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Abstract: Vietnam, one of the three leading rice producers globally, has recently seen an increased
threat to its rice production emanating from climate extremes (floods and droughts). Understanding
spatio-temporal variability in precipitation and soil moisture is essential for policy formulations to
adapt and cope with the impacts of climate extremes on rice production in Vietnam. Adopting a
higher-order statistical method of independent component analysis (ICA), this study explores the
spatio-temporal variability in the Climate Hazards Group InfraRed Precipitation Station’s (CHIRPS)
precipitation and the Global Land Data Assimilation System’s (GLDAS) soil moisture products. The
results indicate an agreement between monthly CHIRPS precipitation and monthly GLDAS soil
moisture with the wetter period over the southern and South Central Coast areas that is latter than
that over the northern and North Central Coast areas. However, the spatial patterns of annual mean
precipitation and soil moisture disagree, likely due to factors other than precipitation affecting the
amount of moisture in the soil layers, e.g., temperature, irrigation, and drainage systems, which are
inconsistent between areas. The CHIRPS Standardized Precipitation Index (SPI) is useful in capturing
climate extremes, and the GLDAS Standardized Soil Moisture Index (SSI) is useful in identifying the
influences of climate extremes on rice production in Vietnam. During the 2016–2018 period, there
existed a reduction in the residual rice yield that was consistent with a decrease in soil moisture
during the same time period.

Keywords: climate change; climate extremes; CHIRPS; TRMM; GLDAS; MERRA; Vietnam; rice yield

1. Introduction

Vietnam is located in southeast Asia and is well-known for its rice production, where
it lies amongst the top three rice producers globally [1]. Domestically, its rice sustains
a livelihood of more than 96 million people. In 2018, for example, rice exports earned
Vietnam $5.6 billion (i.e., 9% of the world’s total rice export), thereby signifying the impor-
tance rice plays in the Vietnamese economy [2,3]). However, rice production in Vietnam
depends heavily on the water supply, which is affected by climate extremes, e.g., floods
and droughts [4,5]. This is because rice yield is vulnerable to drought/flood stress due to
its shallower rooting than other crops [6]. Therefore, the knowledge of precipitation and
soil moisture variability is essential to inform policy and adaptation strategies in order to
prepare for climate extremes to minimize impacts on Vietnamese rice productivity [1].

In Vietnam, climate change has a significant influence on the amount of precipita-
tion [7]. This, together with aquifer overexploitation, results in the drawdown of ground-
water and causes surface subsidence [8]. However, a thorough understanding of spatio-
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temporal patterns of precipitation and soil moisture is challenging due to the lack of the
most recent data, on the one hand, and the limitation in the spatial-temporal resolution
of the available data on the other hand. Studies conducted on spatio-temporal patterns
of precipitation in Vietnam so far have either been based on (i) irregularly-spaced in situ
data [9–11] and/or fairly old gridded data [12,13], or (ii) dedicated to local study areas,
such as one or several agro-ecological regions or provinces [14–17]. Studies focusing on
spatial-temporal patterns of precipitation over Vietnam have been investigated in the
literature [18,19], but similar studies on soil moisture are non-existent. Furthermore, most
of the existing studies based on remotely-sensed data are not the most recent and are
dedicated to local areas rather than the whole of Vietnam [20,21] and do not present the
association of these variabilities to rice production.

Because of the continuous impacts of climate extremes, a spatio-temporal variability
assessment of updated precipitation and soil moisture data is vital for understanding their
influence on rice production for Vietnam. For instance, Bhowmik and Costa [22] investi-
gated the influence of the variability in precipitation on rice productions in Bangladesh.
Zheng et al. [23] considered the impacts of variability in soil moisture on rice production
in China, while Ahmad et al. [24] analyzed the influence of water productivity on a rice-
wheat cropping system in Pakistan. Other studies that have been undertaken to assess the
impacts of variability in precipitation and soil moisture on rice production globally include
the works of Tao et al. [25] and Stuecker et al. [26]. For Vietnam, however, no study of
remotely-sensed gridded precipitation and soil moisture data for their spatio-temporal vari-
abilities and their associated impacts on rice production has been published. In addition,
no comprehensive analysis to compare the consistency of remotely-sensed precipitation
and soil moisture products over Vietnam has been reported.

The objectives of this study are, therefore, three-fold: (i) to assess the spatio-temporal
variability (in short-, medium-, and long-term) of selected remotely-sensed gridded pre-
cipitation and soil moisture products over Vietnam and their associated influence on rice
yield for the 1981–2018 period, thereby informing the impacts of climate variability/change
on rice yield; (ii) to identify and analyze the episodes of climate extremes (droughts); and
(iii) to assess the impacts of climate extremes on the overall Vietnamese rice yield over
the same time period. These investigations and assessments are implemented through
the application of higher-order cumulant statistics of Independent Component Analysis
(ICA) applied to the Standardized Precipitation Index (SPI), the Standardized Soil Moisture
Index (SSI), and the soil moisture standardized anomalies. The novelty of the study is the
assessment of whether or not Vietnamese rice yield has a link with climate indices derived
from remote sensing-based precipitation or soil moisture products.

Due to the lack of in situ data, soil moisture from two products: the Global Land Data
Assimilation System (GLDAS) and the Modern-Era Retrospective Analysis for Research
and Applications Version 2 (MERRA-2), are cross-compared for their correlation prior
to conducting the spatio-temporal analyses. These analyses will also reveal the impacts
of climate change/variability in the short- and long-terms. Similarly, two precipitation
products of Tropical Rainfall Measuring Mission (TRMM) and Climate Hazards Group
Infra-Red Precipitation with Station data (CHIRPS) are investigated for their consistency
over the Vietnamese mainland.

The remainder of the study is organized as follows. Section 2 introduces the study
area, data adopted, and methods implemented in this study. In Section 3, the results are
discussed, while Section 4 concludes the study.

