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Abstract
Plants of the Schisandra genus are commonly used in folk medicinal remedies. Some Schisandra species and their lignans 
have been reported to improve muscle strength. In the present study, four new lignans, named schisacaulins A–D, together 
with three previously described compounds ananonin B, alismoxide, and pregomisin were isolated from the leaves of S. 
cauliflora. Their chemical structures were determined by extensive analyses of HR-ESI–MS, NMR, and ECD spectra. 
Schisacaulin D and alismoxide significantly stimulated skeletal muscle cell proliferation by increasing the number of fused 
myotubes and expression of myosin heavy chain (MyHC) which may be good candidates for the treatment of sarcopenia.
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Introduction

Indigenous plants of the Schisandra genus are commonly 
used in folk medicinal remedies. Various parts, such as the 
roots, leaves, stems, and fruits, have different effects and 
uses and are used mainly for their hepato-protective and 
anti-inflammatory properties and promoting the circulatory 
and digestive systems [1]. Phytochemical investigations 
of the Schisandra genus have resulted in the isolation of 
numerous lignans and triterpenoids with unique skeletal 
frameworks (e.g., dibenzocyclooctadiene lignans and 
schinortriterpenoids) [2–4]. Schisandra plants are of 
particular interest due to their unique structural diversity 
and broad therapeutic application in traditional medicine 
[5–8]. S. cauliflora was recently identified as a new species 
belonging to the Schisandra genus [9]. This plant is an 
evergreen liana that is endemic to several provinces in 
northern Vietnam and rarely found outside of this region 
[9]. Therefore, a study of the phytochemical properties of 
S. cauliflora, which has been poorly investigated, could 
provide valuable information concerning its health benefits 
and reveal new bioactive compounds.

The aging population is increasing worldwide, and 
this trend is accompanied by increased incidences of 
chronic age-related diseases, such as sarcopenia, which 
is characterized by progressive loss of muscle mass, 
strength, and function [10]. There is no Food and Drug 
Administration- or European Medicines Agency-approved 
treatment for this disease, but natural products are being 
explored as candidates. For example, Schisandra species 
and their lignans have been reported to improve muscle 
strength [11, 12]. Thus, herein, we report the identification 
of four new lignans and three known compounds obtained 
from the leaves of S. cauliflora. Their effects on skeletal 
muscle cell proliferation and differentiation were also 
evaluated.

Materials and methods

General experimental procedures

Melting point was taken on a Mel-Temp 3.0 apparatus 
(Thermo Fisher Scientific, Waltham, Massachusetts, 
United States). UV spectrum was obtained on a Jasco 
V-630 spectrophotometer (JASCO, Tokyo, Japan). 
IR spectrum was recorded on a Spectrum Two FT-IR 
Spectrometer (PerkinElmer, Waltham, Massachusetts, 
United States). ECD spectra were measured on a 
ChiraScan (Applied Photophysics, Surrey, United 
Kingdom). Optical rotations were obtained on a Jasco 

P2000 polarimeter (JASCO, Tokyo, Japan). HR-ESI–MS 
was performed on an Agilent 6530 Accurate-Mass Q-TOF 
LC/MS (Agilent Technologies, Santa Clara, California, 
United States). NMR spectra were measured on a Bruker 
Avance III 500 MHz (Bruker BioSpin, 76,275 Ettlingen, 
Germany). Column chromatography was performed using 
silica gel (40–63 µm, Merck KGaA, 64,271 Darmstadt, 
Germany) or ODS (150 µm, YMC, Kyoto, Japan) resins. 
Thin-layer chromatography was carried out on pre-coated 
plates. Semi-preparative HPLC was acquired on an 
Agilent 1260 infinity II system, including binary pump, 
autosampler, DAD detector (monitoring at 205, 230, 254, 
and 280 nm), fraction collector, YMC J’sphere ODS-H80 
column (20 × 250 mm, 4 µm), and running flow rate of 
3 mL/min.

Plant material

The leaves of Schisandra cauliflora were collected at the 
Tam Dao National Park, Vinh Phuc province, Vietnam in 
April 2022. Its scientific name was identified by botanist 
Nguyen The Cuong, Institute of Ecology and Biological 
Resources, VAST. Voucher specimen (No. NCCT-P147) was 
kept at the Institute of Ecology and Biological Resources, 
VAST.

