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Chapter 13 
Application of Scoops3D and GIS 
for Assessing Landslide Hazard in Trung 
Chai Commune, Sapa, Vietnam 

Binh Van Duong , I. K. Fomenko , Kien Trung Nguyen , 
Dang Hong Vu , O. N. Sirotkina , and Ha Ngoc Thi Pham 

Abstract Landslides are one of the natural disasters that have frequently occurred 
in the northern region of Vietnam. Located in Laocai province, the Sapa district 
is known as a landslide hotspot in the mountainous region of Vietnam. The rapid 
economic development and construction in this area have significantly increased 
the likelihood of landslides. Therefore, landslide hazard assessment is critical for 
developing a strategy for reducing landslide risk and long-term territorial planning. 
This study presents the results of a landslide hazard assessment due to rainfall using 
a physically-based Scoops3D model in the Trung Chai commune, Sapa district. 
The initial data for the analysis model in Scoops3D consists of topographic data 
(DEM, distribution of soil thickness), soil properties, hydrogeological conditions, 
and earthquake loading. As a result, the factor-of-safety maps (FS maps) have been 
established, and the study area was divided into four hazard zones: unstable, quasi-
stable, moderately stable, and stable. The study results indicate that the unstable 
zone covers 18.12% of the study area under the influence of rainfall in 16 h, and 
61.11% of total landslides were accurately predicted, including the largest landslide 
in the study area (the Mong Sen landslide). The percentage of landslide ratio for 
each predicted factor-of-safety class (%LRclass index) of 64.19% demonstrated the 
acceptable performance of the Scoops3D model in this study. The study results 
identified the advantages and limits of this model for evaluating landslide hazards
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on a large scale, allowing for the development of solutions to enhance the prediction 
quality of future studies. 

Keywords Landslide · Landslide hazard · Scoops3D · GIS · Limit equilibrium 
method · Trung Chai · Sapa · Vietnam 

13.1 Introduction 

Landslide is a natural disaster that occurs because of geodynamic processes, causing 
the instability of a slope, the displacement of rocks on the slopes, and the destruc-
tion of everything in its area of influence (Cruden and Varnes 1996). Landslides 
may be triggered by different causes, including rainfall, earthquakes, and human 
activities. Among these causes, rainfall is the most common trigger of landslides 
(79% of fatal non-seismic landslides from 2004 to 2016) (Froude and Petley 2018). 
Rainfall-induced landslides have occurred frequently in Vietnam, particularly in the 
mountainous northern provinces of Hagiang (Hung et al. 2016), Backan (Le and 
Kawagoe 2018), Hoabinh (Tien Bui et al. 2013), and Laocai (Tien Bui et al. 2017). 
A study by Nguyen and Dao (2007) indicated eight primary causes of landslides 
in Northwest Vietnam: the slope of relief; the weathering process of rocks; modern 
present tectonic movement; hydro-system (surface streams and groundwater); vege-
tation density; striking and dipping of original rock; physical property and structure 
of original rock; and human activity. Landslide hazard assessment (LHA) plays a 
critical role in landslide study and risk management. Over the past three decades, the 
efficacy of landslide hazard assessments has improved because of the development 
of GIS-based approaches, such as direct (the landslide inventory method) and indi-
rect (multi-criteria decision-making analysis, probabilistic, deterministic, statistical, 
and artificial intelligence methods). Deterministic methods based on physical and 
mechanical processes have been successfully employed in various landslide hazard 
and susceptibility assessments. These studies have been frequently conducted on a 
local scale using the B-GeoSVC model (Yang et al. 2019), SLIP and TRIGRS model 
(Saadatkhah et al. 2015; Marin et al. 2021), Scoops3D model (Zhang and Wang 2019; 
Rashid et al. 2020), r.slope.stability model (Palacio Cordoba et al. 2020) and on a 
site-specific scale using PCRaster model (Van Beek and Van Asch 2004), TRIGRS 
and TiVaSS models (Tran et al. 2017a, b), TRIGRS model (Tran et al. 2017a, b; 
Fusco et al. 2021). However, deterministic methods have only been employed in a 
limited number of studies conducted on a regional scale (e.g. Wang et al. 2020). These 
methods do not require long-term landslide inventory data and are thus more helpful 
in areas with no landslide inventory data (Luo and Liu, 2018). However, physically-
based methods need detailed geotechnical parameters and considerable time and 
effort for simulations, experiments, and field studies (Yang et al. 2019). Therefore, 
these methods are only applicable over vast regions with very homogenous geological 
and geomorphological conditions and simple landslide types.
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Because of the difficulties associated with gathering data to build an assessment 
model, the deterministic method has only been applied to several landslide studies in 
Vietnam (Loi et al. 2017; Le and Kawagoe 2018; Tran et al.  2021, 2022). In this study, 
to enhance the efficacy of landslide risk management, a Scoops3D model was devel-
oped to assess the landslide hazard caused by rainfall in the Trung Chai commune, 
Sapa district, Vietnam. Two simulation scenarios were performed to establish Factor 
of Safety (FS) maps, and the study area was categorised into four hazard zones. 
Finally, the model’s performance was determined by comparing the FS map to the 
locations of 18 observed landslides. 

