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Abstract 

Purpose. Mining-induced land subsidence is a significant concern in areas with extensive underground mining activities. There-
fore, the prediction of land subsidence is crucial for effective land management and infrastructure planning. This research applies an 
artificial neural network (ANN) to predict land subsidence over the Mong Duong underground coal mine in Quang Ninh, Vietnam. 

Methods. In the ANN model proposed in this research, four features are used as the model inputs to predict land subsi-
dence, i.e., model outputs. These features include the positions of ground points in the direction of the trough main cross-
section, the distance from the chamber (goaf) center to the ground monitoring points, the accumulated exploitation volume of 
extraction space, and the measured/recorded time. The entire dataset of 12 measured epochs, covering 22 months with a  
2-month repetition time period, is divided into the training set for the first 9 measured epochs and the test set for the last 
3 measured epochs. k-fold cross-validation is first applied to the training set to determine the best model hyperparameters, 
which are then adopted to predict land subsidence in the test set. 

Findings. The best model hyperparameters are found to be 5 hidden layers, 64 hidden nodes and 240 iterated epochs. Root 
Mean Square Error (RMSE) and Mean Absolute Error (MAE) of the predicted land subsidence depend on the time separated 
between the last measured epoch and the predicted epoch. Within 2 months from the last measurements, RMSE and MAE are 
at 22 and 13 mm for Epoch 10, which increase to 31 and 20 mm for Epoch 11 (4 months from the last measurement) and 37 
and 24 mm for Epoch 12 (6 months from the last measurement). 

Originality. A new ANN model with associated “optimal” hyperparameters to predict underground mining-induced land 
subsidence is proposed in this research. 

Practical implications. The ANN model proposed in this research is a good and convenient tool for estimating mining-
induced land subsidence, which can be applied to underground mines in Quang Ninh province, Vietnam. 
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1. Introduction 

Mining operations play a vital role in global economic 
growth and development. One of the benefits of mining is 
resource provision, which provides valuable minerals, metals, 
and other resources to various industrial sectors, e.g., manufac-
turing, construction, energy [1]. Additionally, mining provides 
jobs [2] not only for miners, but also for representatives of 
other fields, such as geological engineers, surveyors, and elec-
tricians. In Vietnam, the mining industry has a long history 
and has made a significant contribution to the Vietnamese 
economy, providing a huge number of jobs [3]. The Vietna-
mese ore occurrence is diverse and contains about 70 types of 
minerals [4], among which coal is one of the main mineral 
sources. Most of Vietnam’s coal mines are located in the 
northeast province of Quang Ninh (a.k.a. Quang Ninh Coal 
Basin). Of these, there are about 30 underground and 20 open-
pit coal mines, the exploration volume of which is projected to 
increase yearly. However, the proportion of underground 

mines is increasing as some open-pit coal mines are converted 
to underground due to their increasing depth [5]. The role of 
Vietnamese coal is not only in economic growth in terms of 
mineral exports, but also in political energy security in terms 
of coal-fired electricity generation [6]. 

While mining has made contributions to the field of eco-
nomics, it poses environmental, social, and public health 
challenges [7]. One of those environmental problems is land 
subsidence. The excavation of mineral resources during 
mining disrupts the internal stress equilibrium [8]. Conse-
quently, the extraction of minerals from underground depo-
sits results in the sinking or lowering of the Earth’s surface, a 
phenomenon known as mining-induced land subsidence [9]. 
This occurrence presents substantial risks to infrastructure, 
environmental stability, and human safety in mining  
regions [10]. Various methods are employed to measure 
mining-induced land subsidence, with common methods 
including leveling [11], Global Navigation Satellite System 
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(GNSS) [12], [13], and Interferometric Synthetic Aperture 
Radar (InSAR) [14]-[16]. While measuring land subsidence 
caused by mining activities is essential after the Earth’s sur-
face has sunk, there is a growing need for efficient manage-
ment and prediction of future mining-induced land subsi-
dence. This is crucial for sustainable mining practices and 
land use planning [17]. Traditional subsidence prediction 
methods, such as the empirical approach based on a combi-
nation of experience and analysis of a large set of observa-
tions [18], and the analytical approach relying on compute-
rized mathematical models [19], have been widely employed. 
However, these methods often fall short in accuracy and 
predictive capability. In recent years, Artificial Neural Net-
works (ANNs) have emerged as a promising tool for subsid-
ence prediction, owing to their capability to capture complex 
nonlinear relationships within datasets [20]-[22]. 