Extraction and isolation

Dried powdered leaves of S. cauliflora (4 kg) were extracted 
with methanol at room temperature three times (10 L of 
methanol and 60 min in an ultrasonic bath each time). The 
methanol residue (320 g) was well mixed with water and 
succesively partitioned with n-hexane and dichloromethane. 
The dichloromethane soluble fraction (82 g) was roughly 
separated on a silica gel column, eluting with n-hexane/
acetone (stepsiwe, 40/1, 20/1, 10/1, 5/1, 3/1, and 1/1, 
v/v) to obtain six fractions, SC1 (3.4 g), SC2 (8.2 g), SC3 
(21.5 g), SC4 (17.0 g), SC5 (9.5), and SC6 (7.8 g). Fraction 
SC3 (21.5 g) was loaded on a silica gel column, and eluted 
with n-hexane/ethyl acetate (5/1, v/v) to give five fractions, 
SC3A-SC3E. Fraction SC3A was chromatographed on a 
reversed-phase C-18 (RP-18) column, eluting with acetone/
water (2/1, v/v) and then purified by semi-preparative 
HPLC using 40% acetonitrile in water to give compound 
6 (10.1 mg,  tR 42.9 min). Fraction SC3C was separated 
by a RP-18 column, eluting with methanol/water (3/1, 
v/v) to give two fractions, SC3C1 and SC3C2. Fraction 
SC3C2 was purified by semi-preparative HPLC using 
60% acetonitrile in water to give compound 4 (12.0 mg,  tR 
42.5 min). Fraction SC3D was also chromatographed on a 
RP-18 column, eluting with methanol/water (3/1, v/v) to 
give three fractions, SC3D1–SC3D3. Fraction SC3D2 was 
purified by semi-preparative HPLC using 60% acetonitrile 
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in water to give compound 2 (5.1 mg,  tR 56.8 min). Fraction 
SC4 (17.0 g) was separated on a silica gel column, eluting 
with dichloromethane/methanol (10/1, v/v) to give four 
fractions, SC4A–SC4D. Fraction SC4A was separated on 
a RP-18 colum, eluting with acetone/water (1.8/1, v/v) to 
give three fractions, SC4A1–SC4A3. Fraction SC4A1 was 
purified by semi-preparative HPLC using 65% acetonitrile 
in water to give compound 3 (12.8  mg,  tR 40.6  min). 
Fraction SC4A3 was also purified by semi-preparative 
HPLC using 65% acetonitrile in water to give compound 
7 (6.5 mg,  tR 42.8 min). Fraction SC4C was first separated 
on a RP-18 column, eluting with acetone/water (1.8/1, v/v) 
and then futher purified by semi-preparative HPLC using 
50% acetonitrile in water to give compound 1 (10.0 mg, 
 tR 42.5 min). Fraction SC4D was chromatographed on a 
silica gel column, eluting with n-hexane/dichloromethane/
methanol (2/1/0.1, v/v/v) to give two fractions, SC4D1 and 
SC4D2. Fraction SC4D2 was purified by semi-preparative 
HPLC using 55% acetonitrile in water to give compound 5 
(24.0 mg,  tR 40.8 min) (Fig. 1).

Schisacaulin A (1)

Yellow amorphous powder; m.p. 131–133 ℃; [α]D
25 =  + 41 

(c 0.1, MeOH); UV (MeOH) λmax: 215, 290 nm; IR (KBr) ν: 
3460, 2939, 2880, 1736, 1620, 1104  cm−1; ECD (0.3 mg/mL 
in MeOH) θ(λ): + 3.63(216), − 2.28(251) mdeg; HR-ESI–MS: 
m/z 511.1720 [M + 35Cl]− (calcd. for  [C25H32O9

35Cl]−, 
511.1740, Δ = −3.9 ppm), m/z 513.1690 [M + 37Cl]− (calcd. 

for  [C25H32O9
37Cl]−, 513.1710, Δ = −3.9 ppm); 1H-NMR 

(500  MHz,  CDCl3) and 13C-NMR (125  MHz,  CDCl3) 
spectral data are given in Table 1.

