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Abstract Total Electron Content (TEC) is the integral of the electron density along 
the path between receivers and satellites. TEC measured from Global Navigation 
Satellite Systems (GNSS) data is valuable to monitor space weather and correct 
ionospheric models. TEC noise detection is also an essential channel to forecast 
space weather and research the relationship between the atmosphere and natural 
phenomena like geomagnetic storms, earthquakes, volcanos, and tsunamis. In this 
study, we apply optimization machine learning techniques and integrated GNSS and 
solar activity data to determine GNSS-TEC noise at the International GNSS Service 
(IGS) stations in the Tonga volcanic region. We investigate 38 indices related to 
the geomagnetic field and solar wind plasma to select the essential parameters for 
forecast models. The findings show the best-suited parameters to predict vertical TEC 
time series: plasma temperature (or Plasma speed), proton density, Lyman alpha, R 
sunspot, Ap index (or Kp, Dst), and F10.7 index. Applying the Ensemble algorithm 
to build the TEC forecast models at the investigated IGS stations gets the accuracy 
from 1.01 to 3.17 TECU. The study also shows that machine learning combined
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with integrated data can provide a robust approach to detecting TEC noise caused 
by seismic activities. 

Keywords Machine learning · GNSS-TEC forecast · GNSS · Solar activity ·
Tonga volcanic eruption 

1 Introduction 

Continuous Global Navigation Satellite Systems (GNSS) data can be used for various 
applications. Satellite signal propagation in space depends uniquely on electron 
density in the ionosphere [1–3]. Thus, the estimation of Total Electron Contents 
(TEC) in the ionosphere can provide valuable information to correct errors in GNSS 
positioning. Furthermore, solar activity is the main factor causing fluctuations in the 
Earth’s electrical and magnetic fields [4]. The hot plasma makes energetic charged 
particles in space escape from the Sun’s gravity and interacts with the Earth’s 
magnetic field. The interaction between the solar wind plasma and Earth’s magnetic 
field leads to some natural phenomena in the atmosphere like auroras, geomag-
netic storms, and ionospheric anomalies [5–8]. Monitoring TEC disturbances thereby 
reflects the solar activity and is an important channel to forecast space weather. 

Some other factors also result in ionospheric anomalies in the short term, for 
example, nuclear explosions [9–12] and rocket launching [13, 14]. Thanks to an 
increasing number of continuous GNSS stations, the research stream that has been 
attractive to scientists for almost two decades is TEC anomalies associated with 
seismic activities [15–19]. Determination of the TEC disturbances related to seismic 
events applies different methods and monitoring instruments. The French low orbit 
satellite DEMETER1 was launched in 2004 to investigate ionospheric disturbances 
related to earthquakes and volcanos [20]. The multi-purpose GNSS networks like 
the GEONET in Japan and the SEALION in Southeast Asia have been attached 
to ionosondes, scintillation monitors, and magnetometers to observe the effect of 
seismic events on the atmosphere [21]. Some studies revealed the signs of earthquake 
precursors linked to ionospheric perturbation [22–25]. The Global Ionospheric Maps 
(GIM) are also a valuable data source for detecting TEC anomalies caused by these 
seismic activities [26]. 

So far, there have been two approaches to studying ionospheric fluctuations related 
to seismic events. The first one is based on the physical mechanism of the seismic 
wave generation into the atmosphere [27]. The other relies on analyses of statistics 
and the probability of TEC anomalies in the epicenter regions and time of earthquake 
occurrences (mainshocks) [28]. However, there is no absolutely certain guarantee 
about the coincidence between observed ionospheric anomalies in the location and 
time of the earthquakes with other non-seismic activities. Monitoring TEC noise 
during periods of low solar activity to study the effect of seismic activities is a proper 
solution [19]; thus, many remarkable earthquakes resulting in TEC anomalies are

1 https://directory.eoportal.org/web/eoportal. 

https://directory.eoportal.org/web/eoportal
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skipped in investigations. Besides, there is also no common standard to measure 
ionospheric noise levels. Hence, applying Machine Learning (ML) and integrated 
data to distinguish TEC noise sources and extract TEC noise caused by seismic events 
will be carried out in this study. 