13.2 Materials and Method 

13.2.1 Study Area 

In comparison to other northern Vietnamese areas, Sapa, a mountainous district in 
the northwest of Lao Cai Province, has experienced more landslides and soil erosion 
(Dang et al. 2018; Tran et al.  2021). Land-use changes associated with the expansion 
of agricultural and community tourism have accelerated the frequency of natural 
catastrophes, affecting the sustainability of the Sapa district (Dang et al. 2018). 
Landslides in Lao Cai, especially in the Sapa district, have garnered significant 
attention over the past decade because of the high number of fatalities, property 
loss, and ecological destruction they have caused (Tien Bui et al. 2017). Mountain 
commune Trung Chai (Fig. 13.1) is located in the northeastern part of the Sapa district, 
with an area of about 38.4 km2 and an elevation ranging from 581 to 2176 m. Annual 
rainfall ranges from 2000 to 3600 mm.

Rainfall is concentrated from June to August, accounting for around 80–85% of 
total annual rainfall in the study area (Tien Bui et al. 2017). Trung Chai is one of 
the communes in Sapa that is at the highest risk of landslides. The most well-known 
landslide in the study area is the Mong Sen event (Fig. 13.2a), which occurred in 1998, 
2000, 2002, and 2009. This landslide is located on the 4D national road connecting 
Laocai city with the Sapa district. The geological composition of the study area is 
formed of granodiorite, granite, and granite-migmatite rocks of the Posen complex, 
all of which have reasonably high strength. The weathering process of bedrock led to 
the formation of a thick cover layer with high permeability, increasing the landslide 
hazard in the study area. Previous studies have shown that rainfall is the primary cause 
of landslides in the study area (Tien Bui et al. 2017; Tran et al.  2021). A landslide that 
occurred in 2020 at Km12 + 600 − Km12 to 900 on provincial road 152 (Fig. 13.2b) 
was determined to be the result of heavy rainfall and slope excavation.
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Fig. 13.1 Location of the study area

Fig. 13.2 a Mong Sen landslide and b a landslide on DT152 road 

13.2.2 Landslide Hazard Assessment using Scoops3D Model 

Scoops3D (Reid et al. 2015) is a computer program developed by the United States 
Geological Survey (USGS) for assessing landslide stability over a digital terrain 
expressed by a digital elevation model (DEM). Scoops3D has been effectively used 
in various landslide stability studies worldwide, including in Vietnam (Zhang and 
Wang 2019; Rashid et al. 2020; Tran et al.  2021). Using the 3D “method of columns” 
limit-equilibrium analysis, Scoops3D computes the slope stability with a spherical 
potential sliding surface (Fig. 13.3).

