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Abstract: Frequent forest fires are causing severe harm to the natural environment, such as decreas-
ing air quality and threatening different species; therefore, developing accurate prediction models 
for forest fire danger is vital to mitigate these impacts. This research proposes and evaluates a new 
modeling approach based on TensorFlow deep neural networks (TFDeepNN) and geographic in-
formation systems (GIS) for forest fire danger modeling. Herein, TFDeepNN was used to create a 
forest fire danger model, whereas the adaptive moment estimation (ADAM) optimization algorithm 
was used to optimize the model, and GIS with Python programming was used to process, classify, 
and code the input and output. The modeling focused on the tropical forests of the Phu Yen Prov-
ince (Vietnam), which incorporates 306 historical forest fire locations from 2019 to 2023 and ten 
forest-fire-driving factors. Random forests (RF), support vector machines (SVM), and logistic re-
gression (LR) were used as a baseline for the model comparison. Different statistical metrics, such 
as F-score, accuracy, and area under the ROC curve (AUC), were employed to evaluate the models’ 
predictive performance. According to the results, the TFDeepNN model (with F-score of 0.806, ac-
curacy of 79.3%, and AUC of 0.873) exhibits high predictive performance and surpasses the perfor-
mance of the three baseline models: RF, SVM, and LR; therefore, TFDeepNN represents a novel tool 
for spatially predicting forest fire danger. The forest fire danger map from this study can be helpful 
for policymakers and authorities in Phu Yen Province, aiding sustainable land-use planning and 
management. 
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1. Introduction 
Forest fires have become a global issue in recent years, with an increasing number of 

large and intense fires occurring in many regions of the world and having severe environ-
mental and socio-economic impacts [1,2]. According to the UN Environment Programme 
Frontier report, between 2016 and 2020, fires destroyed around 423 million ha of forests 
annually [2]. Although forest fires have historically been a vital and natural aspect of the 
growth and development of vegetation [3], especially in tropical regions, they are 
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becoming increasingly destructive and difficult to anticipate [4]. Given the persistent 
threat of forest fires caused by climate change, land-use alteration, and an expanding hu-
man presence in forested areas [5,6], it is crucial to prioritize the study of forest fire danger 
and the development of highly accurate prediction models. 

The literature review shows a wealth of research and development on forest fire dan-
ger prediction, with numerous algorithms and models proposed [7–9]. Here, we can iden-
tify three primary categories. The first group comprises physically based models [10–12] 
that utilize mathematical functions and consider the location of combustible materials to 
establish forest fire spreading and propagation. Essentially, this group is capable of pro-
ducing highly accurate maps of forest fires, but it necessitates very detailed information 
about the burning materials and their spatial distribution. This can be challenging and 
expensive, particularly if the research area for the forest fire is large. The second group 
comprises bivariate statistical techniques, including frequency ratio [13], evidential belief 
function [14], and weight of evidence [15], which necessitate the collection and processing 
of a vast amount of input data for modeling. These methods leverage the intersection of 
forest fire locations with each influencing factor to create a weight map. These weight 
maps are then combined to generate a final map depicting the forest’s susceptibility to 
fire. However, the accuracy of the forest-fire-susceptibility map is still limited in many 
cases. The last group comprises machine learning techniques [16–18]. The key distinction 
between this group and the second one is that the prediction models require both fire and 
non-fire locations for establishment. Overall, this category has a plethora of innovative 
algorithms that have arisen from advances in information technology, remote sensing, 
and geographic information systems. These tools assist in the selection and construction 
of more adaptable and precise forest-fire-forecasting models, leading to the creation of 
numerous high-accuracy forest fire danger models, including logistic regression [19], sup-
port vector machines [20], random forests [21], neural fuzzy [22,23], and decision trees 
[24]. 

In more recent years, deep learning has become a hot topic in natural hazard and 
environmental modeling [25,26] due to the availability of open-source platforms, i.e., 
Caffe AI developed by the Berkeley Vision and Learning Center [27], PyTorch developed 
by Facebook [28], and especially TensorFlow developed by the Google [29]. The main ad-
vantage of deep learning is that it is flexible and can learn to recognize complex spatial 
patterns, leading to higher accuracy in predicting outcomes. Moreover, deep learning li-
braries can be integrated with ArcGIS Pro software via various Python scripts [30] or the 
Anaconda Platform [31], which enable an automatic workflow in a geographic infor-
mation system (GIS) from processing input data to generating final prediction maps. Nev-
ertheless, due to some limited cases of applying deep learning in forest fire danger mod-
eling, as evidenced by studies such as [32,33], further research is still needed to draw more 
conclusive results. 

