(z′), . . . , fn−1(z′)) = P(z′) for all z′ in a neighborhood of
0 ∈ C

n−1, then f̃ can be extended to a linear mapping on C
n−1, and moreover the

mapping f (z′, zn) := ( f̃ (z′), zn) belongs to G P .

Proof Let P be a weighted homogeneous polynomial as above such that

P( f1(z
′), . . . , fn−1(z

′)) = P(z′)

for all z′ in a neighborhood of 0 ∈ C
n−1. Let us denote by U (0) such a neighborhood

of 0 ∈ C
n−1. Without loss of generality, we may assume that

m1 ≥ m2 ≥ . . . ≥ mn−1.
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Moreover, since P is a weighted homogeneous polynomial with weight (m1, . . . ,

mn−1), it follows that

P

(

f1

(

t
1

2m1 z1, . . . , t
1

2mn−1 zn−1

)

, . . . , fn−1

(

t
1

2m1 z1, . . . , t
1

2mn−1 zn−1

))

= t P(z′)
(7)

for all t ∈ (0, 1) and z′ ∈ U (0).
Now we shall prove that d f = Id at the origin. Let us consider the two following

cases:
Case 1 m1 > m2 > . . . > mn−1. Fix a point z′ ∈ U (0). Then, since t

1
2m1 > t

1
2m2 >

. . . > t
1

2mn−1 for any t ∈ (0, 1), one has for each 1 ≤ j ≤ n − 1

f j (z
′) = a j, j z j + h1/2m j (z

′),

where a1,1, . . . , an−1,n−1 �= 0. Recall that hs(z) denotes a germ at the origin of
holomorphic functions with weighted order greater than s. Then Eq. (7) becomes

P

(

t
1

2m1 a1,1z1 + o

(

t
1

2m1

)

, . . . , t
1

2mn−1 an−1,n−1zn−1 + o

(

t
1

2mn−1

))

= t P(z′)
(8)

for all t ∈ (0, 1) and z′ ∈ U (0). Dividing both sides of (8) by t , it follows that

P

(

a1,1z1 + o

(

t
1

2m1

)/
t

1
2m1 , . . . , an−1,n−1zn−1 + o

(

t
1

2mn−1

)/
t

1
2mn−1

)

= P(z′)
(9)

for all t ∈ (0, 1) and z′ ∈ U (0). Now, by evaluating the limit as t → 0+ of the
left-hand side of (9), we arrive at

P(a1,1z1, a2,2z2, . . . , an−1,n−1zn−1) = P(z′) (10)

for all z′ ∈ U (0). A similar argument for f −1 gives

P
(

a−1
1,1z1, a−1

2,2z2, . . . , a−1
n−1,n−1zn−1

)
= P(z′) (11)

for all z′ ∈ U (0). For a fixed point z′ ∈ C
n−1, choose a t > 0 sufficiently small so

that
(

t
1

2m1 z1, . . . , t
1

2mn−1 zn−1

)

∈ U (0).

Therefore, by (10) and (11), we have

P

(

t
1

2m1 z1, . . . , t
1

2mn−1 zn−1

)

= P

(

t
1

2m1 a1,1z1, . . . , t
1

2mn−1 an−1,n−1zn−1

)

= P

(

t
1

2m1 a−1
1,1z1, . . . , t

1
2mn−1 a−1

n−1,n−1zn−1

)

.
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Since P is a weighted homogeneous polynomial with weight (m1, . . . ,

mn−1), it follows that

P (z1, . . . , zn−1) = P
(
a1,1z1, . . . , an−1,n−1zn−1

)

= P
(

a−1
1,1z1, . . . , a−1

n−1,n−1zn−1

)

for all z′ ∈ C
n−1. Therefore, we conclude that

ϕ(z) := (a1,1z1, a2,2z2, . . . , an−1,n−1zn−1, zn)

is an automorphism of MP , that is, ϕ ∈ G P . Replacing f by f ◦ϕ−1, one may assume
that a1,1 = . . . = an−1,n−1 = 1. Thus, we obtain d f = Id at the origin.