Scoops3D investigates and evaluates slope stability by determining the FS of 
millions of potential three-dimensional slope failures at various depths on the DEM
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Fig. 13.3 Schematic drawing of Scoops3D model including a DEM with potential trial sliding 
surface and search grid. Each point on the search grid corresponds to denotes the center of multiple 
spherical trial surfaces (modified from Reid et al. 2015)

grid (Reid et al. 2000). In Scoops3D, numerous trial surfaces are required in three-
dimensional analysis to assess slope stability because of the spatial variations in input 
data such as local topography, material parameters, and hydrogeological conditions. 
Compared to other physically based methods, the technique for searching for failure 
surfaces used by Scoops3D is a significant improvement. For modeling, users may 
select a suitable range for the 3D grid of sphere centers, which can be any point 
above the DEM, depending on the time and capability of their computer (Tran et al. 
2021). 

Generally, in analyzing slope stability by using the limit equilibrium method 
(LEM), the FS is defined as a ratio of the average shear strength (s), to the shear stress 
(τ ) that controls the limit equilibrium state along a specified trial sliding surface (Tran 
et al. 2021): 

FS  = 
s 

τ 
(13.1) 

In this equation, the FS is less than one when the shear stress (τ ) exceeds the shear 
strength (s) of material on the examined slope. The shear strength of soil on the trial 
surface is determined by using the following equation: 

s = c' + (σn − u)tanϕ' (13.2) 

where c denotes effective cohesion, ϕ denotes effective internal friction angle, σ n 
denotes normal stress, and u denotes pore-water pressure.
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When evaluating the stability of spherical potential sliding surfaces in Scoops3D, 
Bishop’s simplified method (Bishop, 1955) is frequently utilized since it provides 
more accurate results on the FS. The factor of safety is determined as follows using 
three-dimensional extensions of Bishop’s simplified method: 

FS3D =
Σ

Ri, j
[
ci, j Ahi, j +

(
Wi, j − ui, j Ahi, j

)
tanϕi, j

]
/mαi, j

Σ
Wi, j

(
Ri, j sinαi, j + keqei, j

) (13.3) 

where: 
Ri, j denotes the distance from the axis of rotation to the center of the base of a 

column; 
Ahi, j denotes the area of the trial surface at the base of each i, j column; 
Wi, j denotes the weight of the column (i, j) above the slip surface; 
αi, j denotes the apparent dip of the column base in the direction of rotation; 
ei, j denotes the horizontal driving force moment arm for a column (equal to the 

vertical distance from the center of the column to the elevation of the axis of rotation) 
and 

mαi, j = cosεi, j + (sinαi, j tanϕi, j )/FS3D (13.4) 

with εi, j denotes the true dip of the trial surface at the column base; and 
keq denotes the horizontal pseudo-acceleration coefficient (Fig. 13.4). 
The scheme for assessing landslides using Scoops3D is shown in Fig. 13.5. Gener-

ally, Scoops3D, like other physically-based models, needs a variety of input variables 
related to the spatial distribution and strength parameters of soil layers, soil thick-
ness, pore-water pressure (PWP), earthquake loading, and topographic conditions.

Fig. 13.4 Schematic diagrams illustrating a slip direction and b forces acting on a 3D column 
(Reid et al. 2015) 
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Fig. 13.5 Scheme for assessing landslide hazards using Scoops3D 

The quality of the initial data has a significant influence on the prediction performance 
of the Scoops3D model (Reid et al. 2015). 