This article aims to apply ANNs to predict underground 
mining-induced land subsidence, leveraging their strengths in 
pattern recognition, adaptive learning, and generalization. 
The study utilizes a dataset comprising the positions of 
ground points in the direction of the trough main cross-
section, the distance from the chamber center to the ground 
monitoring points, the accumulated exploitation volume of 
extraction space, and the measured/recorded time. This da-
taset is used to train, validate, and predict mining-induced 
land subsidence using ANN models. The application of 
ANNs in subsidence prediction in underground mining has 
the potential to improve the accuracy and reliability of sub-
sidence forecast, enabling proactive measures for land man-
agement and infrastructure planning. By investigating the 
capabilities of the ANN models in predicting underground 
mining-induced land subsidence, this study aims to contrib-
ute to the advancement of subsidence prediction techniques 
and support sustainable mining practices. 

2. Study area, materials, and methods 

2.1. Study area 

This study focuses on the Mong Duong underground coal 
mine in the Northeast province of Quang Ninh, Vietnam 
(Fig. 1). Mong Duong is located within the administrative 
boundaries of Cam Pha City, Quang Ninh Province, approxi-
mately 10 km north of the city center. It is adjacent to the Mong 
Duong River and the East Sea to the north and northeast, and 
shares borders with the Bac Quang Loi and Bac Coc Sau coal 
mines to the south, and the Khe Cham coal mine to the west. 

The Mong Duong coal mine is selected in this study be-
cause it is one of the oldest, established in 1982, and largest 
underground coal mines in Vietnam, with a capacity of 
1.5 million tons per year. Moreover, Mong Duong is an ongoing 
mine, in which many residential houses and important infra-
structures, e.g., wastewater treatment or railway systems, are 
located in close proximity. This makes those infrastructures 
susceptible to land subsidence caused by mining exploration. 
The selected mine is located in an area with complex geolo-
gical factors associated with various tectonic activities, such 
as faulting and folding. The topography of the Mong Duong 
coal mine is characterized by low to medium mountains, 
with the highest point reaching 165 m in the central area. 

2.2. Data 

In this study, land subsidence (η) is measured using 
GNSS technology. At the same time, other relevant mea-
surements were recorded, including the positions of ground 
points in the direction of the trough main cross-section (Y), 

the distance from the chamber center to the ground monitor-
ing points (L), the accumulated exploitation volume of ex-
traction space (V), and the measured/recorded time (T). 

 

 
Figure 1. Study area of the Mong Duong underground coal mine 

Those measurements are shown in Figure 2 as an under-
ground mining configuration with three measurement times 
T1, T2, and Tk, corresponding to three chamber centers O1, 
O2, and Ok. There are 22 points measured at 12 epochs with a 
2-month time interval. As a result, there are a total of 
242 instances, each involving the above-mentioned four 
features (i.e., Y, L, V, and T). These instances are then used to 

predict land subsidence (i.e., ) using ANN. 
 

 
Figure 2. Underground mining configuration indicating the rela-

tionship between input variables used in this study: Y – 

the positions of ground points in the direction of the 

trough main cross-section; L – the distance from the 
chamber center to the ground monitoring points; V – 

the accumulated exploitation volume of extraction 

space; t – the measured/recorded time 
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Figure 3a shows the positions of measured points in the 

direction of the trough main cross-section (red dots and 

texts). The subsidence η has a relationship with the Y feature 

that, at a specific epoch, higher subsidence is observed from 

points situated closer to the trough center. This relationship 

is shown in Figure 3a with each line corresponding to a 

measured epoch. Figure 3a also indicates that subsidence 

underwent continuous change up to the final measured epoch 

(cf. lines corresponding to earlier and subsequent epochs). 