Case 2 m1 ≥ m2 ≥ . . . ≥ mn−1. Following Case 1, one can write f (z) =
(Az′ + g(z′), zn), where g = (g1, . . . , gn−1) is holomorphic in a neighborhood
of the origin in C

n−1 such that each g j has weighted order greater than 1/2m j ,
j = 1, . . . , n − 1. Collecting the terms of weighted order 1, (7) yields the map-
ping (z′, zn) �→ (Az′, zn)which belongs to G P . Therefore, after taking a composition
with (z′, zn) �→ (A−1z′, zn), we may assume that d f = Id at the origin.
Now our goal is to prove that f = Id. Indeed, we may assume that f̃ (z′) = z′ + g(z′),
i.e., for each 1 ≤ j ≤ n − 1,

f j (z
′) = z j + g j (z

′),

where g = (g1, . . . , gn−1) is holomorphic in a neighborhood of the origin in C
n−1

such that each g j has weighted order greater than 1/2m j , j = 1, . . . , n−1. Therefore,
we have

P
(
z1 + g1(z

′), z2 + g2(z
′), . . . , zn−1 + gn−1(z

′)
) = P(z′) (12)

for all z′ ∈ U (0). Since {P = 0} contains no non-trivial analytic set passing through
the origin, comparison of the weighted orders of terms in (12) shows that g1 ≡ . . . ≡
gn−1 ≡ 0 on U (0). Hence, by the Identity Theorem, we conclude that f = Id. ��
We are now ready to prove Theorem 1.

Proof (Proof of Theorem 1) Let f ∈ Aut(DP ) be arbitrary. Then, since DP ⊂ C
n is

a bounded pseudoconvex domain of finite type, f extends smoothly to DP (see [3]).
Therefore, the points (0′, eiθ ) are preserved by f . Thus, f j (0′, zn) ≡ 0 for j =
1, . . . , n − 1 and f |DP∩{z′=0}∈ Aut(�), where � is the unit disc in C. Moreover, it
follows that

fn(z) = fn(0′, zn) = eiθn
zn − a

1 − āzn

for some a ∈ � and θn ∈ R. Consequently, we have f (0) = (0′,−a) (up to a rotation
in the zn-direction). Replacing f by φ−a,−θn ◦ f , we may assume that f (0) = 0. This
yields

fn(z) = eiθn zn .
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Moreover, since f ∈ Aut(DP ), we get

|zn|2 + P( f1(z), . . . , fn−1(z)) ≤ 1

if and only if |zn|2 + P(z′) ≤ 1. A direct computation together with the invariance of
the boundary ∂ DP under biholomorphisms shows that f1, . . . , fn−1 are independent
of zn and holomorphic in a neighborhood of 0 ∈ C

n−1. Moreover, we get

P( f1(z
′), . . . , fn−1(z

′)) = P(z′)

for all z′ in a neighborhood of 0 ∈ C
n−1. Thus it follows from Lemma 8 that f ∈ G P

which completes the proof. ��
The following theorem is essentially well-known (cf. [2]).

Theorem 5 Let P be a weighted homogeneous polynomial with weight (m1, . . . ,

mn−1) given by (6) such that P(z′) > 0 for all z′ ∈ C
n−1 \ {0}. Then, DP is biholo-

morphically equivalent to Q P .

Now we shall compute the Aut(Q P ), where

Q P := {(z′, zn) ∈ C
n : Re zn + P(z′) < 0},

where P is given by (6) and P(z′) > 0 for all z′ ∈ C
n−1 \ {0}. We give at first the

following lemma which can be derived easily from a straightforward computation.

Proposition 2 Let P be a weighted homogeneous polynomial with weight (m1, . . . ,

mn−1) given by (6) such that P(z′) > 0 for all z′ ∈ C
n−1 \ {0}. Then, Aut(Q P )

contains the automorphisms fα,β , α > 0, and β ∈ R, defined by

(z′, zn) �→
(

(α)1/2m1

(1 + iβzn)1/m1
z1, . . . ,

(α)1/2mn−1

(1 + iβzn)1/mn−1
zn−1,

αzn

1 + iβzn

)

.

Conversely, if Aut(MP ) contains the automorphism fα,β for some α, β ∈ R with
α > 0 and β �= 0, then MP is exactly Q P . More precisely, we have the following
proposition.