13.2.3 Data Preparation 

The survey results were employed to generate a DEM and determine the distribution 
of soil depth, PWP, soil properties, and earthquake loading for assessing landslide 
hazards in the study area. Terrain parameters may be the most critical input data when 
developing an analysis model for assessing landslide hazards (Tran et al. 2017a, b). 
Reid et al. (2015) indicated that Scoops3D examines the stability of all parts of a 
DEM using a systematic slope stability analysis for trial sliding surfaces formed at 
each node in the search grid. For accounting for all potential sliding surfaces, the 
vertical extent of the search grid is analyzed in the range of the lowest elevation 
and the elevation at which the stability map has no change (Tran et al. 2021). A 
DEM may be produced using various techniques, including Terrestrial Surveying, 
Aerial Photogrammetry, Light Detection and Ranging (LiDAR), and Interferometric 
Synthetic Aperture Radar (InSAR). Selecting the appropriate DEM resolution should 
be based on the purpose of the modeling, the features of the study area, and the 
availability of relevant data (Tran et al. 2016; Chang et al. 2019). In this study, the 
5 m DEM was used for analysing landslide hazards (Fig. 13.6). When conducting a 
slope-instability study, it is critical to consider the soil thickness on a slope, which 
relates to the failure depth. Furthermore, soil thickness plays a significant role in 
the hydrological impact, as shown by the ratio of the saturated depth to the soil 
thickness (Ho et al. 2012). The prediction of soil thickness is challenging due to 
its dependency on complex interactions of numerous elements (topography, parent 
material, climate, biological, chemical, and physical processes) (Tesfa et al. 2009).
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Soil thickness may be determined by examining its connection to other variables 
such as slope (Patton et al. 2018), relative relief (Pradhan and Kim, 2021), slope 
gradient (Brosens et al. 2020), elevation (Saadatkhah et al. 2015), or a combination of 
variables (Li et al. 2020). Many authors have developed various models for predicting 
the spatial distribution of soil thickness (Salciarini et al. 2006; Tesfa et al. 2009; 
Catani et al. 2010; Park et al.  2013; Tran et al.  2017a, b). However, determining the 
physico-mechanical properties and soil thickness over a large area is challenging in 
all simulation cases. The soil layer thickness in this study was determined using the 
correlation between measured soil thickness in the study area and topographic slope 
(Salciarini et al. 2006; Tran et al., 2017a, b, 2018). the distribution of soil thickness in 
the study area is presented Fig. 13.7, which shows values ranging from 2.0 to 20 m. 

Pore-water pressure is the most frequently employed hydrological variable in 
physically-based models for identifying triggering conditions and predicting shallow 
landslides (Bordoni et al. 2018). Determining the distribution of PWP is critical for 
assessing slope stability under the influence of rainfall. There are several options for 
simulating PWP in Scoops3D: the impact of groundwater pressure is not considered; 
a pore-water pressure ratio (ru) is used; simulation using a piezometric surface; 
simulation using a 3D distribution of saturated pore-pressure heads; simulation using

Fig. 13.6 Elevation map of the study area
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Fig. 13.7 Soil thickness distribution map of the study area

a 3D distribution of variably saturated pore-water heads pressure. Because of the 
absence of PWP data, the pore-water pressure ratio (ru) was employed to simulate 
PWP in this study. The SLIDE model was used to determine the relationship between 
pore-water pressure ratio and rainwater infiltration in the study area (Liao et al. 2010). 
The heavy rainfall recorded on May 31, 2020 (Fig. 13.8) represents an “extreme case” 
for the study area and may be considered as the factor triggering widespread shallow 
landslides. As a result, the rainfall data, with a cumulative rainfall of 139.1 mm in 
16 h and a maximum of 155.9 mm, was used to model landslides’ stability.

In Scoops3D, to analyze slope stability, it is necessary to define the properties 
of all slope materials underlying the DEM. Three methods can be used to deter-
mine the distribution of these properties: input uniform, homogeneous properties; 
input layered material properties; and input 3D spatially varying properties. Because 
of the data availability, the layered material properties were used to analyze slope 
stability. Regarding the input data for the Scoops3D model, field studies and labo-
ratory testing have been conducted to determine the shear strength, unit weight, and 
hydraulic conductivity parameters. The physico-mechanical properties of the soil
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Fig. 13.8 Relationship between rainfall intensity and pore-water pressure ratio

Table 13.1 Soil parameters for landslide hazard assessment 

Parameter Symbol Unit Natural state Saturated state 

Unit weight γ kN/m3 18.2 19.3 

Friction angle ϕ (°) 16.3 12.2 

Cohesion c kN/m2 20.2 15.2 

layer, including unit weight (γ), internal friction angle (ϕ), and cohesion (c), are 
shown in Table 13.1. 