This trend is confirmed by the relationships between the 

measured subsidence η and the measurement time t of all 

points in Figure 3b. The figure shows that measured points 

exhibited continuous subsidence over time with different sub-

sidence rates, depending on their locations as indicated above. 

 

(a) 

 

(b) 

 

Figure 3. Relationships between measured subsidence  and input 

variables: (a) the distance to the trough center Y; 

(b) measured time; red dots and texts in (a) indicate the 

locations of the measured points and their corre-

sponding indices 

Given that Mong Duong is an ongoing underground 

mine, we expect the accumulated exploitation volume regu-

larly increased over time. As a consequence, a relationship 

between land subsidence  and the V feature, similar to that 

with the t feature, can be found in Figure 4a that a larger 

accumulated exploration volume V leads to higher subsi-

dence at all points. We note that, while the measurements 

were taken regularly over time, the mining exploitation con-

cluded at cycle 7, corresponding to the 12th month. This 

results in the exploitation volume V remaining unchanged at 

78000 m2 from that cycle (Fig. 4b). However, land subsid-

ence persisted beyond cycle 7, as shown in Figure 3. Conse-

quently, at the same measured point, the same volume of 

78000 m2 yields different subsidence, as shown in Figure 4a.  

(a) 

 

(b) 

 

Figure 4. Relationships between measured subsidence  and input 

variables: (a) accumulated exploitation volume V; 

(b) the change of accumulated exploitation volume V 

over time; the solid black line in (a) corresponds to the 

mean subsidence computed for each volume V 

The black solid line in Figure 4a shows the mean subsid-

ence computed for each volume V, which confirms the general 

trend that a higher volume corresponds to a larger subsidence. 

The subsidence of a point changes over time depending on 

the progress of mining exploitation, as depicted by the move-

ment of the chamber (Fig. 2). This movement, in turn, leads to 

a change in the slope distance from the point to the chamber 

center. As a result, the change of L depends on the location of 

the measured point. More specifically, points 1-5 exhibited 

increases in L over time, while points 11-22 appeared to un-

dergo decreases in L. In contrast, points 6-10 exhibited a  

U-shaped trend, i.e., L decreased during initial epochs before 

increasing during the later epochs (Fig. 5a). These trends pro-

pagate to the relationship between L and the subsidence , as 

shown in Figure 5b, in which points 1-5 indicate an increase in 

L corresponding to an increase in land subsidence. 

Conversely, an opposite trend is observed in points 11-22, 

in which the decrease in L corresponds to higher subsidence. A 

U-shape trend can be seen in points 6-10, in which the decline 

in L at initial epochs is followed by an increase at subsequent 

epochs, leading to larger subsidence at each point. Like the 

exploitation volume V, the distance L changed from Epoch 1 

to Epoch 7 corresponding to the 12th month and remained 

unchanged after the cessation of mining exploitation. 

2.3. Artificial Neural Networks 

ANNs are among the most powerful artificial intelligence 

tools in land subsidence prediction owing to their capacity to 

learn complex patterns with large datasets, facilitating accu-

rate predictions [20]-[23]. 
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(a) 

 

(b) 

 

Figure 5. Changes in the slope distances from measured points to 

the chamber center L due to mine exploitation: 

(a) changes over time; (b) relationships with the mea-

sured subsidence η 

ANNs are computational models inspired by the structure 

of the human brain, and thus neural networks [24]. These net-

works are composed of interconnected artificial neuron layers, 

which are divided into input, hidden, and output layers (Fig. 6). 