ML has been a current trend applied to multidisciplinary research fields, especially 
for space weather forecasts and hazard warnings. The solar wind plasma and geomag-
netic data have been used to predict TEC models in a few studies in the literature 
[29–31]. For example, Claudio Cesaroni et al. [32] used neural networks to predict 
global TEC at a daily sampling rate with the forecast accuracy of approximately 3 to 
5 TECU. Xu Lin et al. [33] implemented the networks of convLSTM (convolutional 
Long Short-Term Memory) and PredRNN (Predictive Recurrent Neural Network) 
to correct errors of the delays. However, these criteria have not yet met the require-
ments of TEC anomaly detection related to seismic activity. Since TEC noise caused 
by seismic events often remains within a few minutes to a few hours and forecast 
accuracy of under 3 TECU can overcome TEC disturbances on the equator area or 
TEC variations at a low active time [34]. Other literary studies used the solar indices 
in their forecast models, such as Ap and F10.7, to correct ionospheric delays [35] or  
A.E. and SYM/H indices for TEC nowcasting [36]. Nevertheless, there has been no 
consistency in the selected indices among the studies. 

Therefore, this study combines the optimization ML techniques with statistical 
hypothesis tests to determine suitable parameters related to the solar and geomagnetic 
activities for the TEC forecast models. These ML models will be the basis for separate 
TEC noise sources. Hence, we use the trained ML models to extract vertical TEC 
(VTEC) noise related to the Tonga volcanic eruption on 15 January 2022. Finally, 
we apply statistical and spectral techniques to analyze GNSS-VTEC noise at the 
International GNSS Service (IGS) stations nearby Tonga. 

2 Study Area, Data, and Methodology 

2.1 Study Area 

The Tonga-Hunga Ha’apai includes small islands along the caldera rim in the 
Western-South Pacific Ocean. The Tonga volcano has experienced seven Holocene 
eruptive periods, with the first recorded eruption ~900 years ago [37]. For the latest 
period, it woke up by 20 December 2021 and ended after a massive explosion with a 
height of ~30 km at 04:10 UTC on 15 January 2022 [38]. The Tonga volcanic erup-
tion triggered a tsunami with the waves observed thousands of miles away from the 
Caribbean and Alaska. After four minutes, a shallow earthquake of 5.7 Mw occurred 
near the epicenter at 20.536°S and 175.382°W [39]. It is considered one of the few 
volcanoes tracked in detail and with different methods and technologies.



140 N. Le et al.

Fig. 1 Investigated TEC anomalies related to the 2022 January Tonga volcano at the IGS stations 

2.2 Data 

We use the GNSS data from four IGS stations surrounding the epicenter of the 2022 
January Tonga volcano to study the effects of these seismic events on the ionosphere 
(Fig. 1). These selected IGS stations must ensure conditions like being located within 
the radius of perception, the equivalent accuracy, and continuously monitored data. 
The stations FTNA and THTI are located in French Polynesia, and AUCK and WARK 
are in New Zealand. The GNSS data are available at the data center of the Crustal 
Dynamics Data Information System (CDDIS).2 GNSS observations are the major 
initial data to compute the TEC time series for building forecast models. 

Thirty-eight solar wind plasma and geomagnetic field parameters are analyzed 
to determine the best-suited predictors for the ML models (Table 4). These data are 
taken from the world data bank: the space weather prediction center NOAA,3 USA; 
the world data center for Geomagnetism,4 Kyoto, Japan; and the space weather live,5 

Belgium. In addition, the seismic data are collected from the data center GEOFON,6 

GFZ Potsdam, Germany and the U.S. geological survey center USGS.7 Figure 2 
shows eight main parameters of the geomagnetic field and solar wind. The level 
of solar activity is usually defined via indices such as the sunspot number and the

2 https://cddis.nasa.gov/. 
3 https://www.swpc.noaa.gov/. 
4 http://wdc.kugi.kyoto-u.ac.jp/. 
5 https://www.spaceweatherlive.com/. 
6 https://geofon.gfz-potsdam.de/. 
7 https://www.usgs.gov/. 

https://cddis.nasa.gov/
https://www.swpc.noaa.gov/
http://wdc.kugi.kyoto-u.ac.jp/
https://www.spaceweatherlive.com/
https://geofon.gfz-potsdam.de/
https://www.usgs.gov/
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Fig. 2 Eight specific features in 38 investigated parameters of the geomagnetic field and solar wind 
(plasma temperature, plasma density, Plasma speed, Ap index, R sunspot, Dst index, Lyman alpha, 
and F10.7 index) 

solar radio flux at 10.7 cm (F10.7 index). Indices of global geomagnetic activity like 
Kp, Ap, Cp, and C9 are provided by the German Research Center for Geosciences 
(GFZ). Dst values of the disturbance storm time index are obtained from the world 
data center for Geomagnetism in Kyoto, Japan. 