The current study aims to fill this gap in the literature by introducing and testing a 
new approach to forest fire danger modeling. Specifically, we utilized TensorFlow deep 
neural networks (TFDeepNN) in conjunction with geographic information systems (GISs) 
to model fire danger in the tropical forests of Phu Yen Province, Vietnam. In this province, 
according to the Agriculture and Rural Development of Phu Yen Province, in 2019 only, 
there were more than 70 forest fires, damaging around 1180 ha. In addition, El Niño is 
considered to impact forest fires in Phu Yen Province significantly. During El Niño years, 
the area tends to experience hotter and drier conditions, which can increase the risk of 
wildfires [34]. Herein, the hot and dry weather can cause vegetation to become more flam-
mable and make fires easier to spread. Indeed, a prolonged drought in 2019 caused more 
than 3000 ha of forests to die. Thus, the increasing frequency and severity of forest fires in 
recent years require research and development of highly accurate forest fire danger mod-
els. 
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2. Background of the Algorithms Used 
2.1. TensorFlow Deep Neural Networks 

TensorFlow (www.tensorflow.org (accessed on 28 March 2023)) is an open-source 
library for building and training deep neural networks. It was developed by the Google 
Brain team, a group of researchers and engineers at Google, and was first released in No-
vember 2015 [29]. TensorFlow refers to the data structure used in deep learning algo-
rithms, which is called Tensor, a multidimensional array of numbers [35]. TensorFlow is 
one of the world’s most widely used machine learning and deep learning libraries, with a 
large and active community of developers and researchers contributing to its ongoing de-
velopment and improvement. TensorFlow deep neural networks (TFDeepNN) have suc-
cessfully been applied for analyzing and processing spatial data in various spatial do-
mains, i.e., floods [36], climate forecasts [37], landslides [38], and forest fire detections [39]. 
A typical structure of the TensorFlow deep neural networks (TFDeepNN) is shown in 
Figure 1. 

 
Figure 1. Typical structure of the TFDeepNN model. 

TFDeepNN is a type of artificial neural network that is composed of multiple layers 
of interconnected neurons (Figure 1). Each layer in a TFDeepNN is responsible for extract-
ing different levels of features from the input data and adjust its internal parameters dur-
ing training to optimize its ability to make accurate predictions. Let us consider a training 
dataset D ∈ (Xi, Yi), with Xi ∈ Rd, Yi ∈ (0,1); i = 1 … n is the total number of samples, and d 
is the dimension of samples. In this research context, X represents the ten forest-fire-driv-
ing factors (i = 10), whereas Y ∈ (0,1) refers to the two classes of forest fire and non-forest 
fire. The TFDeepNN aims to build the inference model f: Rd → (0,1) to infer the ten driving 
factors into fire danger indices. Then, these indices are used to generate a fire danger map 
using a geographic information system (GIS). 

2.2. Benchmarked Machine Learning Models 
In this research, random forests (RF), support vector machines (SVM), and logistic 

regression (LR) were selected as benchmarked machine learning models for forest fire 
danger modeling due to their effectiveness in predicting the occurrence and spread of 
forest fires in various works [24,32,40,41]. 

RF, proposed by Breiman [42], is a type of ensemble learning method that combines 
multiple decision trees to form an inference model, which is capable of improving accu-
racy and reducing overfitting. RF is robust, flexible, and can handle both categorical and 
continuous input variables [43], making it a powerful tool for forest fire modeling. The 
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global performance of the random forest model relies on several critical parameters [44]: 
the number of trees in the forest, the maximum depth assigned to each tree, the number 
of input variables taken into account for splitting at each node, and the evaluation crite-
rion used to measure the split’s quality, such as Gini impurity or entropy. Therefore, these 
parameters should be carefully determined. 

For SVM, this is a supervised learning algorithm that is utilized for classification and 
regression analyses, making it a versatile tool for forest fire modeling [18]. With a reputa-
tion for being robust to noise and outliers, SVM is particularly effective in dealing with 
complex problems, which is vital in forest fire danger studies, as the data collected from 
various geospatial sources can be noisy and incomplete. The performance of SVM is de-
pendent on the kernel used and its parameters. Among the most popular kernels, the ra-
dial basis function (RBF) kernel with C and gamma parameters [45] is capable of provid-
ing the best prediction results, and therefore, it was selected for this analysis. 

Regarding LR, this algorithm is simple, fast, and easy to interpret and thus can be 
used to model the probability of a binary response variable based on one or more predic-
tor variables [46]. By using the sigmoid function, any real value will be mapped into an-
other value in the range of 0 to 1, which can be treated as a probability. Consequently, in 
forest fire danger modeling, the response variable can be binary, representing whether a 
forest fire is likely to occur. Thus, based on these predictor variables, it can be used to 
predict the likelihood of a forest fire. 