 

 

Figure 6. Structure of artificial neural network with input, hid-

den, and output layers; the input layer involves four 

nodes corresponding to four input features Y, L, V, and 

t; the numbers of layers and nodes in the hidden section 

are determined experimentally by the k-fold cross-

validation; the output layer involves one node corre-

sponding to the predicted subsidence 

The input layer imports the input features and then passes 

them through the hidden layers, in which computations are 

conducted with a series of weighted connections to estimate 

the predicted variables in the output layer. The weights are 

initially assigned with random values in the input layer, 

which are then propagated through the hidden and output 

layers. The weights are subsequently adjusted by optimiza-

tion algorithms, e.g., gradient descent and backpropaga-

tion [25]. In this way, ANN can accurately predict output 

variables by adjusting the weights. 

In an ANN, each layer involves one or more neurons de-

pending on the particular problem being investigated. In this 

study, the input layer includes four neurons corresponding to 

four input features Y, L, V, and t as mentioned above. The 

hidden layer section includes one or more layers, each incor-

porating a number of nodes. In this study, the “optimal” 

numbers of hidden layers, hidden nodes, and iterated back-

propagation epochs are experimentally determined by the so-

called k-fold cross-validation [26]. 

2.4. Model performance evaluation 

To evaluate the performance of mining-induced land sub-

sidence prediction by ANN, two commonly used validation 

metrics are employed in this study, including Root Mean 

Square Error (RMSE) and Mean Absolute Error (MAE). 

Both RMSE and MAE measure the average magnitude of the 

errors, i.e., the difference between measured and predicted 

subsidence [27], [28]. While RMSE is sensitive to outliers 

because it assigns higher weights to measurements with 

larger errors, MAE is more robust to outliers because it is 

less affected by the magnitude of errors [27]. Both RMSE 

and MAE are used in this study because of their complemen-

tation to each other. RMSE and MAE are estimated using the 

equations provided below [27]: 

( )
2

1
ˆn

i iiRMSE
n

 = −
= ;           (1) 

1
ˆn

i iiMAE
n

 = −
= ,            (2) 

where: 

ηi and ˆi  – the measured and predicted subsidence; 

n – the number of validated measurements used to esti-

mate RMSE and MAE. 

The difference between measured and predicted subsi-

dence ηi – ˆi  is prediction error Δi. 

3. Results and discussion 

In this study, we test the prediction of mining-induced 

surface deformation by ANN. With a total of 12 measured 

epochs at a 2-month interval, as shown in Section 2.2, we 

apply an ANN model with the first 9 epochs selected as the 

training set, and the remaining 3 epochs selected as the test 

set. This is to test the influence of the time separation be-

tween measured epochs and the interpolation time, i.e., at 2, 

4, and 6 months after the last measured epoch. We apply an 

ANN network with the Rectified Linear Unit (ReLU) chosen 

as the activation function in the hidden layers [29]. ReLU is a 

frequently used function in both classification and regression 

problems due to its simplicity, requiring less computation 

compared to other functions, such as Sigmoid (a.k.a Logit of 

LogSig) [30] or Tanh [31]. With the aim of predicting sur-

face subsidence, the regression problem is used, thereby no 

activation function is applied to the output layer. Instead, a 

weighted sum is used. Additionally, the objective of this 

study is to predict surface subsidence with the highest possi-

ble precision, which is usually represented by RMSE; there-
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fore, Mean Squared Error (MSE) is used as the lost/cost 

function, and MAE is used as the metric. This function, to-

gether with the backpropagation algorithm [32], is applied to 

estimate the model parameters, utilizing the Root Mean 

Square Propagation (RMSProp) optimizer [33]. 

To identify the most appropriate network structure, a  

k-fold cross-validation is adopted [26]. k-fold cross-

validation is a special case of validation in machine learning 

applied to small datasets. It is adopted to select the best mo-

del hyperparameters, including the numbers of hidden layers, 

hidden nodes, and iterated epochs. Here, a 4-fold cross-

validation is applied based on the number of available in-

stances. Specifically, 4 groups of contiguous measured 

epochs are selected from the 9 training set measured epochs. 