2. Study Area, Data and Method
2.1. Study Area

Vietnam (Figure 1) is located in the easternmost part of the Indochina Peninsula,
identified as one of the world’s richest and grandest natural places with substantial cultural
diversity. It shares a border with China in the northern part, while the southernmost point
is contiguous to the Gulf of Thailand. The longest borders lie in the west, where they
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are shared with Laos and Cambodia, and the East Sea lies to the east. Two mountainous
areas are the Hoang Lien Son, which is located in the Northwest area, and the Truong Son,
which stretches along the west border. There are two river delta regions in the Vietnamese
mainland, the Red River Delta in the north and the Mekong River Delta in the south, that
differ greatly in their hydrology, timing and extent of flooding, and their floral and faunal
communities. This divergence resulted from climatic and geological differences and the
nature of rivers that flow into them.

Figure 1. Vietnam map with eight agroecological areas: Northwest (1), Northeast (2), Red River Delta
(3), Northern Central Coast (4), Southern Central Coast (5), Central Highlands (6), Southeast (7),
Mekong River Delta (8). Red borders are associated with the main rice-producing areas.

Vietnam’s mainland is divided into eight agro-ecological regions: Northwest (1),
Northeast (2), the Red River Delta (RRD) (3), the North Central Coast (NCC) (4), the South
Central Coast (SCC) (5), Central Highlands (6), Southeast (7), and the Mekong River Delta
(MRD) (8). It is an agricultural country in which rice production is an important food
supply and international export. Vietnamese rice is mainly produced in three main regions:
the RRD (Region 3, ∼20%), the Central Coast area (Regions 4–5, ∼15%), and the MRD
(Region 8, ∼50%) (see Figure 1). It should be noted that there is a slight difference in the
agro-ecological region and climate sub-region classifications in that, in the latter approach,
the Southeast (Region 7) and the MRD (Region 8) are merged into one sub-region named
the Southern area [9,12,13,27]. In this study, the agro-ecological regions are adopted due to
their direct association with Vietnamese rice yield statistics.

Due to its geographical shape, topography, and location in southeast Asia, Vietnam
is closely associated with monsoons, including the southwest (summer) monsoon (May–
October) and the northeast (winter) monsoon (November–April) [28]. In northern Vietnam,
temperature and rainfall are known to be dominated by the seasonal cycle, with the hottest
time being between June and August, while in the south, temperatures are less seasonal
with wet and dry seasons [29]. Global warming has increased its effects worldwide,
and Vietnam is no exception. The average temperature in Vietnam has increased at a
rate of 0.26 ◦C every 10 years [28]. The Ministry of Natural Resources and Environment



Sensors 2022, 22, 1906 4 of 24

(MONRE) of Vietnam generated a report on climate change and sea level rise scenarios for
Vietnam (version 2016, http://www.imh.ac.vn/files/doc/2017/CCS%20final.compressed.
pdf, accessed on 1 December 2021). According to this report, by the end of the 21st century,
the temperature in Vietnam is forecast to rise by 3.3–4.0 ◦C in the north and 3.0–3.5 ◦C in
the south, while rainfall is predicted to increase with the highest predicted amount of over
20% for most areas.

2.2. Data

In this study, various products of precipitation, soil moisture, and temperature data
were utilized, which will be described in the following sub-sections (Table 1).

Table 1. Summary of data employed in this study.

Category Dataset Temporal Resolution Spatial Resolution Time Period References

Vietnam rice statistics Annually Areal aggregation 1995–2018

Precipitation CHIRPS Monthly 0.05◦ × 0.05◦ January 1981–February 2019 [30]
TRMM Monthly 0.25◦ × 0.25◦ January 1998–June 2019 [31–33]

Soil moisture GLDAS Monthly 0.25◦ × 0.25◦ January 2000–July 2019 [34–36]
MERRA-2 Monthly 0.625◦ × 0.5◦ January 1980–September 2019 [37,38]

2.2.1. Vietnam Rice Statistics

The statistics of planted areas, rice production, and yield are gathered and provided
by the General Statistics Office of Vietnam as sub-datasets included in the Agricultural,
Forestry, and Fishing statistical dataset (https://www.gso.gov.vn/en/px-web/?pxid=E0
614&theme=Agriculture%2C%20Forestry%20and%20Fishing, accessed on 12 September
2019). These statistics have been gathered from 1995. The annual rice yields (in quintal per
hectare) were computed by dividing the rice productions (in thousands of tons) by planted
areas (in millions of hectares). The demonstration of their changes is graphically shown in
Figure 2 for the whole of Vietnam as well as the three main producing areas, including the
RRD (Region 3, Figure 1), the Central Coast area (Regions 4 and 5, Figure 1), and the MRD
(Region 8, Figure 1).

As can be seen from Figure 2, while the annual rice yield experiences an increasing
trend as a result of, e.g., applications of new technologies, improving soil quality, use of
improved rice seeds, extraordinary alterations can be seen in some periods. For example,
reductions in rice production/yield can be seen in the years 2016–2018 (Figure 2b,c) due
to drought impacts. Therefore, a linear trend was removed from the rice yield statistics
(Figure 2c) to highlight the impact of climate extremes and dry soil moisture (Figure 2d).

2.2.2. Precipitation

Two precipitation datasets, Tropical Rainfall Measuring Mission (TRMM) [31–33] and
Climate Hazards Group Infra-Red Precipitation with Station data (CHIRPS) [30] were
investigated in this study. The two datasets are slightly different in their spatial resolutions,
which are 0.25◦ × 0.25◦ (TRMM) and 0.05◦ × 0.05◦ (CHIRPS), and the temporal coverage,
i.e., 1998–present (TRMM) and 1981–present (CHIRPS). TRMM is a gridded rainfall dataset
estimated from TRMM Multisatellite Precipitation Analysis (TMPA), published by the
National Aeronautics and Space Administration (NASA) Goddard Space Flight Center
(GSFC) [31–33]. The data has different temporal resolutions, such as monthly, daily, or
sub-daily (3-hour), of which the former, validated in the Asian region, e.g., by Khandu et
al. [39], is applied in this study. Its spatial coverage lies between [50◦ S, 50◦ N] and [180◦ W,
180◦ E]. In the present paper, TRMM-3B43 version 7 level 3 obtained from https://pmm.
nasa.gov/data-access/downloads/trmm (accessed on 3 September 2019) was applied.