3. Study Area and Forest Fire Data 
3.1. Geographic Setting 

The study area is Phu Yen Province, which is situated in the southern part of the 
central region of Vietnam, with its geographic coordinates ranging from 12°48′ to 13°37′ 
North latitude and 108°05′ to 109°25′ East longitude (Figure 2); it is around 1165 km to the 
south of Hanoi and about 561 km to the north of the Ho Chi Minh city. Khanh Hoa Prov-
ince borders it to the south, Binh Dinh Province to the north, and Gia Lai Province to the 
west. To the east, the province is bordered by the East Sea. 

The province has a diverse topography, including mountains, hills, plains, and a long 
coastline [47]. Herein, hills and mountains account for 70% of the natural land area. To the 
north is the Cu Mong Mountain Range, to the south is the Dai Lanh Mountain Range, and 
to the west is the Truong Son Range. The highest elevation is 1706.3 m in the west of the 
Dong Xuan District (Figure 1). The slope of the province ranges from 0 to 59.9 degrees, 
with a mean of 11.4 and a standard deviation of 9.4. The province is also home to several 
rivers, including the Da Rang, Ky Lo, Ban Thach, and Tra Khuc Rivers [48], which play an 
essential role in the province’s economy and the daily life of the local population, provid-
ing a vital freshwater source for rice cultivation and aquaculture. 

3.2. Forest Fire Record 
Spatial modeling of forest fire danger requires foundational information regarding 

forest fires that occurred in the past and present [49–51]; therefore, collecting forest fire 
records and compiling a fire inventory map is a mandatory task that allows for the cali-
bration and validation of models in later steps. The forest fire inventory map should pro-
vide location, time, and severity records. In this research, the fire inventory map for Phu 
Yen Province was compiled based on (1) fire records from the Forest Protection Depart-
ment, Ministry of Agriculture, and Rural Development of Vietnam (www.watch.pcccr.vn 
(accessed on 28 March 2023); (2) fire data from the Fire Information for Resource Manage-
ment System (FIRMS) project of NASA, USA (www. firms.modaps.eosdis.nasa.gov (ac-
cessed on 28 March 2023); (3) forest fire events at Phu Yen Province as reported in the 
Vietnam media; and (4) fire events from fieldworks with handheld GPS coordinates. As a 
result, 306 forest fire locations that occurred in the last five years, from 2019 to 2023, were 
identified. A statistical analysis showed that 76.1% of the total forest fires occurred during 
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the four months of June, July, August, and September, most of which occurred during 
daylight. For example, seven forest fire events occurred from 25 June to 27 June 2019 in 
the Song Hinh and Phu Hoa Districts, causing more than 200 hectares of damage. A forest 
fire also broke out at about 10 a.m. on 25 August in the Ky Le Mountain area and then 
spread to neighboring areas, burning 50 ha. 

 
Figure 2. Location of Phu Yen Province and forest fire locations. 

3.3. Fire-Driving Factors 
Understanding the driving factors of forest fires is crucial for predicting the spatial 

patterns of forest fire danger [52,53]. By identifying the factors that contribute to the oc-
currence and spread of forest fires, prediction models can be developed to predict where 
forest fires are most likely to occur. The literature review shows that the most popular 
driving factors of forest fires are factors related to climate conditions (temperature, pre-
cipitation, and wind speed), vegetation type and density, topography, and human activi-
ties [16,54–56]. In this research, based on analysis of the forest fire inventory map and field 
works, we considered ten fire-driving factors for the Phu Yen Province: NDVI (normal-
ized difference vegetation index), NDWI (normalized difference water index), LULC 
(land use/land cover), distance to road, relative humidity, temperature, rainfall, aspect, 
slope, and elevation. 

NDVI and NDWI are commonly used remote sensing indices for forest fire modeling 
because they provide valuable information on vegetation cover and water availability 
[57], which are critical factors that contribute to the occurrence and spread of forest fires. 
Herein, NDVI is a measure of vegetation greenness and density, and areas with higher 
NDVI values typically have more vegetation cover [58] and are more susceptible to fire. 
Whereas NDWI measures the presence and extent of water in an area, high NDWI values 
in forested areas may also indicate areas with high soil moisture content [59], which may 
influence fire behavior and spread. In this research, NDVI (Figure 3a) and NDWI (Figure 
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3b) for Phu Yen Province were computed from reflectance values of bands 4, 5, and 6 of 
Landsat 8 OLI imagery 30 resolution (available at the USGS archive www.earthex-
plorer.usgs.gov (accessed on 28 March 2023) using Equations (1) and (2) [60,61]. Herein, 
two images (path-row of 124-051 and 123-051) captured on 10 April 2022 were used. 