In each fold step, one group is held out as the validation set, 

while the remaining 3 groups are selected as the reduced 

training set. The ANN model is then trained based on this 

reduced training set. The model with associated parameters 

derived from this training step is then applied to the valida-

tion to estimate the validation RMSE/MAE. The final 

RMSE/MAE is then derived by averaging over the 4-fold 

steps. This 4-fold cross-validation is applied to all hyperpa-

rameters in sequence. In this way, the best model with asso-

ciated parameters is selected if it is of the smallest validated 

RMSE/MAE. In each examination to select the best model 

hyperparameters, normalization and standardization are ap-

plied to the dataset [34]. 

We first examine the “optimal” number of hidden layers 

in the model, keeping other hyperparameters fixed. Specifi-

cally, to minimize the computation burden, a model with 

16 hidden nodes (i.e., the nodes in the hidden layers) and 

100 iterated epochs is utilized. This model is used to test 

different numbers of hidden layers, ranging from 1 to 7. The 

relationships between the RMSE/MAE of the training and 

the validation sets and the number of hidden layers are 

shown in Figure 7a. The results indicate that the mean 

RMSE/MAE of the training set (dashed lines in Figure 7a) 

continuously decreases until 7 hidden layers, with little im-

provement from 6 hidden layers onward. In contrast, the 

mean RMSE/MAE of the validation set (solid lines in  

Figure 7a) decreases from 1 to 5 hidden layers, but begins to 

increase from 6 hidden layers. This suggests that the model 

likely starts overfitting at 6 hidden layers, and that 5 hidden 

layers are the most appropriate for the final model structure. 

Figure 7a also shows that a higher number of hidden layers 

requires a longer mean computation time. The mean compu-

tation time increases almost linearly between 1 and 5 hidden 

layers, but a significant increase of about 30% at 7 hidden 

layers. With 5 hidden layers, the mean RMSE and the mean 

MAE of the training set are 18 and 12 mm, respectively, 

while those of the validation set are 36 and 26 mm, and the 

mean computation time is 1.7 seconds. 

With 5 hidden layers assigned to the model, we then  

examine the most appropriate number of hidden nodes, i.e., 

the nodes in the hidden layers. Like the previous test on the 

number of hidden layers, to minimize the computation cost, 

the number of iterated epochs is fixed to 100, and the  

number of hidden nodes is tested as the power of two, from 

2 (i.e., 21) to 1024 (i.e., 210). For the sake of simplicity, the 

same number of nodes is used in all 5 hidden layers.  

The results in Figure 7b indicate that 64 hidden nodes are 

the best in both mean RMSE and MAE of the training and 

validation sets. 

(a) 

 

(b) 

 

Figure 7. Relationships between the mean RMSE (red) and MAE 

(blue) of the training set (dashed lines) and validation 

set (solid lines) with the ANN model parameters in  

k-fold cross-validation: (a) the number of hidden layers; 

(b) the number of hidden nodes; black lines in both sub-

figures indicate the corresponding computation time 

The mean RMSE/MAE reduce significantly from 

2 hidden nodes (at 172 mm and 94 mm with the training set, 

and 147 and 103 mm with the validation set), to 64 (26) hid-

den nodes (at 18 and 12 mm with the training set, and 46 and 

32 mm with the validation set), before increasing from 128 

(27) hidden nodes. Like the test on the number of layers, a 

longer computation time is required for larger numbers of 

hidden nodes (see the black line in Figure 7b). 

We then examine the most appropriate number of iterated 

epochs used in the backpropagation algorithm of the ANN 

model. Here, the “optimal” 5 hidden layers and 64 hidden 

nodes are adopted, while the number of iterated epochs is 

changed from 1 to 1000 epochs, with the results shown in 

Figure 8. As the results show a fluctuation in both mean 

RMSE (Fig. 8a) and MAE (Fig. 8b), we apply a 10-epoch 

moving average to smooth the results (see blue lines in Fi-

gure 8). The results suggest that a higher number of iterated 

epochs leads to a lower moving average mean RMSE/MAE 

for both the training and validation sets, with a significant 

improvement observed between 1 and around 100 iterated 

epochs. The minimum moving average RMSE and MAE for 

the validation set are found at 240 iterated epochs, at 30 and 

20 mm, respectively (see black dashed lines in Figure 8). The 

computation time exhibits a linear trend according to the 

change in the number of iterated epochs, with the “optimal” 

number of iterated epochs corresponding to a mean computa-

tion time of approximately 3.2 seconds. 
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(a) 