CHIRPS was principally developed for agricultural drought research [30]. It is pro-
vided at a similar spatial coverage to that of TRMM (i.e., between [50◦ S, 50◦ N] and

http://www.imh.ac.vn/files/doc/2017/CCS%20final.compressed.pdf
http://www.imh.ac.vn/files/doc/2017/CCS%20final.compressed.pdf
https://www.gso.gov.vn/en/px-web/?pxid=E0614&theme=Agriculture%2C%20Forestry%20and%20Fishing
https://www.gso.gov.vn/en/px-web/?pxid=E0614&theme=Agriculture%2C%20Forestry%20and%20Fishing
https://pmm.nasa.gov/data-access/downloads/trmm
https://pmm.nasa.gov/data-access/downloads/trmm
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[180◦ W, 180◦ E]). CHIRPS also comes with various temporal resolutions, e.g., daily, pen-
tadal, and monthly. In this study, monthly CHIRPS version 2.0 obtained from https:
//data.chc.ucsb.edu/products/CHIRPS-2.0/ (accessed on 4 September 2019), was inves-
tigated. CHIRPS and TRMM are provided at millimeters per month (mm/month) and
millimeters per hour (mm/hr), respectively. Therefore, in order to get a unified unit,
TRMM was converted to mm/month by multiplying the hourly precipitation rate (i.e.,
mm/hr) with the total hours in the corresponding month. This was carried out on a
pixel-by-pixel basis.

Figure 2. Statistics of planted area and rice over the whole of Vietnam and main rice-producing areas;
(a) annually planted area, (b) rice production, (c) rice yield, and (d) residual rice yield after removing
a linear trend. The rice yield was derived by dividing the rice production by the planted area.

The two datasets were tested for their consistency over the entire Vietnam region
(Appendix A). A high correlation with the maximum and minimum correlation coefficients
being ∼0.97 and ∼0.53 at a 95% confidence level was found; a lower correlation was found
in the SCC and Central Highland areas. The areal means of the two products over the four
main rice-producing areas of the RRD, the NCC, the SCC, and the MRD indicate a high
consistency with the smallest coefficient of 0.86 found in the SCC area and a value of ∼0.95
at a 95% confidence level derived in the remaining areas.

2.2.3. Soil Moisture

In this study, two products of soil moisture, the Global Land Data Assimilation
System (GLDAS) and the Modern-Era Retrospective Analysis for Research and Appli-
cations Version 2 (MERRA-2), were investigated for their link with the Vietnamese rice
yield statistics. The reason for adopting both products is due to the lack of in situ soil
moisture products; hence, the eventual deduction was based on the consistency of the
results. GLDAS is jointly developed by the National Aeronautics and Space Administration
(NASA), Goddard Space Flight Center (GSFC), the National Oceanic and Atmospheric Ad-
ministration (NOAA), and National Centers for Environmental (NCEP) by using ground-
and space-based observations [36]. GLDAS currently involves four land surface models,

https://data.chc.ucsb.edu/products/CHIRPS-2.0/
https://data.chc.ucsb.edu/products/CHIRPS-2.0/
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i.e., Mosaic [40], Noah [34,35], the Community Land Model (CLM) [41], and the Variable
Infiltration Capacity (VIC) [42]. The widely-used model of Noah version 2.1 obtained from
https://ldas.gsfc.nasa.gov/index.php/data (accessed on 2 September 2019) was adopted
in this work. It is provided at a monthly temporal resolution covering the period between
January 2000 and July 2019. There are two spatial resolutions provided, i.e., 1◦ × 1◦ and
0.25◦ × 0.25◦, of which the latter one was utilized in the present study. The spatial coverage
is limited between [60◦ S, 60◦ N] and [180◦ W, 180◦ E]. The dataset is provided in the
forms of soil layers at different depths (0–10 cm, 10–40 cm, 40–100 cm, and 100–200 cm)
as well as the root zone layer (up to 100 cm). GLDAS soil moisture has been validated in
several studies in the literature against in situ data or SPI time series, e.g., in the Tibetan
Plateau [43], South America [44], and Austria [45], which indicated good agreement in
terms of correlation coefficients.

The Modern-Era Retrospective Analysis for Research and Applications (MERRA) is a
global reanalysis product generated based on the Goddard Earth Observing System version
5.2.0 (GEOS-5) atmospheric model and Data Assimilation System (DAS) published by
NASA [38]. MERRA was developed on data of different types, such as wind, temperature,
humidity, precipitation, moisture, and pressure, derived from various sources. MERRA
version 2 (MERRA-2) [37] was introduced as a replacement of the original MERRA thanks
to advances in the assimilation system, as well as new observations. MERRA-2 provides
different datasets beginning from 1980 to the present in both the mainland and ocean,
including soil moisture, snow/ice, and canopy water, together with other climatic data
of different types. The dataset is provided with soil layers at different depths, including
root zone (0–100 cm), surface (0–5 cm), and profile (from the surface down to the bedrock).
MERRA-2 soil moisture has been validated against in situ measurements in, e.g., North
America, Europe, and Australia [46], or globally [47], which indicated good agreement.
Different from MERRA’s spatial resolution that is provided at a 0.667◦ × 0.5◦ grid in
longitude and latitude, MERRA-2 products are improved in the longitude spacing to 0.625◦,
while that of latitude is maintained. MERRA-2 comprises instantaneous and time-averaged
productions of which the former are provided at synoptic or mid-synoptic times, while the
latter is provided at hourly, three-hourly, monthly, or monthly diurnal temporal resolutions.
Here, the monthly gridded soil moisture was utilized, which can be accessed at https://
gmao.gsfc.nasa.gov/reanalysis/MERRA-2/data_access/ (accessed on 10 November 2019).