2.3 Methodology 

Regression analysis is a mathematical method that describes the relationship between 
one or many independent variables and the dependent variable. In machine learning, 
the independent variables are factors to predict the dependent variable. Therefore, 
changes in the independent variables will result in changes in the dependent variable. 
Usually, only main factors should be included in the regression models to optimize
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forecast performances and avoid biased conclusions. In this way, we use the param-
eters related to solar activity as the main factors in ML models to predict the VTEC 
time series at the IGS stations in Tonga. The differences between forecast models 
and actual TEC values will be considered anomalies caused by other factors. 

ML models used for ionospheric anomaly detection must be sensitive enough to 
distinguish noise sources while remaining resistant to outliers. Hence, we clean data 
using filtering algorithms, with the moving window thresholds selected flexibly in 
the sampling rates and data characteristics. 

The study uses integrated data with different units. The solar activity data also 
vary in an extensive value range from one-thousandth (e.g., Sigma alpha/proton ratio) 
to thousands (e.g., Plasma temperature), while VTEC time series change from a few 
(at midday) to hundreds (at midnight) TECU. It might make the initial assumption 
that higher ranging numbers have superiority of some sort. Furthermore, signifi-
cant differences in value range among features can decrease convergence progress 
or saturate too fast for the algorithms based on gradient descent (e.g., Linear and 
Gaussian) and distance (e.g., SVM). Therefore, these input data should be re-scaled 
to fit regression models and push up processing speed. 

As mentioned, the parameters associated with the solar activity will be predictors 
in the ML models. These parameters have different characteristics. The regression 
model’s excess or lack of independent variables can decrease prediction perfor-
mances. Therefore, determining the suitability of predictors in ML models is 
necessary, known as “feature selection”—one of the main hyperparameter tuning 
techniques in machine learning. The multiple regression analyses combined with 
statistical tests are applied to select the best-relevant parameters for ML models. 

Training the forecast models is based on four ML algorithms, including Linear 
Regression, Support Vector Machine (SVM), Tree Ensemble, and Regression Trees 
using the ML toolbox in MATLAB® to select the optimal models. VTEC distur-
bances caused by seismic activities can last from some minutes to a few hours [34]. 
To capture the most negligible variations in the VTEC time series, we investigate two 
cases: (1) using hourly time series of two-year data and (2) using one-minute time 
series of the 15-day data to predict one day. We extract VTEC noise based on the 
trained ML models and analyze its physical characteristics by the spectrum method 
[40]. To this end, we apply Welch’s algorithm to estimate the power spectral density 
[41] and the continuous wavelet transform (CWT) method to compute the spectral 
magnitude in GNSS-VTEC noise [42, 43]. 

Figure 3 shows the methodology mentioned above with three main steps. The first 
one is pre-processing with cleaning raw data, testing characteristics, and re-scaling 
data. The second step is feature selection using two statistical tests, analysis of vari-
ance (ANOVA), and Fisher test. The final step includes preparing input data, splitting 
data, training forecast models, optimization processing to get the highest perfor-
mance models, and extracting and analyzing GNSS-TEC noise at the investigated 
IGS stations.
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Fig. 3 Flowchart of GNSS-TEC noise detection based on ML techniques and the integrated data 
of GNSS and solar activity 

3 Results and Discussions 

3.1 Data Pre-Processing 

The Moving Median filters outliers at the same thresholds and sliding window size 
(Fig. 4). The Augmented Dickey-Fuller (ADF) tests the stationarity of the VTEC 
time series at the IGS stations, and the details are shown in Table 1. The absolute 
values of the ADF test (in bold italics) are larger than the critical values tcritical for 
all statistical t-test levels (1, 5 and 10%) at the significant statistics (see Table 1). 
Hence, the VTEC time series appear to be stationary, and they can be used to train 
the forecast models to detect ionospheric anomalies.