NDVI = (Band 5 − Band 4)/(Band 5 + Band 4) (1)

NDWI = (Band 5 − Band 6)/(Band 5 + Band 6) (2)
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Figure 3. Fire-driving factors: (a) NDVI and (b) NDWI, (c) LULC, (d) distance to road (m) (1: Resi-
dential land; 3: Rice paddies; 4: Crop lands; 7: Grass land; 8: Barren land; 9: Scrub/Shrub; 10: For-
rest; 15: Wetland; 18: Open water; and 19: Aquaculture), (e) relative humidity (%), (f) temperature 
(°C), (g) rainfall (mm), (h) aspect (N: North; NE: North East; E: East; SE: South East; S: South; SW: 
South West; W: West; and NW: North West), (i) slope (°), and (j) elevation (m). 

Land use/land cover (LULC) is a vital factor to consider in forest fire modeling be-
cause it provides information on the type and distribution of vegetation and other land-
cover features in a region [62]. Herein, different land-cover types have varying suscepti-
bility to fire, with some types, such as grasslands and forests, being more prone to fires 
than others, such as wetlands and water bodies. In this analysis, the LULC map (Figure 
3c) for the study area was compiled from the 30 m resolution LULC map products in 2020 
provided by the Earth Observation Research Center (EORS), the Japan Aerospace Explo-
ration Agency (JAXA) (available at www.eorc.jaxa.jp, accessed on 28 March 2023). A total 
of 13 classes were identified: residential land (1); rice paddies (3); croplands (4); grassland 
(7); barren land (8); scrub/shrub (9); forest (10); wetland (11); open water (12); and aqua-
culture (13). 

Distance to roads is an essential factor in forest fire danger study because it can affect 
both the occurrence and spread of forest fires. Therein, roads can act as both a source of 
ignition and a means of fire spread, particularly in areas with high traffic volume or where 
roads are not well maintained [63]. In this research, distance to road (Figure 3d) with four 
classes (0–120, 120–240, 240–480, 480–900, and >900 m) for Phu Yen Province was created 
using the road networks from (1) the national topographic map of Vietnam at 1:50,000 
scale and (2) Open Street Map (www.openstreetmap.org (accessed on 28 March 2023)). 

Regarding the climate conditions, we considered three factors [33], including relative 
humidity (Figure 3e), temperature (Figure 3f), and rainfall (Figure 3g). These factor maps 
were established using the climatic data provided by the POWER project of NASA (Na-
tional Aeronautics and Space Administration, USA) (available at 
www.power.larc.nasa.gov, (accessed on 28 March 2023)). Herein, data from three years 
from 2018–2020 for the four months of June, July, August, and September were used. 
These months have a high concentration of forest fires, as mentioned in Section 3.2. 

Finally, topography-related factors should be considered in forest fire modeling be-
cause they can influence the spatial patterns and drivers of forest fires. Herein, topogra-
phy refers to the physical features of the land, such as slope, aspect, and elevation. For the 
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slope, areas with steep slopes are more prone to fire spread because fires can move more 
quickly uphill and can be difficult to control [64]. With aspect, this factor refers to the slope 
directions, which can influence the amount of solar radiation and moisture that a slope 
receives [65], and can therefore affect the type and density of vegetation present. Regard-
ing elevation, this factor can also affect fire behavior, as higher elevations tend to be cooler 
and moister than lower elevations [66], which can influence the type and density of vege-
tation present and the probability of fire occurrence. In this research, the slope map (Fig-
ure 3h), the aspect map (Figure 3i), and the elevation map (Figure 3j) for Phu Yen Province 
were extracted from an ALOS DEM 30 m resolution, provided by the EORS of JAXA 
(available at www.eorc.jaxa.jp (accessed on accessed on 28 March 2023)). 

4. Proposed Methodology of GIS-Based TensorFlow Deep Neural Networks for Spa-
tial Prediction of Forest Fire Danger 

This section describes the proposed methodology (Figure 4) for spatial prediction of 
forest fire danger using TFDeepNN and GIS. This work processed the forest fire records 
and the driving factors using ArcGIS Pro 3.0. The Python code for TFDeepNN can be 
found at www.tensorflow.org (accessed on accessed on 28 March 2023). In addition, the 
authors programmed another Python script to process the ten driving factor maps and 
connect them to TFDeepNN. The script was also used to compute the output of the model, 
which was then transformed into a forest fire danger map. For the case of the three bench-
marked methods, namely RF, SVM, and LR, the Python-based Weka API was used to 
generate forest fire danger models. 

 
Figure 4. The proposed methodology for spatial prediction of forest fire danger. 
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4.1. Forest Fire Database 
In the first step, a forest fire database for Phu Yen Province was constructed using 

ESRI File Geodatabase format in ArcGIS Pro. Herein, the ESRI File Geodatabase is a robust 
and reliable format that can handle large amounts of data without sacrificing performance 
[67]. This makes it an ideal format for organizing and managing forest fire data, which 
can be extensive and complex. ESRI File Geodatabase in ArcGIS Pro allows for efficient 
and effective storage and management of large amounts of data and the integration of 
different data types [68], such as climate conditions, topography, and human activities, 
into a single database. This makes it easier to analyze the relationships between different 
factors and identify patterns that can be used to predict forest fire behavior. 