The two datasets at the equivalent root zone depth were tested for consistency
(Appendix B). Due to the difference in spatial resolution, pixel-by-pixel consistency could
not be tested. Instead, the areal mean time series of soil moisture changes over the four main
rice-producing areas was tested, with the results generally showing higher correlations
in the MRD (0.92) than in the other areas of RRD (0.57), NCC (0.39), and SCC (0.51). Due
to the connection between precipitation and soil moisture, both of which may influence
rice yield, GLDAS soil moisture and TRMM precipitation were tested for their correlation
(Appendix C). GLDAS and TRMM were selected for this test because of their equivalence
in spatial resolution (Table 1). The results showed that a lower correlation was exhibited
in mountainous areas (i.e., the northwest and central Highlands) and coastal areas (i.e.,
the NCC and the SCC). The correlation coefficients varied between ∼0.34 and ∼0.85. The
areal mean time series over the four main rice-producing areas showed correlation coeffi-
cients varying between 0.69 and 0.80, in which the deltas (RRD, MRD) exhibited higher
correlations than the coastal areas (NCC, SCC)

Hereinafter, CHIRPS, with higher spatial resolution and longer time coverage (Table 1),
was adopted as a representative of the remotely-sensed gridded precipitation data and
applied to subsequent investigations. Similarly, with a higher spatial resolution, GLDAS
was adopted as a representative of the remotely-sensed soil moisture product, though it is
of shorter time coverage (Table 1). Additionally, with the emphasis on testing the influence
of soil moisture on rice yield, the 10–40 cm depth sub-dataset was utilized, which matches
best with rice roots with lengths up to ∼25 cm.

https://ldas.gsfc.nasa.gov/index.php/data
https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/data_access/
https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/data_access/
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2.3. Methods

Figure 3 outlines the processing steps implemented in this study. The consistencies be-
tween CHIRPS and TRMM precipitation (Appendix A) and between GLDAS and MERRA-2
soil moisture (Appendix B) were tested first. Then, the correlation between TRMM precipi-
tation (tested due to its equivalent spatial resolution to that of GLDAS) and GLDAS soil
moisture was examined (Appendix C). The spatio-temporal patterns of precipitation and
soil moisture were subsequently analyzed (Section 3.1). Drought conditions in Vietnam
reflected by SPI were then investigated (Section 3.2). Finally, the impact of climate extremes
on rice yield was assessed by SSI (Section 3.3). It is worth mentioning that different indices
were tested in this study both to show the recent climate change effect in Vietnam, as well
as its potential influence on Vietnamese rice yields. SPI is an index used to represent the
amount and the change of precipitation measured at different areas and times; its drought
classification standard (Table 2), therefore, shows drought significance. Additionally, with
the aim to test the influence of climate variability/change on rice yield, SSI was utilized.
SSI reflects soil moisture conditions, which are influenced by precipitation and irrigation.
SSI is potentially affected by temperature and may reflect the missynchronization and lags
with precipitation.

Figure 3. graphical illustration of data and the processing steps employed in this study.

2.3.1. Independent Component Analysis

Decomposition techniques are frequently adopted to reduce data dimensions as well as
extract dominant signals in climatological data. Principal Component Analysis (PCA) [48–50]
and Independent Component Analysis (ICA) [51–54] are among the mostly used approaches.
The ICA can be considered as an extended version of the PCA [52,55]. The technique works
based on the assumptions that the sources under separation are independent and the obser-
vations follow a non-Gaussian distribution. The ICA incorporating the Joint Approximate
Diagonalization of Eigen-matrices (JADE) technique was applied in this study [51,56].
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Table 2. Drought classification based on the SPI.

SPI Drought Category Probability %

≥2 Extremely wet 2.3
1.50 to 1.99 Severely wet 4.4
1.00 to 1.49 Moderately wet 9.2

0 to 0.99 Mildly wet 34.1
0 to −0.99 Mild drought 34.1

−1.00 to −1.49 Moderate drought 9.2
−1.50 to −1.99 Severe drought 4.4

≤−2 Extreme drought 2.3

2.3.2. Standardized Precipitation Indices

The SPI [57,58] is one of the indices most widely used in drought research due to its
advantages (see, e.g., Awange et al. [59]). The SPI relies solely on precipitation and can be
applied to various drought applications, e.g., in meteorology, hydrology, or agriculture.
Moreover, in the SPI, various time scales can be adopted according to applications, e.g.,
2–3-month time scales are appropriate for agricultural studies [60], 2–6-month should best
describe stream flow characteristics [61], 5–24-month time scale are utilized for ground-
water level research [62,63]. Furthermore, SPI is not affected by topography [64], but has
disadvantages such as the dependence on the standardization of the index or the suitability
of the theoretical probability distribution function that is chosen [62,65].

In SPI computation, monthly time series of precipitation is first aggregated at an appro-
priate time scale, e.g., 1-, 3-, 6-, 12-, 24-month, followed by the normalization where a chosen
probability density function is fitted. Different probability functions have been tested in
SPI analysis, e.g., gamma, Weibull, lognormal, or exponential functions [66,67]. The next
step is to derive the cumulative distribution using a fitted function, before the standardized
normal variates are derived. The commonly used workflow, incorporating the Maximum
Likelihood Estimation (MLE) applied in fitting the gamma function, was applied in this
work [68,69]. Once the SPI is computed, it can be used for drought/wetness classification
by comparing with well-known thresholds, as shown in Table 2 (see Awange et al. [59] on
the definition of drought).