In the mountainous region, an earthquake triggers a landslide due to the mecha-
nism of seismic wave–ground motion. In Scoops3D, the seismic loading is modeled 
as a uniform horizontal force (keqW ), in which keq is the pseudo-horizontal accel-
eration coefficient. Previous studies have shown that landslides occurred in Lao Cai 
province and Sapa district due to rainfall (Tien Bui et al. 2017; Tran et al.  2021; Le  
et al. 2021). Terzaghi (1950) suggested that a horizontal seismic coefficient of 0.5 
is an appropriate value for assessing seismic stability in catastrophic earthquakes. 
Marcuson and Franklin (1983) proposed that a horizontal seismic coefficient between 
1/2 and 1/3 of Peak Horizontal Ground Acceleration (PHGA) might be used. Other 
reference summarizes values of extensively employed horizontal seismic coefficients 
in Table 13.2. In addition, no earthquakes have been recorded in the study area when 
landslides occur. Thus, in this study, we selected keq = 0 when analyzing landslide 
hazards.

13.2.4 Model Validation 

A successful landslide hazard assessment (LHA) model should provide maximum 
consistency between actual and predicted landslides and reduce the predicted 
unstable zone to give valuable information for prediction (Park et al. 2013). It is
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Table 13.2 Some reference values of keq 

Horizontal 
pseudo-acceleration 
coefficient, keq 

Remark 

0.5 Catastrophic earthquakes Terzaghi (1950) 

0.2 Violent, destructive 
earthquakes 

0.1 Severe earthquakes 

1/2 of PHGA – 1/3 of 
PHGA 

Marcuson and Franklin (1983) 

0.1–0.25 In the United States Kavazanjian et al. (1997) 

0.15–0.25 In Japan 

0.1–0.2 FS ≥ 1,15 (Seed 1979) 
0.025 Minor Earthquake, FS > 

1,0 
United States Army Corps of 
Engineers (1970) 

0.05 Moderate Earthquake, FS > 
1,0 

0.1 Major Earthquake, FS > 1,0  

0.15 Great Earthquake, FS > 1,0  

1/2 of PHGA FS > 1,0 (Hynes-Griffin and Franklin 1984)

required to compare landslide hazard maps and a landslide inventory map with the 
appropriate index to evaluate the model performance (Huang and Kao 2006). Various 
indicators have been proposed for determining the efficacy of landslide hazard assess-
ments. In this study, the %LRclass index proposed by Park et al. (2013) was used to 
evaluate the performance of the Scoops3D model. Tran et al. (2018) modified the 
LRclass equation developed by Park et al. (2013), resulting in Eq. (13.5). LRclass 

(landslide ratio for each predicted factor-of-safety class) is an intermediate index 
defined as the ratio of the percentage of landslide locations in each FS class to the 
area percentage of each FS class. The %LRclass index for FS class i (%LRi 

class) is the  
ratio of the LRclass value of FS class i to the total value of LRclass for all FS classes 
(Eq. 13.6) (Tran et al. 2018; Marin et al. 2021). 

LRclass = 
%landslidesineach  F  Sclass  

%areaof each F Sclass 
(13.5) 

%LRi 
class =

LRi 
classΣn 

i=1LR
i 
class 

(13.6)
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13.3 Results 

Based on the input data, Scoops3D computes the factor of safety for all DEM cells. 
It is accepted that predicted zones with FS less than 1.0 are classified as unstable, 
whereas predicted zones with FS greater than 1.0 are classified as stable. In this 
study, the Scoops3D model was used to analyze two different scenarios: the stability 
of slopes in natural state and the stability of slopes under the influence of 16-h 
rainfall in the study area. As a result, two factor-of-safety maps were established for 
the study area and classified into hazard zones depicting the distribution of slope 
conditions based on the change in factor of safety (FS). The FS value has been 
categorized in these maps using the Mandal and Maiti classification (Mandal and 
Maiti 2015), which divides the stability state of the slope into four different classes: 
stable, moderately stable, quasi-stable, and unstable. A detailed description of the 
classification is represented in Table 13.3. 

The analysis results of the distribution of 18 historical landslides indicated that 
most landslides occurred in zones between 581 and 900 m in elevation (11 landslides) 
(Fig. 13.9) and with weathering crust thickness ranging from 4 to 12 m (12 landslides) 
(Fig. 13.10).

The FS map in Fig. 13.11 shows that the study area is not at risk of landslides under 
natural conditions, such as when there is no rainfall. This result demonstrated that, 
despite the existence of a weathering crust ranging in thickness from 2 to 20 m, the 
slopes in the study area are generally stable in the absence of triggering variables like 
rainfall. According to the statistics, 91.2% of the study area has slopes that exist in 
a stable condition, with the remaining 8.8% having slopes that exist in a moderately 
stable condition.