After processing the data, the forest fire database for the study area was constructed, 
containing ten driving factors (NDVI, NDWI, LULC, distance to road, relative humidity, 
temperature, rainfall, aspect, slope, and elevation) and 306 historical forest fire locations. 
The driving factors were transformed into raster maps with a resolution of 30 m. As the 
TFDeepNN model processes data with values ranging from 0 to 1, a normalization process 
was carried out on the forest fire database. This process involved using the Raster Calcu-
lator in the Spatial Analysis tool in ArcGIS Pro to convert all values of the ten driving 
factors, which have their raster values in various ranges, ranging from 0.01 to 0.99 [22]. 

Subsequently, a value of “1” was assigned to the forest fire locations, while a value 
of “0” was assigned to the non-forest fire locations. For modeling purposes, a total of 214 
forest fire records (70%) were randomly extracted from the 306 non-forest fire locations to 
generate the training dataset, while the remaining 92 forest fire records (30%) were used 
to create the validation dataset. In this research, forest fire modeling is treated as a binary 
pattern-recognition problem [33]. In order to achieve this, an equal number of locations 
(214 non-forest fire locations and 92 non-forest fire locations) were randomly sampled 
from non-forest areas within the study area, respectively. These non-forest areas were 
identified based on the NDVI map classification (see Figure 3a), with areas with an NDVI 
value of less than 1.5 classified as non-forest areas. Finally, an extraction process was car-
ried out to generate ten raster values for these locations to build the training and valida-
tion datasets. 

4.2. Feature Assessment 
In forest fire danger modeling, assessing the usefulness or relevance of the driving 

factors in the training dataset is essential. The resulting evaluation helps determine 
whether a factor should be included in the model. This process is commonly known as 
feature assessment, and it is often used to improve the efficiency and accuracy of machine 
learning models by removing irrelevant or redundant features from the training dataset. 
In this study, the wrapper-based random forests (WrapRF) algorithm [69] was used to 
identify significant features for prediction. We selected the WrapRF because this algo-
rithm is widely used in feature selection to determine the most informative factors to the 
prediction model. 

The WRF is a greedy search method that explores all possible combinations of subsets 
of the ten forest fire driving factors and then evaluates them against the model’s perfor-
mance. Herein, the evaluation criterion of classification accuracy [70] was used to deter-
mine which combination of the driving factors is the best for the data at hand. 

4.3. Designing TensorFlow Deep Neural Networks Model 
An appropriate architecture for a TFDeepNN is crucial for modeling forest fire dan-

ger in Phu Yen Province. It can help achieve high performance, prevent overfitting and 
underfitting, and minimize computational resources. However, it requires a good under-
standing of the forest fire mechanism and knowledge of different available architectures 
in TensorFlow. In this research, the TFDeepNN model was designed with an input layer 
(ten neurons), three hidden layers (32 neurons for each layer), and an output layer (one 
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neuron) (Figure 5). As a result, a total of 2497 parameters for the TFDeepNN model was 
determined (Table 1). Sigmoid and RELU were selected for the activate function and the 
transfer function [71,72] for the TFDeepNN model, respectively. 

 
Figure 5. TensorFlow deep learning model designed for spatial prediction of forest fire danger. 

Table 1. Summary of the TFDeepNN in this research. 

No. Description Number of Parameters Matrix 
1 Input Layer 1 320 IpL10 × 32 
2 The bias of Input Layer 1 32 BiasInL32 × 1 
3 Layer 1 1024 L132 × 32 
4 The bias of Layer 1 32 BiasL132 × 1 
5 Layer 2 1024 L232 × 32 
6 The bias of Layer 2 32 BiasL232 × 1 
7 Layer 3 32 L232 × 1 
8 The bias of Layer 3 1 BiasL21 × 1 

4.4. Cost Function 
The performance of the TFDeepNN is dependent on how the 2497 parameters are 

searched and selected. In order to measure this performance, the mean squared error 
(MSE) (Equation (3)) was employed as the cost function in this research. MSE =  1𝑛 (𝐹𝐹 − 𝐹𝑂 )  (3)

where 𝐹𝐹  is the forest fire value in the training dataset, whereas 𝐹𝑂  is the forest fire 
danger output from the TFDeepNN model; n is the total number of the training samples 
used. 