The SPI at different time scales was adopted in this study. Firstly, with the focus on
researching the influence of drought on agriculture (rice yield), the 3-month time scale SPI
(hereinafter SPI3) was adopted. Secondly, the 12-month time scale SPI (hereinafter SPI12)
was utilized as well, which reflects the hydrological drought. SPI12 was utilized due to that
fact that, in Vietnam, rice is watered not only by rainfall but also by the irrigation system
with water provided from rivers, streams, canals, and reservoirs.

2.3.3. Standardized Anomalies

Different data tested in the present study are provided at non-identical spatial reso-
lutions of which their magnitudes should be distinct. Therefore, a comparison of these
data based directly on their values is impossible. Standardized anomalies were thus
applied instead. Standardized anomalies have been widely applied to compare climatol-
ogy data [60,70–73]. Various types of standardized anomalies can be adopted, including
monthly standardized anomalies, where monthly means are removed before dividing
by the monthly standard deviation; seasonal standardized anomalies, where a similar
approach is implemented to mean values and standard deviation of data derived by ag-
gregation over three consecutive seasonal months; or long-time standardized anomalies,
where mean values and the standard deviation over the entire time period are used (data
of at least 30 years are usually required to capture climatic change impacts).

These types are normally chosen based on an application. For instance, in agricultural
applications, seasonal standardized anomalies are frequently applied due to the fact that
three months are considered as a suitable time period for storing moisture in soil layers
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that are directly related to agricultural crops, and three months are normally the standard
time period for agricultural production. However, in Vietnam, wet rice is produced all year
with various crops, including Autumn crops (April–August), Winter crops (May/June–
November/December), and Spring crops (November/December–April) [74]. The long-time
standardized anomalies were thus applied in this study, derived by [70–72]:

Zx,i,j =
Xx,i,j − µx

σx
, (1)

where, Zx,i,j is the standardized anomalies of pixel x in the ith month and jth year, Xx,i,j is
the corresponding monthly mean variable, µx and σx are the long-term mean value and the
corresponding standard deviation, respectively.

3. Results and Discussion

In this section, we investigate the spatio-temporal variability of the CHIRPS precip-
itation and GLDAS soil moisture for their monthly and annual means (Section 3.1). The
3-month and 12-month time scale CHIRPS SPI was calculated and statistically analyzed by
the ICA. Statistics of SPI drought events, including the number of events, their frequencies,
and maximum duration, were investigated thereafter (Section 3.2). Finally, the 3-month
time scale SSI (SSI3) and 12-month time scale SSI (SSI12) were calculated, and the statistical
analyses by ICA were tested for their link with rice yield (Section 3.3).

3.1. Spatio-Temporal Variability Analysis
3.1.1. Spatio-Temporal Variability of Precipitation

Due to its geographical shape, topography, and location in southeast Asia, Vietnam is
closely associated with monsoons that constitute two principal seasons: dry-cool Winter
(November–March) and warm-wet Summer (April, May–September), separated by short
transitional periods [29]. Precipitation has been widely documented to be dominated by
seasonal patterns in northern Vietnam, while in the southern part, these characteristics
are less dominant. The spatio-temporal variability of precipitation has been widely stud-
ied globally (e.g., [75]). In this sub-section, the spatio-temporal variability of CHIRPS
precipitation in Vietnam is reported.

The monthly mean CHIRPS precipitation during the 1981–2019 period was calculated
on a pixel-by-pixel basis and shown in Figure 4 (top). This confirms what has been
widely documented by [29] that, in general, the rainy season lasts from April/May until
September/October, which starts and ends earlier in the north (above 20◦ N), around
February and September, respectively. In addition, July–August receives the highest amount
of precipitation over most parts of the country owing to the southwest monsoon [76]. In
contrast, December to April experiences the driest time of the year, corresponding to the
Winter season (December to February) and inter-monsoon (March to May) [77].

The spatially-averaged monthly precipitation over four areas of interest is depicted in
Figure 5a where different peaks were found between areas. In the SCC and MRD areas,
the peaks occurred in October, while August and September had the highest amount of
precipitation in the RRD and NCC areas, respectively. In order to have a perspective of
the spatial pattern of precipitation over Vietnam, the annual precipitation was computed
by aggregating the monthly precipitation over each year for all pixels. As a result, the
total annual precipitation of each year between 1981 and 2018 was derived. A 38-year
mean annual precipitation was subsequently computed, of which the results are shown in
Figure 5b. The results indicate that the annual mean precipitation varies within 841 mm/yr
and 3930 mm/yr, with more precipitation received in the Central Coast, Central Highlands,
and Southeast areas (Regions 4–7 in Figure 5b).
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Figure 4. (Top) The monthly mean CHIRPS precipitation and (bottom) the monthly mean GLDAS
soil moisture derived over the whole of Vietnam.

Figure 5. (a) Areal mean and (b) annual mean of monthly CHIRPS precipitation. (c) Areal
mean and (d) annual mean of GLDAS monthly soil moisture. The areal means were computed
over four main rice-producing areas and the annual means were computed for the whole of the
Vietnamese mainland.
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3.1.2. Spatio-Temporal Variability of Soil Moisture

The spatio-temporal variability of soil moisture has been widely studied globally
(e.g., [78]). In this sub-section, the spatio-temporal variability in GLDAS soil moisture was
investigated. The monthly mean soil moisture was computed, of which, the results are
depicted in Figure 4 (bottom). The results show that wetter periods, in terms of soil moisture,
were different between areas, with a close association with the change of precipitation in
time. Specifically, over the northern and NCC areas (above 15◦ N), the wetter period is
between February and August. In contrast, over the southern and SCC areas (below 15◦ N),
the wetter time starts latter in May. The monthly mean soil moisture was spatially averaged
over the four main rice-producing areas, of which the results are shown in Figure 5c. There
was agreement in the peaks of graphs, which reveals the months when the largest amount
of precipitation was captured (Figure 5a), equivalent with those when the wettest soil
moisture was detected (Figures 5c), which were August (RRD), September (NCC), and
October (SCC and MRD).