3.2 Feature Selection 

We apply statistical tests and analysis techniques to select the best-suited features 
from 42 input parameters, in which 38 parameters of the solar wind plasma and 
geomagnetic field, three parameters of time (Hour, Day of Year, and Year) and one 
lagged VTEC time series. F-test is used to measure the feature importance via the
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Fig. 4 Filtering of outliers by the Moving Median algorithm for the VTEC time series (one-minute 
sampling rate) of the IGS station AUCK (New Zealand) with the confidence interval of 99.7% at 
the sliding window of 2880 (two-day data) 

Table 1 Test the stationarity of the VTEC time series at the IGS stations AUCK, FTNA, THTI, 
and WARK using the Augmented Dickey-Fuller algorithm 

Test 
levels 
(%) 

AUCK FTNA THTI WARK 

t p-value t p-value t p-value t p-value 

− 5.03 1.80E-05 − 5.63 8.95E-07 − 5.99 1.32E-07 − 4.73 7.21E-05 

1 − 3.43 − 3.43 − 3.43 − 3.43 
5 − 2.86 − 2.86 − 2.86 − 2.86 
10 − 2.57 − 2.57 − 2.57 − 2.57

score ranking. Figure 5 shows the classification results of the univariate features at 
the IGS stations, with the nine highest-score features displayed on the horizontal axes 
of the graphs. The scores at the high-latitude stations (WARK and AUCK) reach up 
to 449.58 and 479.27, while those (THTI and FTNA) are only 217.87 and 268.40, 
respectively. This finding indicates that solar activity has a more significant impact 
on TEC observed at high-latitude stations. In addition, the effect of the variables like 
Kp, Ap, and Lyman alpha remains at the highest level for all the IGS stations, in 
which Ap and Kp are of identical scores because of their correlation. The detailed 
results of the feature importance score are presented in Table 4. Regression model 
predictors should be independent variables to improve processing speed and avoid 
biased conclusions. Hence, we employ analysis of variances (via ANOVA tests) to 
detect multicollinearity in the variables under consideration.
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Fig. 5 Univariate feature ranking for regression models using F-test at four IGS stations AUCK, 
FTNA, THTI, and WARK. The horizontal axis indicates the specific score features 

Table 2 lists 20 features with significant statistics (p-values < 0.05) using the 
ANOVA tests. The coefficients (Beta) of the t-test show the correlations among 
the independent variables in the regression models. Tolerance and VIF indicate 
information of multicollinearity.

Four features have a high potential for multicollinearity, including plasma speed, 
flow pressure, IMF magnitude average, and Magnitude IMF vector. Besides, the 
features with tolerance in the interval from 0.1 to 0.2 should also be checked cross-
correlation to enhance forecast performance. The correlation matrix heatmap reveals 
the pairs of the linear relevant features, such as Proton quasy invariant and plasma 
temperature, Dst (or Kp) and Ap index (Fig. 6). The detailed information on the 
correlation matrix of 20 significant features is shown in Table 5. The redundant 
variables (e.g., IMF magnitude vector, IMF magnitude average, plasma flow pressure) 
should be rejected before training forecast models.

Overall, there are two outstanding advantages of feature selection based on statis-
tical tests. The first one is a clear classification of the importance of each feature in a 
regression model. This helps analysts decide which parameters should be used to train 
forecast models. The second advantage is to detect relevant features without training 
test models (trial steps) as other feature selection methods (e.g., K nearest neighbor,
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Fig. 6 Correlation matrix 
heatmap of 20 significant 
features using the ANOVA 
test at the IGS station WARK

Gaussian process regression, or neighborhood component analysis). Forecast perfor-
mance will be significantly improved because performing trial steps via loops on all 
42 features is time-consuming. In this study, statistical tests have pointed out the best-
suited features to build the regression ML models: Plasma temperature (or plasma 
speed), proton density, Ap index (or Kp, Dst index), F10.7 index, Lyman alpha, and 
R sunspot. Together with the infinite variables (H.R., DOY, Lag VTEC), these six 
features will be used as the predictors (independent variables) in the regression ML 
models to forecast the GNSS-VTEC time series. 