When modeling in the natural conditions, the FS map of the study area was clas-
sified into two hazard zones: moderately stable (8.8%) and stable (91.2%). However, 
under the influence of rainfall, the FS map was classified into four hazard zones: 
unstable (18.12%), quasi-stable (15.04%), moderately stable (11.92%), and stable 
zone (54.92%) (Fig. 13.12). The unstable zone demonstrated the effect of rainfall 
on slope stability in the study area, including the location of 18 historical landslides. 
Heavy precipitation decreases the shear strength and increases the weight of the soil 
mass on the slope, increasing the likelihood of landslides occurring.

The model performance evaluation and the landslide location assessment results 
are presented in Table 13.4 and Fig. 13.13. A relatively good correlation between

Table 13.3 Classification of factor of safety (Mandal and Maiti 2015) 

Factor of safety (FS) Slope state Remark 

<1.0 Unstable Stabilizing factors are needed for stability 

1.0–1.25 Quasi-stable Minor destabilizing factor lead to instability 

1.25–1.5 Moderately stable Moderate destabilizing factor lead to instability 

>1.5 Stable Only major destabilizing factors lead to instability 
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Fig. 13.9 Relationship between the distribution of landslides and elevation 
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Fig. 13.10 Relationship between the distribution of landslides and soil thickness

the simulated scenario and the observed landslide sites, with an accuracy of around 
61% for assessing the landslide location, is illustrated in Fig. 13.13. The results of 
the %LRclass assessment in Table 13.4 show a significantly acceptable performance 
of the Scoops3D model in predicting landslides since it accurately predicted the 
probability of including these landslides by more than 64%.
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Fig. 13.11 Factor-of-safety map (natural condition)

13.4 Discussion 

The preparation of landslide hazard maps is a significant step in landslide risk assess-
ment and management. Even though physically-based models have considerable 
uncertainty, they have been extensively employed to produce landslide suscepti-
bility and hazard maps (Melchiorre and Frattini 2012; Wang et al. 2019; Park et al.  
2022). This uncertainty is caused by the spatial distribution of rock layers with varied 
thicknesses, the variety of hydrogeological conditions, and the heterogeneity in the 
physical and mechanical properties of the soil and rock at different locations. The use 
of physical models provides a better understanding of the process interactions that 
cause slope instability and may aid in the design of suitable mitigation strategies (Van 
Beek and Van Asch 2004). For the first time in Vietnam, the Scoops3D physically-
based model has been utilized to assess the landslide hazard on a local scale. Due to 
the rough mountainous terrain of the study area, collecting topographic data, physical 
and mechanical parameters of soil and rock, and detailed information on the locations 
of slope failure is challenging. This model has been successfully established using 
collected data for assessing landslide hazards in the study area with reasonably good 
results. In physically-based models, including Scoops3D, topographic conditions 
play a significant role in the spatial and temporal distribution of landslides (Mont-
gomery and Dietrich 1994). Analysis of historical landslides indicated that 61% of
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Fig. 13.12 Factor-of-safety map (t = 16 h)

Table 13.4 Performance evaluation of Scoops3D model 

FS class % Class area Number of landslides % Landslides LRclass % LRclass 

<1.0 18.12 11 61.11 3.37 64.19 

1.0–1.25 15.04 3 16.67 1.11 21.15 

1.25–1.5 11.92 1 5.55 0.47 8.95 

>1.5 54.92 3 16.67 0.3 5.71

landslides occurred along roads in an area with an elevation between 581 and 900 m. 
This area is characterized by high population density, infrastructure construction, and 
terraced rice fields, thus increasing the likelihood of landslides, particularly during 
the rainy season (Dang et al. 2018). The combination of water and human activities 
such as road construction and slope excavation increases the shear stress, reduces the 
shear strength of slope materials, and plays a significant role in the landslide process 
(Bozzano et al. 2011; Froude and Petley 2018; Wubalem 2021). As a result, it is 
possible to conclude that the landslide process in the study area involves a complex 
interaction of numerous factors, with rainfall acting as a trigger. The study area is 
located in the Northwest region of Vietnam, where various small and medium earth-
quakes occur (Nguyen et al. 2011). According to an earthquake catalog published by 
the Vietnam Institute of Geophysics, 332 earthquakes with local magnitudes ranging
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Fig. 13.13 Distribution of landslide locations in each FS class