Schisacaulin B (2)

Yellow amorphous powder; m.p. 110–112 ℃; [α]D
25 =  + 33 

(c 0.1, MeOH); UV (MeOH) λmax: 217, 290 nm; IR (KBr) 
ν: 3454, 2940, 2879, 1733, 1620, 1595, 1105   cm−1; 
ECD (1.0 mg/mL in MeOH) θ(λ): + 17.88(213), − 6.45(248) 
mdeg; HR-ESI–MS m/z 617.2135 [M + 35Cl]− (calcd. for 
 [C32H38O10

35Cl]−, 617.2159, Δ = -3.9 ppm), m/z 619.2145 
[M + 37Cl]− (calcd. for  [C32H38O10

37Cl]−, 619.2129, 
Δ =  + 2.6 ppm); 1H-NMR (500 MHz,  CDCl3) and 13C-NMR 
(125 MHz,  CDCl3) spectral data are given in Table 1.

Schisacaulin C (3)

Yellow amorphous powder; m.p. 115–117 ℃; [α]D
25 =  + 36 

(c 0.1, MeOH); UV (MeOH) λmax: 218, 290 nm; IR (KBr) ν: 
3441, 2955, 2926, 1715, 1615, 1107  cm−1; ECD (0.5 mg/mL 
in MeOH) θ(λ): + 7.01(225), − 3.89(244) mdeg; HR-ESI–MS m/z 
523.1726 [M +  Cl]− (calcd. for  [C26H32O9

35Cl]−, 523.1740, 
Δ = -2.7  ppm), m/z 525.1706 [M + 37Cl]− (calcd. for 
 [C26H32O9

37Cl]−, 525.1710, Δ = -0.8  ppm); 1H NMR 
(500  MHz,  CDCl3) and 13C NMR (125  MHz,  CDCl3) 
spectral data are given in Table 1.

Fig. 1  Compounds 1–7 isolated from the leaves of S. cauliflora 
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Schisacaulin D (5)

Yellow amorphous powder; m.p. 122–124 ℃; [α]D
25 =  + 52 

(c 0.1, MeOH); UV (MeOH) λmax: 207, 271 nm; IR (KBr) ν: 
3434, 2940, 2870, 1612, 1519, 1110  cm−1; ECD (1.0 mg/mL 
in MeOH) θ(λ): + 6.38(216), + 4.49(238) mdeg; HR-ESI–MS m/z 
439.1521 [M +  Cl]− (calcd. for  [C22H28O7

35Cl]−, 439.1529, 
Δ = −1.8  ppm), m/z 441.1480 [M + 37Cl]− (calcd. for 
 [C22H28O7

37Cl]−, 441.1499, Δ = −4.3  ppm); 1H NMR 
(500  MHz,  CDCl3) and 13C NMR (125  MHz,  CDCl3) 
spectral data are given in Table 2.

Cell culture and differentiation

C2C12 murine myoblast cells (ATCC, CRL-1772) 
were grown in Dulbecco’s Modified Eagle Medium 
(DMEM) supplemented with fetal bovine serum (FBS) 
and 1% penicillin–streptomycin for 48  h until the 
confluency reached 100%. Culture media were changed 
to differentiation media containing DMEM with 2% horse 
serum (HS) and 1% antibiotics every day for next 3 days.

Table 1  1H NMR and 13C NMR 
spectral data of compounds 1–3 

Measured at aCDCl3, b125 MHz, c500 MHz, NDNot observed in the 13C-NMR spectrum due to low 
intensity

No 1 2 3

δC
a,b δH

a,c (mult., J in Hz) δC
a,b δH

a,c (mult., J in Hz) δC
a,b δH

a,c (mult., J in Hz)