The annual mean soil moisture was subsequently computed and is shown in Figure 5d.
Disagreement in the spatial patterns between the annual mean of CHIRPS precipitation
(Figure 5b) and the annual mean of GLDAS soil moisture (Figure 5d) was seen. We recall
here that it is generally wetter in terms of precipitation in the Central Coast (Regions 4–5),
Central Highlands (Region 6), and Southeast (Region 7) areas than the others, but this is
not the case in terms of soil moisture, as shown in Figure 5d. This can be attributed to
different factors that affect the amount of moisture in soil layers, including water provided
by precipitation, the irrigation system, and the water loss caused by evapotranspiration
and the drainage system. As a result, the change in GLDAS soil moisture and CHIRPS
precipitation in time agreed (increased precipitation in time resulted in increased soil
moisture), but the spatial patterns did not agree due to the inconsistency in other conditions
between areas including temperature, irrigation, and drainage systems.

3.2. Drought Conditions Reflected by Spatio-Temporal Patterns of SPI

Here, the drought events identified by CHIRPS precipitation variability over the
1981–2018 time period were studied. To this end, SPI3 and SPI12 were investigated for
their spatio-temporal patterns. The ICA analysis was adopted to decompose the dom-
inant variability over the entire study area. The SPI3 and SPI12 were first computed
for each pixel with the drought events defined as those shown in Table 2, following
those of, e.g., Awange et al. [70]. A more elaborate definition of drought was presented in
Awange et al. [59], which is slightly different from that adopted in this study. The number
of drought events, their frequencies, and maximum duration during the study period of
1981–2018 were then calculated. The number of drought events was computed by counting
the number of months with drought indices smaller than −1. The duration of drought
events was defined as the length of consecutive months during which the drought indices
were smaller than −1. Finally, the frequency of drought was estimated as the ratio of the
number of drought months over the entire study length in percentage.

The computed results are depicted in Figure 6, in which an agreement exists in the
spatial patterns between the number of events (Figure 6a-1,b-1) and their frequencies
(Figure 6a-2,b-2). Within the 38-year period from 1981 to 2018, the maximum and minimum
number of events were 52 (SPI3) and 26 (SPI12), and 21 (SPI3) and 4 (SPI12). The maximum
frequencies were ∼20% (SPI3) and ∼22% (SPI12), and the minimum frequencies were
∼10% (SPI3) and ∼8% (SPI12). Generally, fewer events and lower frequencies were found
in the lower half of the SCC (Region 5), the Central Highlands (Region 6), the Southeast
area (Region 7), and the upper part of the Vietnamese MRD (Region 8). The maximum and
minimum duration of drought events detected is 14 months (SPI3) and 38 months (SPI12),
and 3 months (SPI3) and 8 months (SPI12) (see Figure 6a-3).
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Figure 6. Characteristics of (a) SPI3 and (b) SPI12 drought events (defined by SPI < −1.0) during
the study period of 1981–2018: (a-1,b-1) number of events, (a-2,b-2) frequency, (a-3,b-3) maximum
duration. The sub-area borders and their order numbers are the same as those in Figure 1.

The ICA analysis was then applied to the SPI3 and SPI12 to extract their dominant
components, which are shown in Figure 7a,c for the spatial patterns and Figure 7b,d for the
temporal patterns (i.e., the time series of the SPI). The first three leading components of
the CHIRPS SPI3 and SPI12 after analysis accounted for 99.9% of the total variance. The
temporal patterns according to independent components shown in Figure 7b,d indicate
the change of the SPI3 and SPI12 in time that is useful for detecting the climate extremes
(i.e., floods/droughts) periods, while the spatial patterns shown in Figure 7a,c indicate the
correlation between pixels in terms of the magnitude of the SPI3 and SPI12.

In the case of the first independent component (see Figure 7a-1,c-1), it is shown that
the magnitude of the SPI3 and SPI12, which is relevant to their maximum variability, was
similar between the north and south of Vietnam, which is different from that of the central
area. Conversely, in both the second and third dominant independent components (see
Figure 7a-2,a-3,c-2,c-3), similar patterns could be seen either in the upper part (latitude
larger than ∼15◦ N) or the lower part (latitude small than ∼15◦ N), which were in opposite
(i.e., positive vs. negative) magnitudes.
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Figure 7. Independent component analysis (ICA) spatial patterns of the first three independent
components decomposed from 3-month (a-1–a-3) and 12-month (c-1–c-3) time scale CHIRPS SPIs,
and their corresponding temporal patterns: SPI3 (b-1–b-3), SPI12 (d-1–d-3).
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3.3. The Link between Soil Moisture Variability with Rice Yield

Precipitation after reaching the Earth’s surface splits into different forms such as
surface water, groundwater, soil moisture, canopy wetness, or ice/snow, of which, soil
moisture has direct relevance to agricultural productivity. With the aim at the examination
of drought effects on rice yield over Vietnam, the 3-month and 12-month time scale GLDAS
standardized soil moisture indices (hereinafter SSI3 and SSI12) were computed. The SSI3
and SSI12 were computed for each pixel, then the ICA analysis was applied to the computed
SSI3 and SSI12 to decompose the signal into different independent components and retain
the dominant ones. The spatial patterns of the first three dominant components of SSI are
shown in Figure 8a (SSI3) and Figure 8c (SSI12), with the corresponding temporal patterns
shown in Figure 8b (SSI3) and Figure 8d (SSI12). For both indices of SSI3 and SSI12, the
first three leading independent components accounted for 99.8% of the total variance.

An agreement in both spatial and temporal patterns of dominant signals was found
from those computed from SSI3 and SSI12. With the first dominant signal, the maximum
variability in SSI was found in the northern part (latitude larger than ∼15◦ N), which is
likely dominated by the dry period in the northern part between September and January
(see Section 3.1). An agreement in the spatial patterns between the second and third
dominant signals was found, which indicates distinct patterns between the north (latitude
larger than ∼15◦ N) and the south (latitude smaller than ∼15◦ N) of the Vietnamese
mainland (see Figure 8a-2–a-3,c-2–c-3). These reveal the maximum variability of SSI
occurring in the southern part, which likely reveals the dry period during November–April
(see Section 3.1).