Proposition 3 Let P be a weighted homogeneous polynomial with weight (m1, . . . ,

mn−1) given by (1) such that P(z′) > 0 for all z′ ∈ C
n−1 \{0}. Suppose that Aut(MP )

contains the following automorphisms fα,β defined by

(z′, zn) �→
(

(α)1/2m1

(1 + iβzn)1/m1
z1, . . . ,

(α)1/2mn−1

(1 + iβzn)1/mn−1
zn−1,

αzn

1 + iβzn

)

for some α, β ∈ R with α > 0 and β �= 0. Then, the polynomial P always has the
following form:

P(z′) =
∑

wt (K )=wt (L)=1/2

aK L z′K z̄′L ,
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where aK L ∈ C with aK L = āL K .

Proof Since fα,β ∈ Aut(MP ) for some α, β ∈ R with α > 0 and β �= 0, it follows
that

Re
zn

1 + iβzn
+ P

(
1

(1 + iβzn)1/m1
z1, . . . ,

1

(1 + iβzn)1/mn−1
zn−1

)

= 0

for all z ∈ ∂ MP . This is equivalent to

Re
(

zn − iβz2n + . . .
)

+ P

(

z1 − iβznz1
m1

+ . . . , . . . , zn−1 − iβznzn−1

mn−1
+ . . .

)

= 0

for all z ∈ ∂ MP , where the dots denote terms of weight greater than 2. By expanding
P into Taylor series, one has

Re zn + Re
(
−iβz2n

)
+ P(z′) + Re

⎛

⎝−iβzn

n−1∑

j=1

∂ P

∂z j
(z′)

z j

m j

⎞

⎠ + . . . = 0

for all z ∈ ∂ MP , where the dots denote terms of weight greater than 2. Therefore, we
obtain

Re
(
−iβz2n

)
+ Re

⎛

⎝−iβzn

n−1∑

j=1

∂ P

∂z j
(z′)

z j

m j

⎞

⎠ = 0

for all z ∈ ∂ MP . Moreover, if we let zn = −P(z′), then we have

Re

⎛

⎝i
n−1∑

j=1

∂ P

∂z j
(z′)

z j

m j

⎞

⎠ = 0

for all z′ ∈ C
n−1. In conclusion, Lemma 4 ensures that

P(z′) =
∑

wt (K )=wt (L)=1/2

aK L z′K z̄′L ,

where aK L ∈ C with aK L = āL K . ��

5 Automorphisms of a Finite Multitype Model

In this section,we provide the proof of Theorem2 as our secondmain result. First of all,
we recall some notations and definitions. Let Sλ (λ > 0), Ts(s ∈ R) be automorphisms
of MP which are defined, respectively, by

Sλ(z) = (λ1/2m1 z1, . . . , λ
1/2mn−1 zn−1, λzn); Ts(z) = (z′, zn + is).
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Definition 2 A model MP is called tubular (resp. rotational) if MP is biholomor-
phically equivalent to a model MP̃ , where a weighted homogeneous polynomial
P̃ satisfies P̃(z1, . . . , zn−1) = P̃(Im z1, z2, . . . , zn−1) (resp. P̃(z1, . . . , zn−1) =
P̃(|z1|, z2, . . . , zn−1)) for all z′ ∈ C

n−1.

Definition 3 A model MP is called generic if it is not biholomorphically equivalent
to any rotational model or to any tubular model.

By expanding P into Taylor series at α = (α1, . . . , αn−1) ∈ C
n−1, one has

P(z′) =
∑

wt (K )+wt (L)=1

aK L z′K z̄′L

= P(α) + 2Re
∑

|p|>0

D p P(α)

p! (z′ − α)p +
∑

|p|,|q|>0

D p D
q

P(α)

p!q! (z′ − α)p(z̄′ − ᾱ)q ,

where D p and D
q
denote the partial differential operators

∂ |p|

∂z p1
1 . . . ∂z pn−1

n−1

and
∂ |q|

∂ z̄q1
1 . . . ∂ z̄qn−1

n−1

,

respectively. By the following change of variables

{
wn = zn + P(α) + 2

∑
|p|>0

D p P(α)
p! (z′ − α)p

w′ = z′ − α,

a defining function for MP is now given by

ρ(z) = Re wn +
∑

|p|,|q|>0

D p D
q

P(α)

p!q! (w′)p(w̄′)q

= Re wn +
∑

|p|,|q|>0; wt (p)+wt (q)<1

D p D
q

P(α)

p!q! (w′)p(w̄′)q

+
∑

|p|,|q|>0; wt (p)+wt (q)=1

D p D
q

P(α)

p!q! (w′)p(w̄′)q .