from 3.0 to 6.8 were recorded in Northwest Vietnam between 1903 and April 2012 
(Nguyen 2014). However, neither the Sapa district nor the Trung Chai commune 
has recorded any earthquake-induced landslides. Consequently, studies for landslide 
inventory and susceptibility/hazard mapping for the study area and other regions 
provide promising future research directions. 

When data on landslide inventories are insufficient or incomplete, the %LRclass 

approach is the most recommended (Park et al. 2013; Tran et al.  2018). Along with 
the AUC value, the %LRclass index has been used in numerous landslide suscepti-
bility/hazard assessment studies to evaluate the efficacy of the Scoops3D prediction 
model. Tran et al. (2018) determined that %LRclass = 87.44% for the TRIGRS-
Scoops3D coupled model used to assess landslide stability in a 0.4 km2 area in the 
southern part of Seoul. Palazzolo et al. (2021) used the Scoops3D model to evaluate 
the landslide stability of a 2 km2 river basin in northern Italy with a %LRclass = 
82%. A coupled TRIGRS-Scoops3D model has also been utilized to assess landslide 
stability in the Niangniangba basin, China, with a %LRclass value of 80.16% (He et al. 
2021). The comparison of our results (%LRclass = 64.19%) with those mentioned 
above indicated worse performance. It can be explained that by Tran et al. (2018) 
and Palazzolo et al. (2021) conducted their studies on a site-specific scale (<10 km2), 
thereby reducing the uncertainty of the input data and thus improving model perfor-
mance. Although He et al. (2021) conducted a study over a larger area (53.81 km2), 
the high quality of input data and landslide inventory map and the combination of 
Scoops3D and TRIGRS models has enhanced prediction efficiency. Because of the 
lack of high-quality input data and insufficient information on historical landslides in 
the study area, the effectiveness of the prediction model is decreased. However, the 
results are considered promising since they provide a reasonable basis for predicting 
landslide hazards in the study area.
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13.5 Conclusion 

Enhancing public awareness of landslide hazards and developing effective prediction 
methods are efforts to manage and mitigate landslide risk in Vietnam’s mountainous 
regions. Based on this idea, a Scoops3D model was used in this study for landslide 
hazard assessment. For preparing the FS maps, the input data in Scoops3D were 
selected and analyzed, such as the elevation map, the map of the distribution of soil 
thickness, rainfall data, soil parameters, and earthquake loading. As a result, the study 
area was divided into four landslide hazard zones: unstable, quasi-stable, moderately 
stable, and stable. The results showed that under the effect of heavy rainfall of 
139.1 mm within 16 h, the unstable zone increased from 0 (natural conditions) to 
18.12% of the study area. The analysis revealed that 61.11% of total landslides were 
accurately predicted, including the largest landslide of Mong Sen. Most landslides are 
distributed in areas with an elevation of 581 to 900 m (11 landslides) and a weathering 
crust thickness of 4–12 m (12 landslides). The performance of the Scoops3D is 
determined by comparing the FS map to the recorded landslides in the study area 
using the %LRclass index. Due to the limits and uncertainty of the input data, the 
Scoops3D model used in this study has worse performance when compared to other 
landslide stability studies. However, because accurate input data for modeling the 
initial conditions are not fully available, these outcomes are acceptable for this model. 
Therefore, the following recommendations may be made to improve the accuracy of 
the prediction results, including enhancing the quality of input data, establishing a 
pore-water pressure monitoring system, and combining the Scoops3D model with 
other prediction models. When the input data quality is improved, the Scoops3D 
model may be an effective predictor for assessing landslide hazards in the study 
area. The landslide hazard map can be used for land use management, long-term 
spatial planning, infrastructure and residential development, disaster management, 
and early warning in the study area. 
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