The temporal patterns of the leading components of SSI shown in Figure 8b (SSI3)
and Figure 8d (SSI12) indicate the change of the SSI in time. Consistent trends were
found between those computed from the two indices of SSI3 and SSI12, which indicate
significant drought in terms of soil moisture during the 2016–2019 period from both of
the first two dominant signals. Figure 8e shows the residual rice yield after removing the
linear trend over three areas: the RRD, the Central Coast area, and the MRD corresponding
to the areas bounded by the red borders in Figure 8a,c. This shows a reduction in the
residual rice yield over all three areas during the period of 2016–2018 that has been traced
back to weather concerns, e.g., drier than usual climate reported during the 2018–2019
period (https://www.world-grain.com/articles/12759-vietnams-rice-production-estimate-
drops-on-weather-concerns, accessed on 1 December 2021). The 2016-2018 reduction in
residual rice yield may reflect the long-term periodic change with a similar reduction found
between 1995 and 1998.

A link between the reduction of residual rice yield during the period 2016–2018
(highlighted by the black rectangle in Figure 8e) and the first two independent components
of SSI was found, which indicates a shortage in both SSI3 (shown in Figure 8b) and SSI12
(shown in Figure 8d) soil moisture during the same time period. Therefore, it can be
concluded that the SPI is useful for detecting climate extreme (floods/droughts) periods,
while the SSI can be of assistance for investigating the influences of climate extremes on
rice productivity/yield over Vietnam.

https://www.world-grain.com/articles/12759-vietnams-rice-production-estimate-drops-on-weather-concerns
https://www.world-grain.com/articles/12759-vietnams-rice-production-estimate-drops-on-weather-concerns
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Figure 8. ICA spatial patterns of the first three independent components decomposed from the
3-month (a-1–a-3) and 12-month (c-1–c-3) time scale GLDAS SSI, and their corresponding temporal
patterns: SSI3 (b-1–b-3), SSI12 (d-1–d-3), and the residual rice yield after removing the linear trend
over the main rice-producing areas of Vietnam (e). The rice yield in (e) was derived by dividing the
rice production by the planted area.
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4. Conclusions

In this study, the spatio-temporal variability of remotely-sensed gridded precipitation
(CHIRPS) and soil moisture (GLDAS) products was investigated and their indications
of drought periods and influences on rice yield over Vietnam during the time period
1981–2019 were assessed. The major findings were:

(i) The spatio-temporal variability of the CHIRPS precipitation confirmed that the rainy
season lasts from April/May until September/October, which starts and ends earlier in
the northern part (latitude above 20◦ N) around February and September, respectively,
with July–August receiving the highest amount of precipitation over most parts of
the country. Areal mean precipitation computed over the four main rice producing
areas indicates different peaks of precipitation, in which the months with the highest
amount of precipitation were later from north to south.

(ii) An agreement between monthly CHIRPS precipitation and monthly GLDAS soil
moisture was found in which the wetter period in terms of soil moisture over the
northern and NCC areas was between February and August, while that over the
southern and SCC areas started later in May every year. Similarly, the same peaks
(i.e., months) of the highest monthly precipitation and soil moisture were found
between the four main rice producing areas. However, the spatial patterns of annual
mean precipitation and soil moisture disagreed, which can be attributed to different
factors other than precipitation affecting the amount of moisture in soil layers, e.g.,
temperature, irrigation, and drainage systems, which are inconsistent between areas.

(iii) The drought conditions were assessed by the 3-month and 12-month SPI and the
impacts of climate extremes on rice yield were assessed via the 3-month and 12-month
SSI, both with the ICA analysis. The results showed that the SPI is useful for captur-
ing climate extremes and that SSI is useful in identifying the influences of climate
extremes on rice production in Vietnam. During the 2016–2018 period, there existed a
reduction in the residual rice yield that was consistent with a decrease in soil moisture,
particularly in the first two ICA decomposed leading components.

(iv) Given that precipitation and, to a large extent, soil moisture control plant growth, their
increase or decrease due to the impacts of climate extremes are bound to affect all
crop growth and production. This study, although specific to rice production, could
be undertaken for any crop. The limitation, however, is that access to in situ soil
moisture and, to some extent, precipitation products in many countries is challenging.
In this scenario, the method was restricted to the use of satellite and/or hydrological
model products.
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Appendix A. Consistency between CHIRPS and TRMM Precipitations

CHIRPS and/or TRMM precipitations have been applied in several studies over Viet-
nam on local-scale areas [14,16,79,80]. In Simon et al. [79], TRMM and CHIRPS precipitation
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data were verified by ground observations in the Red River Basin in which the upstream
part is located in southern China and the downstream part belongs to northern Vietnam.
The correlation between CHIRPS, TRMM, and rain gauge data from [79] showed high
correlation coefficients of 0.85 and 0.88, respectively, though these values were based on
a limited study area. Here, CHIRPS and TRMM precipitation data were inter-compared
to examine their consistency over the entire Vietnam, which was then separated into four
investigation areas, including RRD, NCC, SCC, and the Vietnamese MRD (see Figure 1 for
the regions). These four areas were investigated as they are directly relevant to three main
rice-producing areas and are based on their geographical locations (see Figure 1).

The two datasets are truncated to the common 21-year period of January 1998–
December 2018 (see Figure 3). Additionally, due to the different spatial resolutions
(see Table 1), the CHIRPS dataset is down-sampled to 0.25◦ × 0.25◦ by averaging over
5 × 5 adjacent pixels with no loss of information as both datasets are provided as a repre-
sentative of their areal-averaged precipitation within the pixel. Following these two steps,
the two datasets are of the same spatial resolution and cover the same time period. The
correlation between the two precipitation datasets was first investigated on a pixel-by-pixel
basis of which the results are shown in Figure A1. The investigation demonstrates a high
consistency with the maximum and minimum correlation coefficients being ∼0.97 and
∼0.53 at a 95% confidence level, respectively, with the lower correlations found in pixels
located in the SCC and the Central Highlands areas (see Figure A1).