 

(b) 

 

Figure 8. Relationships between model performance evaluation 

metrics of the training set (dashed lines) and validation 

set (solid lines) with the number of iterated epochs in  

k-fold cross-validation: (a) the mean RMSE; (b) the 

mean MAE; black solid lines in both subfigures indicate 

the corresponding computation time and blue lines indi-

cate a 10-epoch moving average; black dashed lines in-

dicate the best number of iterated epochs in terms of the 

mean RMSE/MAE of the validation set 

The “optimal” hyperparameters of the ANN model have 

been obtained as 5 hidden layers, 64 hidden nodes, and 

240 iterated epochs. These “optimal” parameters are then 

adopted to predict mining-induced land subsidence over the 

study area of the Mong Duong underground mine. As men-

tioned above, we predict subsidence for the last three meas-

ured Epochs 10, 11, and 12 corresponding to the 18th, 20th, 

and 22nd months. The predicted results for the 22 measured 

points are shown in Figure 9, and their performance evalua-

tion is shown in Table 1. 

Table 1. Performance evaluation of the test set (unit – mm) 

Epoch RMSE MAE 

Epoch 10 22 13 

Epoch 11 31 20 

Epoch 12 37 24 

 

The good fit between the blue and orange lines in Fig-

ure 9 indicates the effectiveness of the proposed ANN model 

in accurate land subsidence prediction. Both the RMSE and 

MAE of the predicted land subsidence depend on the time 

separation between the last measured epoch and the predicted 

epoch. Within two months from the last measurement, 

RMSE/MAE of 22 and 13 mm are observed for Epoch 10. 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

Figure 9. Mining-induced land subsidence predicted by ANN for 

the 22 measured points over the three test epochs: 

(a) Epoch 10; (b) Epoch 11; (c) Epoch 12; (d) absolute 

interpolation error of the 22 measured points at the 

three interpolation epochs 

These numbers increase to 31 and 20 mm for Epoch 11 

(4 months from the last measurement), and 37 and 24 mm for 

Epoch 12 (6 months from the last measurement) (Table 1). 

The dependence of the interpolation error on the time separa-

tion between the last measured epoch and the interpolation 

epoch is confirmed by Figure 9d, indicating the absolute 

interpolation error, i.e., the absolute difference between 

measured and predicted subsidence. 
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While this study has demonstrated favorable outcomes in 

predicting underground mining-induced subsidence using an 

ANN-based approach, there is a recognized need for future 

research aimed at refining prediction performance. The cur-

rent study utilized a time series spanning 12 epochs over 

22 months but given the continuous generation of extensive 

data from underground mining activities, incorporating more 

recent measurements is essential for enhanced accuracy. 

Furthermore, the study employed measurements in a 2D 

profile along the measurement line (refer to Figure 2). Ex-

panding the measurement configuration to a 3D surface is 

anticipated to bolster prediction performance, capturing the 

movement of the entire surface rather than being limited to a 

single profile. To advance predictive modeling, particularly 

in understanding subsidence patterns, more sophisticated 

approaches such as deep learning can be explored. Additio-

nally, in instances where the time series of deformation 

measurements (η) is available without corresponding model 

inputs, e.g., L, Y, V in this study, the model may not function 

effectively. In such cases, adopting a direct or recursive uni-

variate prediction model, such as long short-term memory, 

which uses past subsidence as inputs to predict future subsi-

dence, is recommended. 