3.3 Detection and Analysis of GNSS-TEC Noise 

We investigate 15 mathematical models based on four ML methods (Linear Regres-
sion, Regression Trees, SVM, and Tree Ensemble) to predict the VTEC time series 
for one day. Optimization processing is performed to select the best models for 
GNSS-VTEC noise detection. Figure 7 presents two forecast models using the one-
minute and hourly time series at the THTI station. VTEC prediction using the hourly 
time series produces the ML models with greater generalizability and robustness to 
extreme values and outliers. These models will have higher reliability for anomaly 
detection in deformation analyses and long-term predictions. Nevertheless, based 
on noise characteristics caused by seismic activities, assessments on both cases 
(one-minute and hourly time series) should be performed.

Table 3 lists the VTEC forecast accuracy (in root mean square error, RMSE) of the 
ML models at four IGS stations. The accuracy of the Ensemble algorithm outperforms 
others. The forecast performance based on the Ensemble reaches the highest, from 
1.01 TECU at the WARK station (hourly) to 3.17 TECU at the FTNA station (hourly). 
In contrast, the linear algorithm shows the lowest, from 1.31 TECU at the AUCK 
station (hourly) to 5.07 TECU at the FTNA station (one minute). The accuracy of the
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Fig. 7 Training the GNSS-VTEC forecast model at station THTI: a the Boosted Tree Ensemble 
algorithm using data from 01 January 2020 to 01 January 2021 and b the Bagged Tree Ensemble 
algorithm using data from 01st to 12th January 2022

two offshore stations (FTNA and THTI) is lower than of the inshore stations (WARK 
and AUCK). It is likely due to poor input data quality, which indicates RMSE of the 
VTEC time series of 2.86, 2.67, 1.74, and 1.71 TECU for FTNA, THTI, WARK, and 
AUCK, respectively. 

Forecasts of VTEC at the FTNA station (French Polynesia) on 15th January 2022 
are shown in Fig. 8. Given the global seismic data (GEOFON and USGS), there were 
no other remarkable seismic events in the 7000-km radius (from the volcano epicenter 
in Tonga) within three days 13th, 14th, and 15th of January. The solar activity data 
have been included to predict the VTEC time series. As a result, the Tonga seismic 
events on 15th January 2022 are believed to cause the VTEC disturbances at the 
investigated IGS stations.

To eliminate the effect of systematic errors, we extract the VTEC noise based on 
the same ML algorithm for all the IGS stations (Fig. 9). The VTEC noise at the THTI

Table 3 Accuracy of the ML models for one day forecast at four IGS stations 

Methods FTNA 
RMSE 
(TECU) 

THTI 
RMSE 
(TECU) 

AUCK 
RMSE 
(TECU) 

WARK 
RMSE 
(TECU) 

Input data Sampling 
rate 

Ensemble 3.17 2.86 1.02 1.01 2 years Hourly 

Coarse tree 3.81 3.49 1.22 1.21 

SVM 3.67 3.56 1.22 1.27 

Linear 3.83 3.78 1.31 1.32 

Ensemble 2.92 2.67 1.20 2.07 12 days One minute 

Coarse tree 3.14 3.55 1.53 1.33 

SVM 4.54 5.28 2.38 2.65 

Linear 5.07 5.89 2.86 2.86 
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Fig. 8 Forecast of VTEC at the station FTNA on 15 January 2022 (a) and test the correlation 
between predictions and observations of the Tree Ensemble model (b)

station shows the highest variation, up to 34.47 TECU, followed in turn by FTNA, 
AUCK, and WARK with corresponding values of 25.09, 21.99, and 17.41 TECU. At 
the same time, the forecast accuracy (i.e., RMSE) ranges from 1.01 to 3.17 TECU. 
The TEC fluctuations reach up to 6.5 times the RMSE values of the ML models. This 
finding shows a correlation between the occurrence of the seismic and the ionosphere 
anomalies on 15th January. These VTEC anomalies occurred a few hours around the 
mainshock (at 4.10 UTC, 15 January 2022). However, no positive/negative linear 
relationship between the TEC fluctuation amplitudes and the distances from the IGS 
stations to the earthquake epicenter has been seen on the ML models in Fig. 9.

Spectral methods are used to analyze the GNSS-VTEC noise at the stations in 
Tonga’s volcanic eruption region and assess VTEC anomalies before and after the 
mainshock (at 4.10 UTC, 15th January 2022). 