Inwhat follows,we assume that MP is generic.Moreover,we introduce the notation

P2m1,...,2mn−1(∂ MP ) := {z ∈ ∂ MP : M(z) = (2m1, 2m2, . . . , 2mn−1, 1)}

and � := {(0′, i t) : t ∈ R}.
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Lemma 9 Let P be a weighted homogeneous polynomial with weight (m1, . . . , mn−1)

given by (1) such that P(z′) > 0 for all z′ ∈ C
n−1 \ {0}. Suppose that MP is generic.

If at least one of the integers m1, . . . , mn−1 is greater than 2, then

P2m1,...,2mn−1(∂ MP) = � := {(0′, i t) : t ∈ R}.

Proof It is easy to show that � ⊂ P2m1,...,2mn−1(∂ MP ). So, it suffices to show that
P2m1,...,2mn−1(∂ MP ) ⊂ �. Let p = (α,−P(α) + i t) (α = (α1, . . . , αn−1) �= 0) be
any boundary point in ∂ MP \ �.

Note that by [6, Main Theorem, p. 531], we have

M(p) ≤ (2m1, . . . , 2mn−1, 1).

Therefore, ifM(p) = (2m1, . . . , 2mn−1, 1), then

D p D
q

P(α) = 0 whenever wt (p) + wt (q) < 1.

Hence, we obtain

P(α + z′) = P(α) + 2Re
∑

|p|>0; wt (p)≤1

D p P(α)

p! (z′)p

+
∑

|
p|, |q| > 0; wt (p) + wt (q) = 1

D p D
q

P(α)

p!q! (z′)p(z̄′)q .

This implies that

Pj,k̄(α + z′) = Pj,k̄(z
′), j, k = 1, . . . , n − 1, (13)

where Pj,k̄(z
′) = ∂2P

∂z j ∂ z̄k
(z′). By a change of coordinates, we may assume that α =

(1, 0, . . . , 0). Fix z� for all � ≥ 2 and let

f (x, y) = P1,1̄(x + iy, z2, . . . , zn−1)

for all z1 := x + iy ∈ C. Thus, it follows from (13) that f (x + 1, y) = f (x, y) for
all (x, y) ∈ R

2. Hence, for each y ∈ R f (x, y) is a periodic polynomial in x , and
thus f (x, y) does not depend on x , i.e., f (x, y) = g(y), where g is a polynomial in
y. Combining this fact with the assumption that P has no harmonic terms, one can
conclude that P(z1, . . . , zn−1) = P(Im z1, z2, . . . , zn−1) for all z′ ∈ C

n−1, and hence
MP is biholomorphically equivalent to a tubular model. This leads to a contradiction
and hence the proof is complete. ��

We now prepare the following theorem as one of the main ingredients in proving
Theorem 2.
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Theorem 6 Let P be a weighted homogeneous polynomial with weight (m1, . . . , mn−1)

given by (1) such that P(z′) > 0 for all z′ ∈ C
n−1 \ {0}. Suppose that MP is a generic

model which is not biholomorphically equivalent to Q P . Suppose that f ∈ Aut(MP ),
f (0) = 0 and there exist neighborhoods U1, U2 of 0 ∈ C

n such that f extends to a
local diffeomorphism between U1 ∩ MP and U2 ∩ MP . Then after compositions with
St (t > 0) or with an element of G P if necessary, f = Id.