Figure A1. Pixel correlation coefficients between CHIRPS and TRMM precipitation products. The
results were computed pixel-by-pixel over the entire Vietnamese territory. The sub-area borders and
their order numbers were the same as those in Figure 1. Red borders are associated with the main
rice-producing areas investigated in this study.

Due to the fact that this study focuses on the effects of climate variability/change and
climate extremes on rice production, a similar investigation was conducted over four areas
of RRD, NCC, SCC, and MRD by the areal mean values. To this end, precipitation data were
first spatially averaged over each area, then the averaged CHIRPS and TRMM time series
were tested for correlation via graphical demonstration and the correlation coefficients.
Figure A2 shows the graphical demonstration where the smallest correlation coefficient of
0.86 was found in the SCC area, while the remaining areas exhibited an almost identical
value of ∼0.95. This high level of correlation indicates that within these rice growing areas,
either of these two products could be useful for analysis of rice production in Vietnam.
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Figure A2. The difference between the areal mean of monthly CHIRPS and TRMM precipitation
products averaged over the four main rice-producing areas: the RRD (top-left), the NCC area
(top-right), the SCC area (bottom-left), and the MRD (bottom-right).

Appendix B. Consistency between GLDAS and MERRA-2 Soil Moisture Products

Due to the lack of in situ data, two soil moisture (SM) products of Noah GLDAS
2.1 and MERRA-2 were cross-compared for their consistency. A test of pixel correlation
between the two products could not be made due to their disagreement in spatial resolution
(see Table 1). Instead, they were tested for the areal mean time series comparison over four
main rice-producing areas, i.e., the RRD, NCC, SCC, and MRD (Figure 1). Here, we tested
the consistency in the root zone soil layer (up to 100 cm) because it is the only variable in
both products (see Section 2.2.3). However, MERRA-2 SM is provided to a 0.75 m depth
only in some areas of the globe. The comparison between absolute SM of the two datasets
may lead to unreasonable results. Additionally, with the aim of assessing the influence
of climate change, the SM change was adopted in this test. For each area, SM change
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was derived for the two products by subtracting mean values over the time span prior
to computing the spatial average. The time series plots of SM changes are depicted in
Figure A3 (right panel), which demonstrate an agreement in the seasonal patterns. The
results indicate higher correlations in the MRD area than in the other areas of RRD, NCC,
and SCC.

Figure A3. Difference between the areal mean of GLDAS and MERRA-2 soil moisture averaged over
the four main rice-producing areas: the RRD (top-left), the NCC (top-right), the SCC (bottom-left),
and the MRD (bottom-right).

Appendix C. Correlation between Precipitation and Soil Moisture Products

After reaching the Earth’s surface, precipitation splits into different forms, e.g., surface
water, groundwater, or soil moisture. Therefore, precipitation and soil moisture have
different correlations between areas. Here, the correlation between precipitation and soil
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moisture products was tested over the Vietnamese territory. For this test, GLDAS was
adopted as a representative of soil moisture due to its higher spatial resolution (0.25◦) than
that of MERRA-2 (0.625◦ × 0.5◦). In Appendix A, CHIRPS and TRMM were demonstrated
to be highly consistent, particularly over the four areas of interest, i.e., the RRD, NCC, SCC,
and MRD. For this reason, TRMM was utilized in this investigation as a representative of
precipitation due to its equivalent spatial resolution to that of GLDAS soil moisture (see
Table 1).

Because of the difference in time spans, the two datasets, i.e., TRMM precipitation
and GLDAS soil moisture, were truncated to be bounded within the common January
2000–December 2018 time period. With a particular interest in agricultural application (rice
yield), the GLDAS soil moisture of the 10–40 cm soil layer was exploited. The correlation
coefficients were then calculated for all pixels limited within the Vietnamese territory of
which the spatial patterns are shown in Figure A4. The results show correlation coefficients
at different magnitudes with the maximum and minimum values being ∼0.85 and ∼0.34 at
a 95% confidence level, respectively, and lower values were found in the Northwest (1),
Central Coast (4, 5), and Central Highlands (6) areas. Areas exhibiting lower correlation
coefficients occupied either the mountainous areas (1, 6) or the coastal areas (4, 5), see
Figure 1. This is probably because high relief characteristics in mountainous areas reduce
the ability of soil to store water or water sources other than precipitation, e.g., seawater, is
contributed in coastal areas, both of which result in lower correlation between precipitation
and soil moisture.

Figure A4. Pixel correlation coefficients between GLDAS soil moisture and TRMM precipitation over
the Vietnamese mainland. The sub-area borders and their order numbers are the same as those in
Figure 1. Red borders are associated with the main rice-producing areas investigated in this study.

With the aim of focusing on the main rice-producing areas, the time series of TRMM
precipitation and GLDAS soil moisture were spatially averaged over the four areas of RRD,
NCC, SCC, and MRD. These areal mean time series were subsequently tested for their
correlation via the time variability and the correlation coefficients (R) shown in Figure A5.
An agreement in seasonal patterns was found between the time variability of areal mean
TRMM precipitation and GLDAS soil moisture in all four areas, with more stable variability
over years found in the deltas (top-left and bottom-right) than the Central Coast areas
(top-right and bottom-left). The correlation coefficients varied between 0.69 and 0.80 with
the deltas (RRD, MRD) exhibiting higher correlations than the coastal areas (NCC, SCC).
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Figure A5. Temporal variability of areal mean GLDAS soil moisture and TRMM precipitation showing
seasonal patterns over the four areas of interest: (top-left) the RRD, (top-right) NCC, (bottom-left)
SCC, and (bottom-right) MRD.
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