1 152.2 – 147.5 – 151.7 –
2 142.5 – 134.9 – 141.1 –
3 152.9 – 150.7 – 152.2 –
4 111.4 6.76 (s) 107.3 6.54 (s) 109.9 6.55 (s)
5 131.0 – 131.6 – 133.5 –
6 81.2 5.73 (d, 9.0) 80.9 5.82 (d, 8.0) 81.3 4.48 (br)
7 38.2 2.00 (m) 38.7 2.17 (m) 41.0 1.91 (m)
8 41.5 2.08 (m) 38.7 2.30 (m) 38.5 2.19 (m)
9 80.0 4.65 (dd, 10.0, 4.0) 80.9 5.67 (d, 4.0) 79.5 5.75 (d, 4.5)
10 138.4 – 134.5 – 135.3 –
11 109.1 6.47 (s) 102.9 6.53 (s) 102.6 6.46 (s)
12 148.9 – 148.9 – 149.2 –
13 138.5 – 136.2 – 136.2 –
14 151.2 – 141.8 – 141.8 –
15 119.6 – 119.7 – 120.0 –
16 122.5 – 116.3 – 122.0 –
17 17.5 0.91 (d, 7.0) ND 0.97 (d, 7.0) 17.0 0.98 (d, 7.0)
18 14.0 1.05 (d, 7.0) ND 1.09 (d, 7.5) ND 0.96 (d, 7.0)
1-OCH3 60.0 3.66 (s) – – 60.2 3.57 (s)
2-OCH3 60.8 3.89 (s) 60.4 3.86 (s) 60.6 3.88 (s)
3-OCH3 56.0 3.89 (s) 55.9 3.88 (s) 56.1 3.90 (s)
13-OCH3 60.8 3.95 (s) – – 59.6 3.89 (s)
14-OCH3 60.5 3.68 (s) 59.5 3.78 (s) – –
OCH2O – – 101.1 5.95 (d, 1.5)

5.92 (d, 1.5)
101.3 5.99 (d, 1.5)

5.98 (d, 1.5)
1′ 170.0 – 166.9 – 173.6 –
2′ 21.0 1.78 (s) 127.9 – 27.2 1.81 (m)
3′ 138.3 5.93 (q, 7.0) 8.7 0.84 (t, 7.5)
4′ 15.6 1.84 (d, 7.0)
5′ 19.9 1.52 (s)
1″ 166.9 –
2″ 127.4 –
3″ 139.0 5.85 (q, 7.0)
4″ 15.6 1.86 (d, 7.0)
5″ 20.2 1.32 (s)
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Cell viability assay and proliferation activity

The skeletal muscle cell toxic effect of the compound from 
S. cauliflora on C2C12 cells was measured by Cell Counting 
Kit (CCK) assay. When the cell confluency reaches 100%, 
the medium was replaced with fresh culture medium 
(DMEM), and 5 µM of the compounds from S. cauliflora 
was treated. CCK reagents were treated after 24 h, and cell 
viability was measured at the 450 nm absorbance following 
incubation of 2  h. Cell toxicity of the compounds was 
calculated by comparing to non-treated cells. Myoblast 
proliferation activity was evaluated by treating these 
compounds during differentiation periods. When cell 
confluency reaches 70%, the medium was replaced with 
a differentiation medium (DMEM containing 2% Horse 
serum) and the compounds were treated for 6 days. Finally, 
six days after the differentiation induction, cell proliferation 
activity was measured by CCK assay and calculated by 
comparison with the non‐treated cells.

Myotube immunocytochemistry

Cells were washed in PBS and fixed in 4% paraformaldehyde 
for 30 min at room temperature and permeabilized in ice-
cold 100% methanol for 19 min at −20  °C. They were 

incubated with blocking buffer including goat serum and 
incubated with primary antibody (MyHC, MAB4470, R&D 
systems, 1:200) overnight at 4 °C. Following incubation 
with secondary antibody (goat anti-mouse alexafluo 488, 
Ab150117, Abcam, 1:2000) for 1 h at room temperature. 
DAPI solution is used for staining nuclei. Stained cells 
were visualized using the ZEISS LSM 710 microscope 
(ZEISS, Germany), and myogenic differentiation (number of 
MyHC + nuclei/ total number of nuclei) was assessed using 
Image J software. Three pictures per sample are visualized 
and analyzed for these experiments.