Proof Let us define a set H by setting H := {z ∈ C : Re z < 0} and recall that � :=
{(0′, i t) : t ∈ R}. Then we consecutively define g j (zn) := f j (0′, zn) (1 ≤ j ≤ n−1),
and gn(zn) := fn(0′, zn) for all zn ∈ H. Since the Catlin’s multitype is a CR-invariant,
it follows from Lemma 9 that, after shrinking the neighborhoods U1, U2 if necessary,
we may assume that f (U1 ∩ �) = U2 ∩ �. Consequently, for each 1 ≤ j ≤ n − 1,
we have g j (i t) = 0 for all −ε0 < t < ε0 with ε0 > 0 small enough. Then it follows
from the Identity Theorem that g j (zn) = 0 for all zn ∈ H. Moreover, since P(z′) > 0
for all z′ ∈ C

n−1 \ {0}, we have gn ∈ Aut(H). Since gn(0) = 0, one can show that

gn(zn) = αzn

1 + iβzn
for some α > 0 and β ∈ R. In addition, since fn(MP ) ⊂ H and

f is biholomorphic, we immediately obtain fn(z) = fn(0′, zn) = αzn

1 + iβzn
for some

α > 0 and β ∈ R.
We now consider the following cases:

Case 1 β �= 0.
In this case, by expanding fn into Taylor series, one can obtain

fn(z) = αzn

1 + iβzn
= αzn − iβαz2n + . . . ,

where the dots denote terms of weight greater than 2. Moreover, due to the invariance
of MP under any map St (t > 0), we get

Re

(

fn

(

t
1

2m1 z1, . . . , t
1

2mn−1 zn−1, t zn

))

+ P

(

f1

(

t
1

2m1 z1, . . . , t
1

2mn−1 zn−1, t zn

)

, . . . , fn−1

×
(

t
1

2m1 z1, . . . , t
1

2mn−1 zn−1, t zn

))

≤ 0

(14)

for all (z′, zn) ∈ U1 ∩ MP and t ∈ (0, 1). Therefore, (14) is equivalent to

Re
(
αt zn − iβαt2z2n + o(t2)

)

+ P
(

f1(t
1

2m1 z1, . . . , t
1

2mn−1 zn−1, t zn), . . . , fn−1(t
1

2m1 z1, . . . , t
1

2mn−1 zn−1, t zn)
) ≤ 0

for all (z′, zn) ∈ U1 ∩ MP and t ∈ (0, 1). Without loss of generality, we may assume
that

m1 ≥ m2 ≥ . . . ≥ mn−1.
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In what follows, denote by hs(z) a germ at the origin of holomorphic functions with
weighted order greater than s (s > 0).

We shall prove that d f = Id at the origin, up to a composition with an element of
G P . To prove this, we divide the argument into the following two sub-cases:

Sub-case 1 m1 > m2 > . . . > mn−1. Fix a point z ∈ U1 ∩ ∂ MP . Then, since

Re

(

fn

(

t
1

2m1 z1, . . . , t
1

2mn−1 zn−1, t zn

))

= αtRe zn + o(t), it follows that

P

(

f1

(

t
1

2m1 z1, . . . , t
1

2mn−1 zn−1, t zn

)

, . . . , fn−1

(

t
1

2m1 z1, . . . , t
1

2mn−1 zn−1, t zn

))

= −αtRe zn + o(t).

Moreover, since t
1

2m1 > t
1

2m2 > . . . > t
1

2mn−1 for any t ∈ (0, 1), one has for each
1 ≤ j ≤ n − 1

f j (z) = a j, j z j + h1/2m j (z),

where a1,1, . . . , an−1,n−1 �= 0.
Next, replacing f by S1/α ◦ f , we may assume that α = 1. Taking the first-

order partial derivative of both sides of the inequality (14) with respect to t and then
evaluating its limit as t → 0+, we arrive at

Re zn + P(a1,1z1, a2,2z2, . . . , an−1,n−1zn−1) < 0

for all (z′, zn) ∈ MP . A similar argument for f −1 gives

Re zn + P(a−1
1,1z1, a−1

2,2z2, . . . , a−1
n−1,n−1zn−1) < 0

for all (z′, zn) ∈ MP . Altogether, we conclude that

Re zn + P(a1,1z1, a2,2z2, . . . , an−1,n−1zn−1) < 0

if and only if Re zn + P(z′) < 0, and hence

g(z) := (a1,1z1, a2,2z2, . . . , an−1,n−1zn−1, zn)

is an automorphism of MP , that is, g ∈ G P . Replacing f by f ◦g−1, one may assume
that a1,1 = . . . = an−1,n−1 = 1. Thus, we obtain d f = Id at the origin.