Based on Welch’s segment averaging estimation at the overlap of 50%, we deter-
mine the power spectral density (PSD), in which the power values are computed as 
follows: 

ydB = 10 × log10(x) (1) 

where x is the power spectral density computed by the Welch’s method. 
The frequencies ( fi ) of the VTEC noise are converted into the normalized 

frequency (Fs) ranging from 0 to 1, to measure the variations of the power spectrum 
(Figs. 10 and 11) as follow:  

Fs = fi × π 
1440 

(2)

where fi is the frequency of the VTEC noise at the IGS stations, and 1440 is the 
sample number in the VTEC time series.
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Fig. 9 Extraction of the GNSS-VTEC noise using the Tree Ensemble models at four stations FTNA, 
WARK, AUCK, and THTI on 15 January 2022

Fig. 10 Applying the Welch algorithm to estimate the power spectral density of the GNSS-VTEC 
noise at the station FTNA on 14 and 15 January 2022

At the same normalized frequency, the PSD pattern of VTEC noise on the 15th 
is rougher than on the 14th of January (Fig. 10). 

The fluctuations of PSD at the FTNA station on 15 January 2022 was more signif-
icant than others, ranging from − 85.18 to 31.44 (15th January 2022); − 77.16 to 
30.00 (14th January 2022); and from − 78.97 to 30.96 (13th January 2022), respec-
tively (Fig. 11). The pattern of the GNSS-VTEC noise variations on the volcanic 
eruption is denser and more significant compared to other days.
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Fig. 11 Power spectrum density of VTEC at the FTNA station on 15th (top), 14th (middle), and 
13 (bottom) January 2022

The continuous wavelet transformation (CWT) on the same sampling frequency 
band

(
Fs = π/

1440
)
is applied to compute the spectral magnitude of the GNSS-

VTEC noise at the stations over 24 h. Figure 12 describes the magnitude scalograms of 
the VTEC noise at four IGS stations on 15th January, in which scalogram is the CWT 
absolute value. The spectrum magnitude at the FTNA station reaches the highest level 
(5%), followed by THTI, AUCK, and WARK (spectrum magnitude ranging from 2 
to 3%). Besides, the scalogram maps also present earlier and more significant fluctu-
ations for the offshore IGS stations (FTNA and THTI in French Polynesia) compared 
to the inshore stations (AUCK and WARK in New Zealand). This phenomenon may 
be the wave consonance of the earthquake and tsunami following the volcanic erup-
tion in the ocean. However, more research is needed to gain a complete picture of 
the cause-effect relationship between time, space, and noise levels in seismic areas.



152 N. Le et al.

Fig. 12 Magnitude scalogram maps of the GNSS-VTEC noise at four IGS stations FTNA, THTI, 
AUCK, and WARK on 15 January 2022 

Although there are a few signs of seismic precursors on the scalogram maps at 
the offshore stations, the potential for earthquake prediction using GNSS-TEC data 
has remained low in terms of probability and statistics thus far. Besides, the seasonal 
characteristics of the TEC time series change in diurnal, annual, and 11-year solar 
cycles [44, 45]. Therefore, using the stationary time series of a few years to predict 
one day is an optimal solution for forecast performances to balance training time (or 
computation speed) and forecast accuracy. Nonetheless, further investigations on a 
time series longer than 11 years should be conducted to comprehensively assess the 
accuracy of TEC noise detection based on ML and integrated data of GNSS and solar 
activity.
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4 Conclusion 

This study has provided the results of the GNSS-TEC noise detection at four IGS 
stations associated with the Tonga volcano. Overall, the combination of regression 
ML techniques with integrated data of GNSS and the solar activity for TEC anomaly 
detection is a robust statistical solution. Depending on the input data quality, the 
accuracy of TEC noise detection over four investigated IGS stations ranges from ~ 
1.0 to ~ 5.9 TECU. The Ensemble algorithm gets the highest performance (from 1.01 
to 3.17 TECU), while Linear Regression is the least effective (1.32 to 5.89 TECU). 
Statistical tests play a crucial role in the hyperparameter tuning step to select the most 
relevant predictors. The ML-based forecast models using integrated data are potential 
applications for near real-time TEC anomaly warning and for adjustments of global 
ionospheric models in GNSS positioning. Extending investigations on ionospheric 
anomalies associated with seismic activities should be conducted for a better view 
of the cause-effect relationship between seismic events and other natural phenomena 
in the Earth’s climate system. 
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Table 4 F-test of the feature importance to select the best-fitted predictors for the regression ML 
models corresponding to four IGS stations AUCK, FTNA, THTI, and WARK 