4.5. ADAM Optimization 
In this study, we utilized the ADAM (adaptive moment estimation) algorithm pro-

posed by Kingma and Ba [73] for optimizing the TFDeepNN model. ADAM is a widely 
used and versatile optimization algorithm for training deep neural networks and is 
known for its effectiveness and efficiency [74]. This algorithm uses historical gradient in-
formation and adaptive learning rates to update the 2497 parameters of the model. ADAM 
adjusts the learning rate for each parameter, aiding in faster convergence and avoiding 
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oscillations [75]. Moreover, ADAM is robust against noisy gradients and flexible enough 
to be used with different neural network architectures and tasks. 

4.6. Statistical Metrics 
In order to evaluate the performance of the forest fire danger models, various popu-

lar metrics were employed, such as classification accuracy, true positive, true negative, 
false positive, false negative, true positive rate, true negative rate, kappa F-score, receiver 
operating characteristic (ROC) curve, and area under the curve (AUC). These metrics are 
well documented in the literature, including for forest fire danger modeling, and there-
fore, we do not provide a detailed description of them here. Readers can refer to other 
articles, i.e., [9,20,76]. 

5. Results and Analysis 
5.1. Feature Assessment Result 

The results of the usefulness analysis for the ten driving factors of forest fires are 
presented in Table 1. It can be seen that NDVI provides the most informative value (InV) 
(0.280), followed by the elevation factor (InV = 0.095) and the NDWI factor (InV = 0.076). 
Meanwhile, the InV values for three factors, namely surface temperature (°C), rainfall 
(mm), and slope (°), are almost equal (Table 2). On the other hand, LULC is the least rele-
vant factor to the forest fire model, with an InV of 0.005. Overall, all factors are informative 
for forest fires, and as a result, no factor was excluded in the modeling process. 

Table 2. The usefulness of the driving factors in this research using the WrapRF algorithm. 

Fire Driving Factor Informative Value Ranking 
NDVI 0.280 1 
Elevation (m) 0.095 2 
NDWI 0.076 3 
Surface temperature (°C) 0.072 4 
Rainfall (mm) 0.071 5 
Slope (°) 0.070 6 
Relative humidity (%) 0.067 7 
Distance to road (m) 0.057 8 
Aspect 0.011 9 
LULC 0.005 10 

5.2. Model Training and Validating 
Using the ADAM optimization algorithm and the cost function of MSE, 2497 param-

eters were searched and optimized, and the TFDeepNNmodel was successfully trained. 
The training result is shown in Table 3 and Figure 6. It can be seen that the TFDeepNN 
model demonstrates a strong fit with the training data, where the mean error and the 
standard error are −0.018 and 0.231 (Figure 6), respectively. Moreover, the error of the 
TFDeepNN model follows a normal distribution. The accuracy (Acc), F-score, and kappa 
are 93.2%, 0.934, and 0.864, respectively, indicating that the TFDeepNN model accurately 
classified the samples in the training dataset (Table 3). The global performance of the 
TFDeepNN model is summarized via the ROC curve and AUC in Table 3 and Figure 7. 
The AUC of 0.976 indicates that the TFDeepNN model can differentiate between areas at 
high risk and areas at low risk of forest fires. The other measured metrics of the model in 
the training dataset are shown in Table 3 and Figure 6. 
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Table 3. Performance of the TFDeepNN, RF, SVM, and LR and using the training dataset with 10-
fold cross-validation. 

Forest Fire Model 
Measured Metrics 

TP TN FP FN PPV NPV Sens Spec Acc F-Score Kappa AUC 
TFDeepNN 205 194 9 20 95.8 90.7 91.1 95.6 93.2 0.934 0.864 0.976 

RF 161 189 53 25 75.2 88.3 86.6 78.1 81.8 0.805 0.636 0.896 
SVM 171 159 43 55 79.9 74.3 75.7 78.7 77.1 0.777 0.542 0.850 
LR 165 158 49 56 77.1 73.8 74.7 76.3 75.5 0.759 0.509 0.851 

 
Figure 6. Performance of the TFDeepNN model in the training dataset. 

 
Figure 7. The ROC curve and the area under the curve (AUC) of the TFDeepNN model. 

In order to evaluate how well the TFDeepNN model generalizes to new data and 
predicts the occurrence of forest fires in areas outside the training dataset, the model was 
checked using the validating dataset. The results are presented in Figures 7 and 8 and 
Table 4. It could be seen that the Acc, kappa, F-score, mean error, and standard error of 
the model are 79.3%, 0.587, 0.806, −0.055, and 0.404, respectively, indicating that the model 
works well with the validating data. The AUC of the TFDeepNN model is 0.873 (Figure 7 
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and Table 4), indicating that the prediction power of the model is satisfied in predicting 
the likelihood of forest fires. The other measured metrics of the TFDeepNN model in the 
validating dataset are shown in Table 4 and Figure 8. 

 
Figure 8. Performance of the TFDeepNN model in the validating dataset. 