Protein extraction and western blot

Cells are washed in PBS and lysed with RIPA buffer 
(R4100-010, Gendepot) containing protease inhibitor and 
phosphatase inhibitor cocktail (p3300, Gendepot). Proteins 
are harvested following incubation in ice for 30 min and 
centrifugation at 13000 rpm for 20 min. Bradford assay 
was used for determining protein concentration. Total 
proteins were separated by SDS‐PAGE and transferred to 
0.45 µm nitrocellulose membrane (10,600,003, Cytiva). The 
membranes were blocked with 5% bovine serum albumin 
in TBS‐T (Tris‐buffered saline with 0.1% Tween 20) and 
incubated overnight at 4℃ with primary antibody (MyHC, 
1:1000). Following the wash procedure with TBS‐T, it was 
incubated in secondary antibodies which are conjugated with 
horse‐radish peroxidase for 1 h at room temperature. Protein 
bands were detected with chemiluminescent substrate 
(ECL western, Thermo scientific, 32,106) using Fusioncapt 
advance software.

Results and discussion

Compound 1 was obtained as a yellow amorphous powder. 
Molecular formula of 1 was determined to be  C25H32O9 
based on chlorine adductive ion peaks at m/z 511.1720 
[M + 35Cl]− (calcd. for  [C25H32O9

35Cl]−, 511.1740), 
m/z 513.1690 [M + 37Cl]− (calcd. for  [C25H32O9

37Cl]−, 
513.1710) in the HR-ESI–MS. The 1H NMR and HSQC 
spectra of 1 indicated two olefinic protons [δH 6.76 and 
6.47 (each, 1H, s)], two carbinol protons [δH 5.73 (1H, 
d, J = 9.0 Hz) and 4.65 (1H, dd, J = 10.0 and 4.0 Hz)], 
five methoxy groups [δH 3.95, 3.89, 3.89, 3.68, and 3.66 
(each, 3H, s)], and three methyl groups [δH 1.78 (3H, s), 
1.05 (d, J = 7.0 Hz) 0.91 (d, J = 7.0 Hz)]. The 13C NMR 
and HSQC spectra of 1 revealed 25 carbon signals, which 
were classified into 11 non-protonated carbons, 6 methine 
carbons, and 8 methyl carbons. Of these, the carbonyl (δC 
170.0) and methyl (δC 21.0/ δH 1.78) signals were assigned 
to an acetyl group. Five methoxy groups were observed 
at δC 60.8, 60.8, 60.5, 60.0, and 56.0. The remaining 18 

Table 2  1H NMR and 13C NMR spectral data of compound 5 

Measured at aCDCl3, b125 MHz, c500 MHz

No δC
a,b δH

a,c (mult., J in Hz)

1 139.4 –
2 105.8 6.61 (s)
3 149.2 –
4 134.8 –
5 152.5 –
6 101.7 6.54 (s)
7 85.7 4.59 (d, 9.0)
8 43.3 2.40 (m)
9 12.0 1.02 (d, 6.5)
1′ 136.9 –
2′ 105.6 6.54 (s)
3′ 149.0 –
4′ 134.2 –
5′ 152.3 –
6′ 102.0 6.54 (s)
7′ 84.7 5.37 (d, 4.5)
8′ 47.4 2.43 (m)
9′ 9.4 0.62 (d, 6.5)
4-OMe 60.9 3.88 (s)
5-OMe 55.9 3.83 (s)
4′-OMe 60.9 3.88 (s)
5′-OMe 55.9 3.87 (s)
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carbons, including 12 olefinic carbons and 6 saturated 
carbons, suggested a lignan compound. Moreover, HMBC 
correlations between H-6 and C-4/C-5/C-16, and between 
H-9 and C-10/C-11/C-15, and the COSY cross-peaks of 
H-6/H-7/H-8/H-9 indicated a dibenzocyclooctadiene lignan, 
which occurs naturally in the Schisandra genus (Fig. 2) [4]. 
The HMBC correlations between H-11 and C-12/C-9 and 
chemical shift values of C-9 and C-12 indicated the presence 
of a hydroxy group bound to these carbons. Meanwhile, 
the HMBC correlation between H-4 and C-6, and between 
H-6 and carbonyl carbon C-1′, indicated an acetoxy group 
at C-6. Therefore, five methoxy groups were located at all 
five remaining positions in the two benzene rings, i.e., at 
C-1, C-2, C-3, C-13, and C-14. The presence of a methoxy 
group at C-3 was also confirmed by a ROESY correlation 
between H-4 and 3-OCH3, and this group clearly differed 
from the presence of a hydroxy group at C-12 (none of 

