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Abstract.  

This study aims to compare the effectiveness of two predictive models, CART 

regression and Random Forest in mapping land subsidence susceptibility. The 

analysis is supported by the Google Earth Engine cloud computing platform. The 

study focuses on Camau province, located in the Mekong Delta, where significant 

land subsidence occurs annually. Eight variables were considered in the models, 

including elevation, slope, aspect, land cover, NDVI, soil map, geology, and 

groundwater level. Land subsidence points, obtained through the PSInSAR 

method, were used in the study, comprising a total of 989 points. These points 

were divided into a 70% training dataset and a 30% testing dataset for both mod-

els. The results produced a land subsidence sensitivity map categorized into five 

levels: very low, low, moderate, high, and very high. The performance of the 

models was evaluated using ROC curve and the area under the curve (AUC). The 

AUC values for the Random Forest (RF) model are 0.86 and 0.87 for the training 

and validation datasets, respectively. In comparison, the CART model achieves 

AUC values of 0.79 and 0.73 for the training and validation datasets, respectively. 

The research findings demonstrate an 7% superior performance of the RF model 

compared to the CART method. Therefore, the RF model is chosen as the final 

model for land subsidence susceptibility mapping in Camau.  
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1 Introduction 

The Mekong Delta in Vietnam has been experiencing serious land subsidence in recent 

years due to various natural and artificial causes. Over the past few decades, large-scale 

land use changes have occurred due to rapid population growth, urbanization, and the 

increase in agricultural and aquacultural production. These have contributed to the sub-

sidence of land and exacerbated the severity of flooding. One of the provinces most 

affected by land subsidence is Camau. Located in the southernmost part of Vietnam, 

Camau is facing the dangers of land subsidence, sea level rise, flooding, and saltwater 

intrusion. A meticulous study by Erban et al [1] demonstrated that the Camau Peninsula 

and the entire Mekong Delta are subsiding at a rate of several centimeters per year, 

exceeding the current absolute sea level rise by a significant margin. Meanwhile, Mind-

erhoud's research has shown a close correlation between land use and the rate of land 

subsidence [2]. 

In order to study land subsidence and predict the risk of land subsidence effectively, 

the problem of input data and algorithms used for prediction are extremely important 

factors. Omid Rahmati [3] employed two machine learning algorithms, the maximum 

entropy (MaxEnt) and genetic algorithm rule-set production (GARP), to construct a 

subsidence assessment model in Kashmar, Iran. The model incorporated various data 

such as land use, lithology, distances to groundwater extraction sites and afforestation 

projects, distances to fault locations, and groundwater level reductions. The research 

findings indicate that the GARP algorithm outperforms the MaxEnt algorithm in terms 

of accuracy and performance. Both algorithms provide reliable subsidence prediction. 

Recently, the study by Ata Allah Nadiri [4] introduced a method for assessing land 

subsidence susceptibility using the ALPRIFT framework and various artificial intelli-

gence models, including Sugeno Fuzzy Logic (SFL), Support Vector Machine (SVM), 

Artificial Neural Network (ANN), and the Group Method of Data. The research results 

indicate that the combination of multiple artificial intelligence models can improve the 

accuracy of determining the susceptibility to land subsidence in the studied area. 

Another study conducted in the Marand District of Tehran Province, Iran [5] utilized 

the adaptive-fuzzy inductive inference system (ANFIS) method with six categories of 

input data, including subsidence distance from borehole and faults, elevation, distance 

to roads, rivers and streams, groundwater depth, slope, and land use. ROC curve vali-

dation indicated that the Gauss MF and Dsig MF methods had high accuracy and were 

comparable. Lee’ research [6] applied the ANN method to forecast the risk of land 

subsidence associated with Korean coal mines and achieved an accuracy of approxi-

mately 98.95%. In another study, the authors employed a combination of FR, logistic 

regression (LR), and ANN models, and it was found that the combined method had 

higher accuracy than using any single model alone  [7]. In 2018, a study by D. Tien Bui 

utilized four models, Bayesian logic regression (BLR), support vector machine (SVM), 

logistic model tree (LMT), and intermittent decision tree (IDT), to determine the sus-

ceptibility of land subsidence [8]. Eight input factors including slope, distance to the 

nearest fault, density of faults, geology, distance to the nearest road, density of roads, 

land use, and rock mass rating were used. Evaluation of the four models showed that 

BLR was the most accurate method (0.941) for mapping the susceptibility of land 
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subsidence. Additionally, some studies have shown a correlation between floods and 

land subsidence [9].  