Table 4. Prediction performance of the TFDeepNN, RF, SVM, and LR and using the validating da-
taset. 

Forest Fire Model 
Measured Metrics 

TP TN FP FN PPV NPV Sens Spec Acc F-Score Kappa AUC 
TFDeepNN 79 67 13 25 85.9 72.8 76.0 83.8 79.3 0.806 0.587 0.873 

RF 72 73 20 19 78.3 79.3 79.1 78.5 78.8 0.787 0.576 0.865 
SVM 74 66 18 26 80.4 71.7 74.0 78.6 76.1 0.771 0.522 0.851 
LR 72 65 20 27 78.3 70.7 72.7 76.5 74.5 0.754 0.489 0.856 

5.3. Model Training and Validating 
In order to guarantee the TFDeepNN model’s efficacy in predicting forest fire danger 

in a spatial context, it is crucial to evaluate its predictive ability by comparing it with other 
benchmarked methods. As mentioned in Section 2.2, RF, SVM, and LR are the three bench-
marked methods used. The Weka API used default parameters for the RF and LR models. 
The Radial Basis Function was selected for the SVM model, and two parameters, namely 
gamma (0.95) and C (9.9), were chosen using grid search. The result is shown in Tables 3 
and 4. We observe that the RF model (Acc = 81.8%, F-score = 0.805, kappa = 0.636, and 
AUC = 0.896) and the SVM model (Acc = 77.1%, F-score = 0.777, kappa = 0.542, and AUC 
= 0.850) fit well with the training dataset, whereas the LR (Acc = 75.5%, F-score = 0.759, 
kappa = 0.509, and AUC = 0.851) had lower performance (Table 3). Nevertheless, the RF, 
SVM, and LR models still show a lesser performance compared to the proposed 
TFDeepNN model. 

Regarding prediction performance, both the RF model (Acc = 78.8%, F-score = 0.787, 
kappa = 0.576, and AUC = 0.865) and the SVM model (Acc = 76.1%, F-score = 0.771, kappa 
= 0.522, and AUC = 0.851) exhibit satisfactory results. In contrast, the LR model shows 
slightly lower prediction performance (Table 4). However, compared to the proposed 
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TFDeepNN model, all three models have lower prediction performance (the results in 
Table 4). 

A paired-sample sign test was conducted to determine if there was a statistically sig-
nificant difference in the prediction capability of the four models: TFDeepNN, RF, SVM, 
and LR. The null hypothesis (Ho) was that there was no significant difference in prediction 
capability among these forest fire danger models. We calculated the test statistic and p-
value, and if the p-value was less than or equal to 0.05, and the absolute value of the ob-
served test statistic was outside the range of −1.96 to +1.96, the null hypothesis would be  
rejected. In such a case, we considered the prediction capability of these forest fire danger 
models to be statistically significant at the 5% level of significance. 

The result is shown in Table 5. We observe that the p-value is less than 0.05, and the 
test statistic value was outside the critical range of −1.96 to +1.96 for the three pairs: 
TFDeepNN vs. RF, TFDeepNN vs. SVM, and TFDeepNN vs. LR. This indicates that the 
prediction capability of these forest fire danger models is statistically significant (Table 5). 

Table 5. Paired-sample sign test of the TFDeepNN, RF, SVM, and LR models for spatial prediction 
of forest fire danger. 

No. Model Pair Test Statistic Value p-value Significance 
1 TFDeepNN vs. RF 2.580 0.010 Yes 
2 TFDeepNN vs. SVM 2.285 0.022 Yes 
3 TFDeepNN vs. LR 3.170 0.002 Yes 
4 RF vs. SVM 2.541 0.011 Yes 
5 RF vs. LR 3.317 0.001 Yes 
6 SVM vs. LR 0.377 0.706 No 

5.4. Compile the Forest Fire Danger Map 
Because the TFDeepNN model was deemed the best in this research, the model was 

used to compute the forest fire danger index for all pixels of Phu Yen Province using the 
Python script mentioned in Section 4. Herein, these danger indices were exported directly 
to the ESRI file geodatabase format of the forest fire (refer to Section 4.1), and in this way, 
the forest fire danger map could inherit all georeference settings established for this pro-
ject before. A total of 10,762,508 pixels, corresponding to 2908 rows × 3701 columns, were 
calculated as the fire danger index; then, the pixels outside the study area’s boundary 
were masked. This results in a remaining 5,610,757 pixels, where the fire danger index 
varies from 0.00 to 1.00. The mean and the standard deviation are 0.337 and 0.413, respec-
tively. In order to generate the forest fire danger, these 5,610,757 pixels were reclassified 
into five classes [22]: very high, high, low, very low, and no (Figure 9). 
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Figure 9. Forest fire danger map using the TFDeepNN model for Phu Yen Province. 