ROESY correlations between H-11 and any methoxy 
protons was observed). Dibenzocyclooctadiene lignans can 
display two stable conformations of the cyclooctadiene ring: 
twist-boat–chair and twist-boat forms [13, 14]. Of these, a 
ROESY correlation between H-11 and H-8 indicated a twist-
boat–chair conformation of the cyclooctadiene ring and 
axial orientation of H-8 (Figure S33), similar to previously 
reported dibenzocyclooctadiene lignans isolated from 
Kadsura induta [15]. The ROESY correlations between H-8 
and H-9, and between H-9 and H-11 indicated equatorial 
orientation of H-9. The ROESY correlations between  H3-17 
and H-4 indicated axial orientation of the methyl group 
C-17. The ROESY correlations between  H3-17 and H-6, 
and between H-4 and H-6 indicated equatorial orientation 
of H-6. The absolute configuration of 1 was elucidated via 
ECD analysis (Fig. 3). A positive Cotton effect at 216 nm 
(+ 3.63 mdeg) and a negative Cotton effect at 251 nm (-2.28 

Fig. 2  Key COSY and HMBC correlations of compounds 1–3 and 5 
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mdeg) in the ECD spectrum of 1 (Figure S8) confirmed 
the S-configuration of the biphenyl system as previously 
reported for dibenzocyclooctadiene lignans [13]. According 
to the Cahn–Ingold–Prelog rule, the absolute configuration 
of the C–C biphenyl structure of 1 was established as the 
S-configuration, and other chiral centers had the 6S, 7S, 
8R, and 9R configurations. Consequently, the structure of 
1 was completely elucidated and the compound named 
schisacaulin A.

The HR-ESI–MS of 2 displayed chlorine adductive 
ion peaks at m/z 617.1235 [M + 35Cl]− (calcd. for 
 [C32H38O10

35Cl]−, 617.2159) and m/z  619.2145 
[M + 37Cl]− (calcd. for  [C32H38O10

37Cl]−, 619.2129) 
which indicated the molecular formula of 2 to be 
 C32H38O10. On the other hand, the HR-ESI–MS of 3 
showed chlorine adductive ion peaks at m/z 523.1726 
[M +  Cl]− (calcd. for  [C26H32O9

35Cl]−, 523.1740), m/z 

525.1706 [M + 37Cl]− (calcd. for  [C26H32O9
37Cl]−, 525.1710) 

which indicated the molecular formula of 3 to be  C26H32O9. 
Similar to 1, the 1H and 13C NMR spectra of 2 and 3 
indicated that they all shared a dibenzocyclooctadiene lignan 
framework, but 2 and 3 displayed signals corresponding to 
different substituted groups. Of these, the NMR spectra 
of 2 contained signals corresponding to three methoxy 
groups, one dioxymethylene group, and two angeloyl (Ang) 
groups (Table 1). The HMBC correlations between H-6 
and Ang C-1′, and between H-9 and Ang C-1″, confirmed 
the location of two angeloyl groups at C-6 and C-9. The 
HMBC correlations between H-11 and C-9/C-12/C-13, and 
between dioxymethylene protons and C-12/C-13, indicated 
dioxymethylene group at C-12 and C-13. Three methoxy 
groups were located at C-2, C-3, and C-14, which were 
confirmed by HMBC correlations between 2-OCH3 and 
C-2, 3-OCH3 and C-3, and 14-OCH3 and C-14. The NMR 