The study by [10] evaluated the land subsidence susceptibility (LSS) in the Gharabo-

lagh Plain in Fars Province, Iran based on factors such as changes in groundwater, dis-

tance to rivers, streams, distance to faults, elevation, slope, aspect, terrain wetness index 

(TWI), Landuse, and Lithology using the Google Earth Engine (GEE) platform, and 

with two probabilistic models, the belief function proof (EBF) and Bayesian theory 

(BT). 

Overall, Camau in the Mekong Delta has a dense network of rivers and canals, but has 

been experiencing water shortages in recent years. This is due to upstream hydropower 

dams blocking water flow, leading to water shortages downstream, resulting in more 

frequent saline intrusion and droughts. Agricultural cultivation depends mainly on 

groundwater, which is being overexploited and depleted, causing land subsidence 

throughout the region. Due to its low elevation, with an average height of around 1m 

above sea level, flooding is a common occurrence when sea level rises [11]. Therefore, 

the need for predicting land subsidence risk is becoming increasingly urgent. Our study 

aims to provide an overview of the land subsidence susceptibility for the Camau Pen-

insula based on existing data sources and using the cloud computing platform Google 

Earth Engine. The study aims to test two machine learning methods, CART and Ran-

dom Forest for subsidence predicted modeling for this area. 

2 Study area 

 

Fig. 1. Distribution map of subsidence and non-subsidence sample points in Camau area and its 

location on the map of Vietnam 
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Camau province is located in the southernmost part of the country, surrounded by the 

sea on three sides. Its east coast extends 107 km and borders the South China Sea, while 

its west and south coasts extend 147 km and meet the Gulf of Thailand. The North 

borders Bac Lieu and Kien Giang provinces. This area is characterized by low-lying 

terrain that is often flooded. The average altitude in Camau is only about 1m above sea 

level [2].  Camau has 5 main types of soil: acid, peat, alluvial, saline and canals. 

Camau's ecosystem is home to a unique type of coastal mangrove forest extending 254 

km along the coast. In addition, the province also has a melaleuca forest ecosystem 

located deep in the mainland in the districts of U Minh, Tran Van Thoi, Thoi Binh with 

an area of 35,000 ha. Mangroves cover 77% of the total area of mangroves in the Me-

kong Delta. Fig. 1 shows the location of Camau on the map of Vietnam and the admin-

istrative boundaries of the province. 

3 Materials and methods 

3.1 Methods 

Classification and Regression Tree – CART 

 

The Classification and Regression Trees (CART) algorithm is a widely used supervised 

machine learning technique for predicting a categorical target variable, creating a clas-

sification tree, or a continuous target variable, creating a regression tree. The CART 

classification requires a binary tree, which is a combination of an initial root node, de-

cision nodes, and leaf nodes. The root node and each decision node represent a feature 

and the threshold value of that feature. Due to its easy-to-understand and straightfor-

ward nature, CART is one of the most commonly used machine learning methods today 

[12]. The schematic of the CART algorithm is presented in Fig. 2. 

 
Fig.2 Description of the CART  algorithm 

 

The CART algorithm for Classification and Regression Trees require the tree to be 

classified in the best possible way. In the CART algorithm, the Gini index is used to 

evaluate whether the split at the condition nodes is accurate or not. To find the best 

classification, the total weight of the Gini index for all branch nodes is calculated, and 

then the part with the lowest Gini index is taken as the part with the best classification 

accuracy. 
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Mathematically, when analyzing a feature, different threshold divisions will lead to dif-

ferent classification results, and there may be cases where the same threshold for that 

feature leads to different classification results. Therefore, the Gini index is used to de-

termine noise in the dataset. Assuming the dataset is classified into two classes A and 

B, the Gini index is determined as follows  [12]: 

𝐺𝑖𝑛𝑖 𝐼𝑛𝑑𝑒𝑥 = 1 − ∑ (𝑃𝑖)2𝑛
𝑖=1 = 1 − [(𝑃𝐴)2 + (𝑃𝐵)2]                     (1) 

Where, PA is the probability of data belonging to class A, PB is the probability of data 

belonging to class B. The above formula uses probability to determine the Gini Index 

value on each characteristic branch, determining which branch most likely to occur.  

Random Forest  

Random Forest (RF) is an algorithm comprising of many single decision trees that act 

like unions. The algorithm uses random features to create a tree. The method of boot-

strapping is used to create training samples and each selected feature is randomly sam-

pled by replacing N (the size of the original training set). Finally, the final prediction 

result is obtained by combining multiple decision trees [12].  