We defined the thresholds for the five class intervals by cross-referencing the raster 
map of the forest fire danger index with the forest fire locations (Section 3.2). Then, we 
computed the percentage of forest fire locations and the percentage of the forest fire dan-
ger map where the index values were sorted from high to low to plot a graph (Figure 10). 
To determine the fire danger index thresholds, 10% of the study area was used for the 
high class and 20% of the study area each for the moderate, low, and very low classes. 
Additionally, 25% of the study area was used to define the no class. Based on this ap-
proach, we determined four fire danger index thresholds: 0.973 for the very high class, 
0.426 for the high class, 0.024 for the low class, and 0.01 for the very low class (as shown 
in Figure 10). 

Table 6 shows the characteristics of the five forest fire danger classes generated from 
the TFDeepNN model. We observe that 757.5 km2 and 1009.9 km2 of the study area are 
classified as the very high class and the high class, respectively, and these two classes 
account for 93.8% of the forest fire locations. In contrast, the low and very low classes have 
2019.9 km2 but receive only 6.2% of the forest fire locations. These indicate that the 
TFDeepNN model works well with the data at hand. 
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Table 6. Characteristics of the five forest fire danger classes of the TFDeepNN model for the Phu 
Yen Province. 

No. Forest Fire Danger 
Index 

Forest Fire Location 
(%) Class Description Forest Fire Danger 

Map (%) 
Occupied Areas 

(km2) 
1 0.973–1.000 44.1 Very High  15 757.5 
2 0.426–0.973 49.7 High 20 1009.9 
3 0.024–0.426 3.3 Low 20 1009.9 
4 0.001–0.024 2.9 Very Low 20 1009.9 
5 0.000–0.001 0.0 No 25 1262.4 

 
Figure 10. Graphic curve for determining four thresholds of the forest fire danger for the Phu Yen 
Province. 

6. Discussion 
In recent years, repeated and extensive forest fires have created harmful conse-

quences for the natural environment, including reduced air and water quality, endanger-
ment of various species, and heightened soil erosion risks [77–79]. Therefore, studies of 
forest fires and the development of prediction models with high accuracy are necessary 
to help mitigate the impacts mentioned above. In this work, we present and verify a new 
modeling approach, based on TFDeepNN and GIS, for spatial prediction of forest fire 
danger, focusing on high-frequency tropical forest fire in the Phu Yen Province of Vi-
etnam. 

The performance of the TFDeepNN is mainly influenced by the structure used and 
the optimization algorithm employed; therefore, it must be appropriately determined. In 
this work, the TFDeepNN structure (10 input neurons, 96 neurons in three layers, and 1 
output neuron) provides high prediction power, indicating that the model was designed 
properly for forest fire danger modeling. Additionally, the ADAM algorithm is capable of 
optimizing the 2497 parameters of the model. 

Comparing the TFDeepNN model with the benchmarks, i.e., RF, SVM, and LR, it 
indicates superior performance, thereby confirming TFDeepNN as a promising new tool 
that can be used for forest fire danger modeling. These results are in line with the current 
literature, which highlights the effectiveness of deep learning as a popular and powerful 
approach for achieving high prediction accuracy in the domain of natural hazards, out-
performing traditional machine learning models [80–82]. 

In this analysis, including the ten forest-fire-driving factors proved informative for 
predicting forest fire danger, resulting in the high prediction performance of the 
TFDeepNN model. This success confirms the effectiveness of the selected factors and the 
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successful processing and coding of these inputs. Among the ten factors, NDVI and ele-
vation are the most important. This is reasonable because NDVI is a proxy of the vegeta-
tion that strongly influences the spread and intensity of forest fires [83], while the eleva-
tion in Phu Yen Province influences temperature and precipitation [84], which are crucial 
factors for forest fire ignition and spread. On the other hand, LULC (land use/land cover) 
and aspect were found to be of lower importance, possibly due to the relatively even dis-
tribution of forest fire locations across these factors. The result is consistent with forest fire 
danger modeling findings in other studies conducted in tropical areas [85,86]. 

7. Concluding Remarks 
Based on the findings in this work, our investigation yielded the following conclu-

sions: 
 Implementing TFDeepNN and the ADAM optimization algorithm can produce for-

est fire danger maps with a high degree of accuracy; 
 The performance of the TFDeepNN model was superior to the RF, SVM, and LR 

models used for benchmarking, suggesting that TFDeepNN represents a promising 
and innovative tool for mapping forest fire danger; 

 Among the various factors considered, NDVI and elevation were found to have the 
highest impact on forest fire danger in Phu Yen Province; 

 In summary, the forest fire danger map created in this study has the potential to offer 
valuable insights to policymakers and authorities in Phu Yen Province, supporting 
sustainable land-use planning and effective management practices. 
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