Features 
(Predictors) 

AUCK FTNA THTI WARK 

Scores Scores Scores Scores 

DOY (Day of year) Inf Inf Inf Inf 

H.R. (Hour) Inf Inf Inf Inf 

Lag_VTEC Inf Inf Inf Inf 

Lyman_alpha 479.27 268.40 217.87 449.58 

Kp_index 321.47 227.27 199.24 309.34 

Ap_index 321.47 227.27 199.24 309.34 

F10.7_index 192.34 136.94 52.56 180.41 

Plasma_temperature 173.27 63.10 80.56 156.56 

Alpha/Proton Density Ratio 170.07 65.89 59.91 98.17 

Plasma_speed 156.17 101.20 87.59 142.80 

R_sunspot 122.22 89.63 24.98 113.19 

Sigma-Alpha/Proton_ratio 112.66 65.89 59.91 98.17 

IMF_magnitude_avg 103.27 26.44 26.96 96.15 

Sigma_T 102.00 32.50 38.01 91.54 

Sigma_IMF_vector 69.08 17.10 17.37 63.60 

Magnitude_IMF_vector 68.92 18.21 17.17 63.07 

Flow_pressure 67.52 22.68 14.91 63.83 

Sigma_V 66.09 20.90 23.20 57.63 

RMS_BZ_GSE 61.25 12.31 10.81 56.62 

Plasma_beta 54.64 30.49 19.17 48.88 

Magnetosonic_mach_num 53.18 31.62 22.57 46.36 

RMS_BY_GSE 46.98 12.72 15.71 43.73 

Sigma_flow_latitude 46.93 6.03 6.46 41.63 

Proton_quasy_invariant 45.98 13.04 13.97 42.10 

Dst_index 45.42 52.58 17.37 63.60 

Elecrtric_field 43.30 26.85 31.70 39.02 

Alfven_mach_num 42.33 12.19 11.78 38.27 

RMS_BX_GSE 39.55 7.71 11.50 35.00 

Sigma_flow_longitude 37.27 8.10 7.14 31.32 

Plasma_flow_latitude 36.72 17.13 28.88 39.77 

BY_GSE 28.07 2.61 9.29 27.89 

Bx_GSE/GSM 26.79 12.99 24.15 25.42 

BY_GSM 25.46 2.78 9.27 25.11 

YEAR 22.07 47.07 19.02 10.06

(continued)
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Table 4 (continued)

Features
(Predictors)

AUCK FTNA THTI WARK

Scores Scores Scores Scores

BZ_GSM 21.95 12.08 18.38 21.92 

RMS_magnitude 18.38 4.97 0.89 16.45 

BZ_GSE 18.06 8.62 2.40 18.14 

Plasma_flow_longitude 13.03 0.43 1.24 8.58 

Proton_density 12.23 20.16 9.04 12.57 

Long_Avg_IMF 6.47 4.59 1.37 4.16 

Sigma_Np 4.05 9.18 6.38 2.55 

Lat_Avg_IMF 3.64 1.68 21.60 8.11 

Table 5 The correlation matrix of 20 significant features at station WARK 

Features Feature 
codes 1  2  3  4  5  6  7  8  9  10 11 12 13 14 15 16 17 18 19 20  

Lyman_alpha 1 1.000 -0.022 -0.004 0.031 0.010 -0.070 -0.050 -0.132 -0.680 -0.028 -0.005 -0.643 -0.097 -0.005 0.030 -0.492 0.018 0.001 -0.021 0.009 

HR 2 -0.022 1.000 0.004 0.003 0.022 -0.004 0.339 0.011 0.024 -0.007 -0.003 0.033 0.008 -0.010 0.006 -0.032 0.002 -0.011 -0.006 0.010 

Lat_Avg_IMF 3 -0.004 0.004 1.000 -0.023 -0.016 -0.081 0.014 0.006 -0.012 -0.126 -0.002 0.012 -0.012 -0.080 0.115 0.009 -0.587 -0.001 -0.013 0.097 