RF model is very effective for image classification and prediction because it mobilizes 

hundreds of smaller models inside with different rules to make the final decision. Each 

sub-model can be different and weak, but according to the” wisdom of the crowd” prin-

ciple, the classification result will be more accurate than using any single model. Algo-

rithm details can refer to [12] 

Model quality assessment 

To assess the quality of a predicting model, the ROC curve and the area under the ROC 

curve (AUC) are used. The ROC curve describes the relationship between pairs of the 

true positive rate (TPR) and false positive rate (FPR) for land subsidence and non sub-

sidence positions. Reference points with good results will have a high true positive rate 

and a low false positive rate, and vice versa. TPR and FPR values are usually calculated 

with different thresholds to evaluate the model's effectiveness. The AUC is a compre-

hensive performance evaluation index of land subsidence prediction models. The closer 

the AUC value is to 1, the more effective the model. 

The statistical parameters: positive rate (TPR), false positive rate (FPR), true negative 

rate (TNR), and false negative rate (FNR) are showed in the equations below.  

𝑇𝑃𝑅 =
𝑻𝑷

𝑻𝑷+𝑭𝑵
                                (2) 

𝐹𝑃𝑅 =
𝑭𝑷

𝑭𝑷+𝑻𝑵
                                 (3) 

where TP is true positive, TN is true negative, FP is false positive, and FN is false 

negative. 

 

3.2 Materials 

Inventory of land subsidence  

The inventory of land subsidence is a critical component in assessing the susceptibility 

of subsidence in the study area [13] . The dataset for the inventory comprises 989 sam-

ple points of land subsidence obtained from Sentinel-1 Radar data using the PSInSAR 

method.   Fig. 1 shows the distribution of the subsidence points (red color) and non-

subsidence points (blue color) randomly taken from the set of subsidence PS points 

from the results in the Mekong Delta area of the Copernicus website [14].                    
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Input factors of subsidence susceptibility and Tools 

In order to identify the factors that contribute to land subsidence susceptibility in the 

study area, we refer to some researches in this region [2][15]  to understand the subsid-

ence patterns in the region. Through this analysis, eight key factors were identified, 

including terrain elevation, slope, aspect, land cover, NDVI, soil, geology, and ground-

water depth map. 

The land cover map is derived from the ESA's landcover 10m 2021 product. The NDVI 

is computed from Sentinel-2 images, which have been averaged for the entire year of 

2021. The geological map of the Camau area is sourced from a 1:100,000 scale map 

provided by the Vietnam Institute of Geosciences and Minerals. Groundwater level data 

represents the average water level observed during the years 2020, 2021, and 2022. The 

soil map of the Camau area is based on a 1:50,000 scale map provided by the Camau 

Department of Natural Resources and Environment. Additionally, the DEM map is ob-

tained from the ALOS World 3D - 30m (AW3D30) dataset.  

 

Fig. 3. Input factors of subsidence susceptibility. (a): Elevation map, (b): Land cover map, (c): 

Geology map, (d): Ground water level, (e): Soil map, (f): NDVI map, (g): Slope map, (h): Aspect 

map 

The Google Earth Engine (GEE) cloud computing platform is utilized in this study to 

take advantage of its ability to gather data from various sources in the cloud [16] . By 

doing so, we minimize the need for desktop data preparation.  Multiple sources of data, 

including DEM elevation digital model maps, Land use land cover map, and land sub-

sidence inventory data to train and evaluate the model. The data sets are summarized 

in Fig. 3. The Sentinel-2 satellite image with 10m and 20m resolution is processed using 

the GEE platform to determine the NDVI vegetation index. To ensure consistency in 

the model, all data is set to 30x30 meter resolution. These land subsidence inventory 

data are then divided into training and testing sets at a ratio of 70:30 (Fig.4). The train-

ing set is comprised over 692 randomly points to extract values of elevation, slope, 

aspect, NDVI, LULC, soil, groundwater level, geology, location of land subsidence 

(a) (c) (d) 

(e) (f) (g) (h) 

(b) 
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with values of 1 (land subsidence) and 0 (non subsidence). Flow chart illustrating the 

process of image processing and the construction of predictive models using two meth-

ods, CART and RF (Fig.4). 

 

 
Fig.4. Flow chart of image processing and building predictive models by two methods CART 

and RF by GEE. 