4. Conclusions 

This study has applied ANN to predict land subsidence 

measured by GNSS over the Mong Duong underground 

coal mine, in Quang Ninh, Vietnam. There were 22 points 

measured with 12 epochs, which were divided into the 

training set for the first 9 measured epochs, and the test set 

for the last 3 measured epochs. Land subsidence was mea-

sured by GNSS for each epoch, together with the positions 

of ground points in the direction of the main trough cross-

section, the distance from the chamber center to the ground 

monitoring points, the accumulated exploitation volume of 

extraction space, and the measured/recorded time. These 

four measurements were used as inputs for the ANN model 

to predict land subsidence. 

The hyperparameters of the ANN model, including the 

number of hidden layers, hidden nodes, and iterated epochs, 

were determined by k-fold cross-validation. Subsequently, 

they were utilized to estimate the model’s parameters by the 

training set and predict land subsidence for the test set. The 

“optimal” hyperparameters were found to be 5 hidden layers, 

64 hidden nodes, and 240 iterated epochs. The proposed 

ANN model with “optimal” hyperparameters found in this 

study was demonstrated to be a good tool for underground 

mining-induced land subsidence. Both RMSE and MAE of 

the predicted land subsidence depended on the time separa-

tion between the last measured epoch and the predicted 

epoch. Within 2 months from the last measurement, 

RMSE/MAE were found at 22 and 13 mm for Epoch 10. 

These numbers increased to 31 and 20 mm for Epoch 11 

(4 months from the last measurement), and 37 and 24 mm for 

Epoch 12 (6 months from the last measurement). 
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Прогнозування просідання, спричиненого підземними гірничими роботами: 

підхід на основі штучної нейронної мережі 

Л.К. Нгуен, Т.Т.Т. Ле, Т.Г. Нгуен, Д.Т. Тран 

Мета. Прогнозування просідання земної поверхні при підземному видобуванні вугілля на основі застосування штучної нейрон-

ної мережі (ШНМ) для ефективного управління земельними ресурсами та планування інфраструктури на прикладі шахти Монг 

Дуонг у Куанг Нінь, В’єтнам. 

Методика. У моделі ШНМ, запропонованої у цьому дослідженні, чотири показники застосовуються як вхідні дані: положення 

наземних точок у напрямку основного поперечного перерізу жолоба, відстань від центру камери (виробленого простору) до назем-

них точок спостереження, накопичений експлуатаційний обсяг виїмкового простору та виміряний/зареєстрований час. Весь набір 

даних із 12 виміряних епох, що охоплюють 22 місяці з 2-місячним періодом повторення, розділено на навчальну вибірку для пер-

ших 9 виміряних епох та тестову вибірку для останніх 3 виміряних епох. k-кратна кросс-валідація спочатку застосовується до нав-

чальної вибірки, щоб визначити найкращі гіперпараметри моделі, які потім приймаються для прогнозування просідання ґрунту у 

тестовій вибірці. 

Результати. Виявлено, що найкращими гіперпараметрами моделі є 5 прихованих шарів, 64 приховані вузли та 240 ітерованих 

епох. Визначено, що середньоквадратична похибка (СКП) і середня абсолютна похибка (САП) прогнозованого просідання ґрунту 

залежать від часу, розділеного між останньою виміряною епохою та прогнозованою епохою. Протягом 2 місяців після останніх 

вимірювань СКП і САП становлять 22 і 13 мм для епохи 10, які збільшуються до 31 і 20 мм для епохи 11 (4 місяці з моменту остан-

нього вимірювання) та 37 і 24 мм для епохи 12 (6 місяців з моменту останнього вимірювання). 

Наукова новизна. У цьому дослідженні запропоновано нову модель ШНМ із відповідними “оптимальними” гіперпараметрами 

для прогнозування просідання ґрунту, спричиненого підземними гірничими роботами. 

Практична значимість. Пропонована в даному дослідженні модель ШНМ є гарним та зручним інструментом для оцінки про-

сідання ґрунту, спричиненого гірничими роботами, яка може бути застосована до підземних шахт у провінції Куанг Нінь, В’єтнам. 

Ключові слова: прогнозування просідання, підземна шахта, машинне навчання, штучна нейронна мережа (ШНМ) 
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