Flow_pressure 4 0.031 0.003 -0.023 1.000 0.006 0.074 0.013 -0.023 -0.030 -0.203 -0.051 0.005 -0.267 0.007 0.086 -0.071 0.032 -0.115 -0.797 -0.117 

Plasma_lat_angle 5 0.010 0.022 -0.016 0.006 1.000 0.028 0.071 0.048 -0.037 0.013 -0.009 -0.038 -0.027 0.010 -0.008 0.002 -0.015 -0.002 0.004 -0.018 

Proton_quazy_invariant 6 -0.070 -0.004 -0.081 0.074 0.028 1.000 -0.015 0.082 0.080 -0.055 0.010 0.056 0.281 0.120 0.073 0.017 0.055 -0.318 0.013 -0.173 

Lag_VTEC 7 -0.050 0.339 0.014 0.013 0.071 -0.015 1.000 0.009 0.063 -0.015 -0.001 0.087 0.009 -0.001 -0.016 -0.097 -0.003 -0.034 -0.020 0.005 

Dst_index 8 -0.132 0.011 0.006 -0.023 0.048 0.082 0.009 1.000 0.103 0.127 -0.031 0.194 -0.019 -0.021 0.090 -0.002 0.084 0.107 -0.067 0.020 

YEAR 9 -0.680 0.024 -0.012 -0.030 -0.037 0.080 0.063 0.103 1.000 -0.010 0.019 0.672 0.101 -0.008 0.003 0.201 0.009 -0.014 0.005 -0.010 

Ap_index 10 -0.028 -0.007 -0.126 -0.203 0.013 -0.055 -0.015 0.127 -0.010 1.000 -0.066 -0.005 -0.054 0.031 -0.733 0.036 0.102 0.128 0.211 -0.032 

Sigma_Np 11 -0.005 -0.003 -0.002 -0.051 -0.009 0.010 -0.001 -0.031 0.019 -0.066 1.000 0.005 0.235 0.008 0.022 -0.002 0.028 -0.022 -0.157 -0.017 

DOY 12 -0.643 0.033 0.012 0.005 -0.038 0.056 0.087 0.194 0.672 -0.005 0.005 1.000 0.074 -0.009 0.003 -0.026 0.025 -0.014 -0.045 0.006 

Plasma_temperature 13 -0.097 0.008 -0.012 -0.267 -0.027 0.281 0.009 -0.019 0.101 -0.054 0.235 0.074 1.000 -0.095 0.041 0.026 -0.037 -0.597 0.094 0.167 

Magnitude_IMF_vector 14 -0.005 -0.010 -0.080 0.007 0.010 0.120 -0.001 -0.021 -0.008 0.031 0.008 -0.009 -0.095 1.000 -0.042 0.000 0.031 0.069 -0.008 -0.960 

Kp_index 15 0.030 0.006 0.115 0.086 -0.008 0.073 -0.016 0.090 0.003 -0.733 0.022 0.003 0.041 -0.042 1.000 -0.009 -0.120 -0.206 -0.156 0.009 

F10.7_index 16 -0.492 -0.032 0.009 -0.071 0.002 0.017 -0.097 -0.002 0.201 0.036 -0.002 -0.026 0.026 0.000 -0.009 1.000 0.003 0.004 0.063 0.010 

BZ_GSE 17 0.018 0.002 -0.587 0.032 -0.015 0.055 -0.003 0.084 0.009 0.102 0.028 0.025 -0.037 0.031 -0.120 0.003 1.000 0.028 0.010 -0.053 

Plasma_speed 18 0.001 -0.011 -0.001 -0.115 -0.002 -0.318 -0.034 0.107 -0.014 0.128 -0.022 -0.014 -0.597 0.069 -0.206 0.004 0.028 1.000 0.325 -0.161 

Proton_density 19 -0.021 -0.006 -0.013 -0.797 0.004 0.013 -0.020 -0.067 0.005 0.211 -0.157 -0.045 0.094 -0.008 -0.156 0.063 0.010 0.325 1.000 0.009 

IMF_magnitude_avg 20 0.009 0.010 0.097 -0.117 -0.018 -0.173 0.005 0.020 -0.010 -0.032 -0.017 0.006 0.167 -0.960 0.009 0.010 -0.053 -0.161 0.009 1.000 
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