Sub-case 2 m1 ≥ m2 ≥ . . . ≥ mn−1. Following Sub-case 1, one can write f (z) =
(Az′ + g(z), zn), where g = (g1, . . . , gn−1) is holomorphic in a neighborhood of the
origin inCn such that each g j has weighted order greater than 1/2m j , j = 1, . . . , n −
1. Collecting the terms of weighted order 1, (14) yields the mapping (z′, zn) �→
(Az′, zn)which belongs to G P . Therefore, after taking a composition with (z′, zn) �→
(A−1z′, zn), we may assume that d f = Id at the origin.
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Nowour goal is to prove that f = Id. Aiming for a contradiction, suppose otherwise
that f �= Id. We may assume that f (z) = z + g(z), i.e., for each 1 ≤ j ≤ n − 1,

f j = z j + g j (z),

where g = (g1, . . . , gn−1) is holomorphic in a neighborhood of the origin in Cn such
that each g j has weighted order greater than 1/2m j , j = 1, . . . , n − 1. Therefore, we
have

Re
(

zn − iβz2n + . . .
)

+ P (z1 + g1(z), z2 + g2(z), . . . , zn−1 + gn−1(z)) = 0

for all z ∈ U1 ∩ ∂ MP , or equivalently

Re zn + Re
(
−iβz2n

)
+ P(z′) + 2Re

⎛

⎝
n−1∑

j=1

∂ P

∂z j
(z′)g j (z)

⎞

⎠ + h2(z) = 0

for all z ∈ U1 ∩ ∂ MP . This implies that

Re
(
−iβz2n

)
+ 2Re

⎛

⎝
n−1∑

j=1

∂ P

∂z j
(z′)g j (z)

⎞

⎠ + h2(z) = 0 (15)

for all z ∈ U1∩∂ MP . (Here, we recall that h2(z) is a germ at the origin of holomorphic
functions with weighted order greater than 2.)

Now if we set zn = −P(z′) + i t for t ∈ R, then z2n = P2(z′) − t2 − 2i t P(z′), and
hence Re

(−iβz2n
) = −2βt P(z′). Substituting this into (15), we obtain

− 2βt P(z′) + 2Re

⎛

⎝
n−1∑

j=1

∂ P

∂z j
(z′)g j (z

′,−P(z′) + i t)

⎞

⎠ + h2(z) = 0. (16)

Setting the coefficients of tk in (16) equal zero for k ∈ N, we conclude that g j (z) =
a j znz j + . . . for j = 1, . . . , n − 1, where the dots indicate terms of higher weight.
Differentiating the terms of weighted order 1 in (16) with respect to t and then setting
t = 0, one gets

P(z′) = 1

β
Re

⎛

⎝
n−1∑

j=1

∂ P

∂z j
(z′)ia j z j

⎞

⎠ .

Therefore, according to Lemma 3, we should have a j = −iβ/m j for j =
1, . . . , n − 1. Collecting the terms of weighted order 1 in (16) at t = 0 and then
utilizing Lemma 4, we have

P(z′) =
∑

wt (K )=wt (L)=1/2

aK L z′K z̄′L ,

where aK L ∈ Cwith aK L = āL K . Therefore, if β �= 0, then MP is biholomorphically
equivalent to Q P , which leads to a contradiction.
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Case 2 β = 0. In this case we immediately obtain fn(z) = αzn for some α > 0.
Without loss of generality, we may assume that α = 1. Since f can be smoothly
extended to the boundary of MP (cf. [3]), we obtain

Re zn + P( f1(z), . . . , fn−1(z)) ≤ 0

if and only if Re zn + P(z′) ≤ 0. We note that f1, . . . , fn−1 are independent of the
variable zn due to the invariance of the boundary under the actions of automorphism
group. Furthermore, by Proposition 1, f1, . . . , fn−1 can be extended to holomorphic
functions in a neighborhood of 0 ∈ C

n−1. This yields

P( f1(z
′), . . . , fn−1(z

′)) = P(z′)

for all z′ in a neighborhood of 0 ∈ C
n−1. Then it follows from Lemma 8 that f ∈ G P ,

and thus the proof is complete. ��
Now we are ready to prove Theorem 2.