4 Results and Discussions 

By utilizing eight variables to assess the susceptibility to land subsidence mentioned 

above, the two models exhibit clear disparities. Fig. 5 provides insight into the signifi-

cance of variables in the application of two machine learning models: CART and RF. 

In the CART model, out of these input variables, up to four layers have no influence on 

the model, whereas all eight inputs contribute to the predicting process in the RF model. 

Fig. 5 depicts the importance of the input variables for the two models. Both models 

highlight the substantial impact of the water level decline data layer on predicting the 

risk of land subsidence. By referring to Fig. 1, we observe that the distribution of set-

tlements aligns with the groundwater depth map, enabling easy identification of the 

considerably high decline in groundwater level within the vicinity of Camau city, lead-

ing to concentrated settlements surpassing those in the surrounding areas. Conversely, 

the northern part of Camau province, which displays the lowest settlement density, ex-

hibits the least decline in water level. This northern region encompasses the expansive 

U Minh mangrove area with a small population and minimal groundwater extraction 

compared to the surrounding areas. 

 To evaluate model performance, the Receiver Operating Characteristics (ROC) curve 

is a graphical tool used to describe the relationship between false-positive rates and 

sensitivity across different thresholds [17]. This technique is widely used to evaluate 

the performance of probabilistic models. By adjusting the decision threshold, we can 

generate an ROC curve by plotting different combinations of the True Positive Rate 

(TPR) and the ratio of the False Positive Rate (FPR) [18]. The AUC value represents 

the area under the ROC curve, providing quantitative confirmation of the overall 

Land subsidence sus-

ceptibility map 

Import into GEE 

Training data 

Testing (30%) Training (70%) 

  

Stacking input data  

layers into one file 

Computing of input 

variable importance 

NDVI computa-

tion by Sentinel-2 

Data set 

Build CART and 

RF models 

Validating the mod-

els  
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performance of land subsidence models [19]. Higher AUC values indicate superior per-

formance of settlement models and can be classified into different grades: excellent 

(0.9–1), very good (0.8–0.9) , good (0.7–0.8), moderate (0.6–0.7) and poor (0.5–0.6) 

[20]. 

After analyzing the training and test sets, it is clear that both the CART and RF models 

perform well, exhibiting high accuracy. The CART method achieved an AUC value of 

0.79 for training set and 0.73 for testing set, while the RF method outperformed with 

an AUC value of 0.87 for training set and 0.86 for testing set. The AUC values for both 

machine learning methods are in excess of 0.7, confirming their effectiveness in pre-

dicting the susceptibility of land subsidence in the study area however the RF model 

gives very good performance which AUC is higher and more suitable. These findings 

strongly support the view that the RF model is reliable for such predictions. 

 

Fig.5 The importance of the input variables, CART (left). RF (right) 

 
Fig.6. The land subsidence susceptibility maps generated using the CART model, along 

with the ROC curve and AUC value of CART (on the left), and the RF model, along 

with the ROC curve and AUC value of RF (on the right). 

Fig. 7 depicts a map showing the susceptibility of land subsidence in the Camau region. 

This map was created using the CART and RF models in GEE, along with multiple 

data layers from various sources. The values on the subsidence susceptibility map range 

from 0 to 1, indicated by shades of blue to red. These colors represent areas with low 

to high levels of subsidence, which are determined based on factors such as elevation, 

slope, aspect, land cover, NDVI, soil, geology, and groundwater depth. The regions 

with the highest susceptibility to land subsidence are concentrated in Camau city, fol-

lowed by the southern districts of Camau, namely Dam Doi, and Nam Can. The 
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northern districts of Camau province, which have extensive forest coverage and a low 

population such as U Minh, and Thoi Binh, experience a lower rate of subsidence. 

5 Conclusions  

The study aims to generate subsidence susceptibility maps in the Camau area of the 

Mekong Delta using GEE cloud computing and a multi-source dataset, employing two 

machine learning methods: CART and Random Forest (RF). The resulting land subsid-

ence sensitivity map showcases the potential of utilizing free data sources and cloud-

based algorithms. Regarding land subsidence sensitivity prediction in Camau, Vietnam, 

the RF machine learning model demonstrated superior performance compared to the 

CART model, displaying better accuracy. 

These findings provide valuable insights into the land subsidence susceptibility map, 

offering useful information for managers and planners in devising strategies to mitigate 

this issue and facilitate rational land use conversion. For future research, it is recom-

mended to expand the study by considering additional input variables that influence 

land subsidence, aiming to further enhance the accuracy of machine learning models 

on the GEE platform. 
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