Fig. 3  Key ROESY correlations of compound 1–3 and 5 
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spectra of 3 displayed signals corresponding to four methoxy 
groups, one dioxymethylene group, and one propionyl (Pr) 
group (Table  1). The HMBC correlation between H-9 
and Pr C-1′/C-11 indicated that a propionyl group was 
located at C-9. The HMBC correlations between H-11 
and C-12/C-13, and between dioxymethylene protons and 
C-12/C-13, demonstrated a dioxymethylene group linkage 
at C-12 and C-13. The assignment of four methoxy groups 
at all four remaining positions of the two benzene rings 
(i.e., C-1, C-2, C-3, and C-14) was confirmed by HMBC 
correlations between 1-OCH3 and C-1, 2-OCH3 and C-2, 
3-OCH3 and C-3, and 14-OCH3 and C-14. Compounds 
1–3 also possessed similar ROSEY correlations, including 
H-11/H-8, H-11/H-9,  H3-17/H-4,  H3-17/H-6, and H-4/H-6, 
as described in the above structural elucidation of 1 (Fig. 3), 
indicating identical relative configurations. Additionally, the 
absolute configurations of 2 and 3 were also similar to that 
of 1 according to ECD analysis and the Cahn–Ingold–Prelog 
rule. All of these compounds displayed positive Cotton 
effects at approximately 220 nm (+ 17.88 mdeg at 213 nm 
for 2 and + 7.01 mdeg at 225 nm for 3) and negative Cotton 
effects at approximately 240 nm (− 6.45 mdeg at 248 nm 
for 2 and − 3.89 mdeg at 244 nm for 3) (Figures S16 and 
S24), which indicated the S-configuration of the biphenyl 
system [13]. The structures of 2 and 3 were thus completely 
established, and the compounds were named schisacaulin B 
and schisacaulin C, respectively.

Compound 5 was isolated as a yellow amorphous powder. 
The HR-ESI–MS of 5 revealed chlorine adductive ion peaks 
at m/z 439.1521 [M +  Cl]− (calcd. for  [C22H28O7

35Cl]−, 
439.1529), m/z 441.1480 [M + 37Cl]− (calcd. for 
 [C22H28O7

37Cl]−, 441.1499), indicating a molecular 
formula of  C22H28O7. The 1H NMR spectrum of 5 had 
signals corresponding to four olefinic protons [δH 6.61 
(1H, s) and 6.54 (overlapped 3H, s)], two oxygenated 
methine protons [δH 5.37 (1H, d, J = 4.5  Hz) and 4.59 
(1H, d, J = 9.0 Hz)], and two methyl groups [δH 1.02 and 
0.62 (each 3H, d, J = 6.5 Hz)]. The 13C-NMR spectrum of 
5 contained signals corresponding to 22 carbons, which 
were classified by HSQC into eight non-protonated carbons 
(all olefinic carbons), eight methine groups (four olefinic 
and four saturated methine groups), four methoxy groups, 
and two methyl groups. Except for four methoxy groups, 
the presence of 18 carbons, including 12 olefinic and 6 
saturated carbons suggested that 5 was a lignan compound. 
An aliphatic chain of 5 was established by COSY cross-
peaks of H-7/H-8/H3-9 and H-7′/H-8′/  H3-9′ and by 
HMBC correlations between  H3-9/H3-9′ and C-8/C-8′. 
Signals corresponding to 12 aromatic carbons, including 
four methine (each appeared to be singlet in the 1H-NMR 
spectrum) and eight non-protonated carbons, suggested 
the presence of two asymmetric pyrogallol moieties. The 
HMBC correlations between methoxy protons and carbons, 

including 4-OCH3 and C-4, 5-OCH3 and C-5, 4′-OCH3 
and C-4′, and 5′-OCH3 and C-5′ confirmed four methoxy 
groups at C-4, C-5, C-4′, and C-5′, and hence two hydroxy 
groups were assigned at C-3 and C-3′ based on their 13C 
chemical shifts (δC-3 149.2 and δC-3′ 149.0). The HMBC 
correlations between H-7 and C-1/C-2/C-6, and between 
H-7′ and C-1′/C-2′/C-6′, confirmed two pyrogallol moieties 
connected to an aliphatic chain by C-1/C-7 and C-1′/C-7′ 
linkages. Although correlations either between H-7′ and C-7 
or between H-7 and C-7′ were not evident in the HMBC 
spectra, the 13C chemical shifts of C-7 (δC 85.7) and C-7′ 
(δC 84.7), and nine indices of hydrogen deficiency from the 
molecular formula of 5  (C22H28O7), indicated the presence 
of an ether bridge between C-7 and C-7′. The low intensities 
of the abovementioned correlations were attributed to the 
flexibility of the tetrahydrofuran ring, as in the furano-
lignan heilaohuguosu S reported previously [16]. Due to 
the partially overlapping signals between H-8 (δH 2.40) 
and H-8′ (δH 2.43), ROESY evidence from those protons 
could not be used to elucidate the relative configuration of 
5. In contrast, the ROESY correlations between H-7 and 
both  H3-9 and  H3-9′, and between  H3-9′ and H-2′/ H-6′, 
indicated close spatial proximity of H-7/H3-9/H3-9′ and 
 H3-9′/H-2′/H-6′ (Fig. 3). Finally, positive Cotton effects 
at wavelengths of 216 (+ 6.38 mdeg) and 238 nm (+ 4.49 
mdeg) in the ECD spectrum of 5 (Figure S32) indicated 
the 7S, 8S, 8′R, and 7′S absolute configurations, which 
are resemble those of ( +)-chicanine (7S, 8S, 8′R, and 7′S: 
[θ](λ nm) +  9670(221), + 24,665(236); [17]) but are opposite 
those of (-)-chicanine (7R, 8R, 8′S, and 7′R: [θ](λ nm) 
-9000(221), + 24,000(236) [17]). Therefore, the structure of 
5 was completely established and the compound named 
schisacaulin D.