Proof (Proof of Theorem 2) Let f ∈ Aut(MP ) be arbitrary. Then, by Proposition 1,
it follows that there exist p ∈ � and q ∈ � such that f and f −1 extend to be
holomorphic in neighborhoods of p andq, respectively, and f (p) = q. Replacing f by
its composition with reasonable translations Tt , we may assume that p = q = (0, 0),
and there exist neighborhoodsU1 andU2 of (0, 0) such thatU2∩∂ MP = f (U1∩∂ MP ),
and f and f −1 are holomorphic inU1 andU2, respectively. Moreover, f is a local CR
diffeomorphism between U1 ∩ ∂ MP and U2 ∩ ∂ MP . Therefore, the assertion follows
from Theorem 6. ��

We close this paper by exploring several known examples through our main theo-
rems.

Example 1 Let E1,m be the ellipsoid

E1,m := {(z1, z2) ∈ C
2 : |z2|2 + |z1|2m < 1}, m ≥ 2.

For the ellipsoid E1,m , the polynomial P is given by P(z1) = |z1|2m . Then
P( f1(z1)) ≡ P(z1) if and only if f1(z1) = eiθ z1 for some θ ∈ R. Therefore, from
Theorem 1 we conclude that

Aut(E1,m) =
{

(z1, z2) �→
(

eiθ1 (1 − |a|2)1/2m

(1 − āz2)1/m
z1, eiθ2 z2 − a

1 − āz2

)

: |a| < 1, θ1, θ2 ∈ R

}

,

which is already well-known.

Example 2 Consider the domain

� := {(z1, z2, z3) ∈ C
3 : |z3|2 + |z1|4 + |z2|4 + (z̄2z1 + z̄1z2)

2 < 1}.

In this case, the polynomial P is given by P(z1, z2) = |z1|4 + |z2|4 + (z̄2z1 + z̄1z2)2.
Then a direct computation shows that P(Az′) ≡ P(z′) if and only if Az′ = eiθ (z2, z1)
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or Az′ = eiθ (z1, z2) for some θ ∈ R. Hence, it follows from Theorem 1 that Aut(�)

is generated by

(z1, z2, z3) �→
(

(1 − |a|2)1/4
(1 − āz3)1/2

z1,
(1 − |a|2)1/4
(1 − āz3)1/2

z2,
z3 − a

1 − āz3

)

and

(z1, z2, z3) �→
(

eiθ1 zσ(1), eiθ1 zσ(2), eiθ2 z3
)

,

where a ∈ �, θ1, θ2 ∈ R, and σ is a permutation of the set {1, 2}. This result is already
proved in [9].

Example 3 Let �H K N be the Kohn–Nirenberg domain, introduced first in [15] and
defined by

�H K N :=
{

(z, w) ∈ C
2 : Re w + |z|8 + 15

7
|z|2Re(z6) < 0

}

.

In this case, the polynomial P is given by P(z) = |z|8 + 15
7 |z|2Re(z6). We see that P

is homogeneous of degree 8 and P( f (z)) ≡ P(z) if and only if f (z) = ekπ i/3z for
k ∈ {0, 1, . . . , 5}. Therefore, from Theorem 2 we have

Aut(�H K N ) =
{
(z, w) �→

(
8
√

λekπ i/3z, λw + i t
)

: k = 0, . . . , 5; t ∈ R, λ > 0
}

,

as shown in [19, Theorem 2].

Example 4 Let E be the ellipsoid

E := {(z1, z2, z3) ∈ C
3 : |z3|2 + |z1|4 + |z2|6 < 1}.

For the ellipsoid E , the polynomial P is given by P(z1, z2) = |z1|4 + |z2|6. Then
P( f1(z1, z2), f2(z1, z2)) ≡ P(z1, z2) if and only if f1(z1) = eiθ1 z1, f2(z2) = eiθ2 z2
for some θ1, θ2 ∈ R. Therefore, from Theorem 1 we conclude that Aut(E) includes

(z1, z2, z3) �→
(

eiθ1 (1 − |a|2)1/4
(1 − āz3)1/2

z1, eiθ2 (1 − |a|2)1/6
(1 − āz3)1/3

z2, eiθ3 z3 − a

1 − āz3

)

,

where |a| < 1, θ1, θ2, θ3 ∈ R.
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