Three other known compounds were identified to be 
ananonin B (4), alismoxide (6), and pregomisin (7), whose 
NMR data were in good agreement with published data 
[18–20].

Compounds 1 and 3–7 were evaluated for skeletal 
muscle cell proliferation activity. First, the compounds 
were examined for their effect on cell viability. At a 
concentration of 5  µM, the compounds did not show 
significant cytotoxic effect on C2C12 cells by CCK assay 
(Fig. 4). Compounds 5 and 6 increased cell proliferation, 
and these compounds were selected for further evaluation 
of the expression of myosin heavy chain (MHC), which 
is a final product of the differentiation of myoblasts 
and the main component of myotubes. When myoblasts 
differentiate, they form myotubes and multinuclear fused 
myotubes. Therefore, the effect of these two compounds 
on MHC expression on differentiating C2C12 would 
be revealed if they promote muscle differentiation and 
regeneration. Our results indicated that both 5 and 6 
increase the number of fused myotubes and expression of 
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MHC (Fig. 5). Although there was an insufficient amount 
of compound 2 for bioassay evaluation, the structures and 
activities of 1–7 suggested that dibenzocyclooctadiene 
and dibenzylbutane lignans (1–4, and 7) are weak 
activities, while furanoid lignan (5) and sesquiterpene 

(6) promote skeletal muscle cell proliferation. Herein, we 
confirmed that compounds 5 and 6 promote myoblast cell 
proliferation and contribute to myogenic differentiation. 
Therefore, compounds 5 and 6 might be candidates for the 
treatment of sarcopenia.

Fig. 4  Effects of 1, 3–7 on the 
viability and proliferation of 
C2C12 cells. A Cell viability 
results of compounds 1 and 
3–7 on C2C12 cells for 24 h by 
CCK assay. B Cell proliferation 
results of the compounds 1 and 
3–7 on differentiating C2C12 
cells for 3 days by CCK assay. 
The data were expressed as 
mean ± SEM

Fig. 5  Effects of compounds 5 and 6 on myogenic differentiation. 
Compounds 5 and 6 (5 uM) were treated during the differentiation 
of C2C12 (n = 3; representative of 3 biological replicates per group). 
A Representative images and quantification results of MyHC 
immunostaining (n = 3, Scale bar, 20um). B The percent of myogenic 

differentiation is calculated by (Number of MyHC positive nuclei)/
(Total nuclei). C MyHC positive area is measured by image J Fiji and 
normalized by non-treated samples. D Western blotting analysis of 
MyHC protein expression in compound-treated groups
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Conclusions

A phytochemical study of the leaves of S. cauliflora 
resulted in the discovery of four new lignans (three 
dibenzocyclooctadiene-type and one furanoid-type, named 
schisacaulin A–D) together with three known compounds 
(ananonin B, alismoxide, and pregomisin). Their chemical 
structures and absolute configurations were determined via 
HR-ESI–MS, NMR, and ECD analyses. Among the isolated 
compounds, schisacaulin D and alismoxide significantly 
stimulated skeletal muscle cell proliferation by increasing 
the number of fused myotubes and the expression of MHC. 
These compounds may be good candidates for the treatment 
of sarcopenia.

Supplementary Information The online version contains 
supplementary material available at https:// doi. org/ 10. 1007/ 
s11418- 023- 01712-y.
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