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Classifying rockburst in deep underground mines using a robust hybrid 
computational model based on gene expression programming and particle 

swarm optimization 
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Research Group, Hanoi University of Mining and Geology, Hanoi 100000, Vietnam) 

Abstract: In deep underground mining, rockburst is taken into account as an uncertainty risk with many adverse 
effects (i.e., human, equipment, tunnel/underground mine face, and extraction periods). Due to its uncertainty 
characteristics, accurate prediction and classification of rockburst tendency are challenging, and previous results are 
poor. Therefore, this study proposed a robust hybrid computational model based on gene expression programming 
(GEP) and particle swarm optimization (PSO), called GEP-PSO, to predict and classify rockburst tendency in deep 
openings with an accuracy improved. A different number of genes (from 1 to 4) and linking functions (e.g., addition, 
extraction, multiplication, and division) in the GEP model were also evaluated during the development of the GEP-
PSO model aim. Geotechnical and constructive factors of 246 rockburst events were collected and used to develop 
the GEP-PSO models in terms of rockburst classification. Subsequently, a robust technique to handle missing values 
of the dataset was applied to improve the dataset's attributes. The last step in the data processing stage is the feature 
selection to select potential input parameters using a correlation matrix. Finally, 13 hybrid GEP-PSO models were 
developed with different accuracies reported. The findings indicated that the GEP-PSO model with three genes in 
the structure of GEP and the multiplication linking function provided the highest accuracy (i.e., 80.49%). The 
obtained results of the best GEP-PSO model were then compared with a variety of previous models developed by 
previous researchers based on the same dataset. The comparison results also showed that the selected GEP-PSO 
model results outperform those of previous models. In other words, the accuracy of the proposed GEP-PSO model 
was improved significantly in terms of prediction and classification of rockburst grade. It can be considered widely 
applied in deep openings aiming to predict and evaluate the rockburst susceptibility accurately.  
Keywords: rockburst; GEP-PSO model; underground-mining; deep openings; risk assessment 

基于基因表达编程和粒子群优化鲁棒混合计算模型的深部地下矿井岩

爆分类 

Quang-Hieu TRAN, Xuan-Nam BUI, Hoang NGUYEN 
(Department of Surface Mining, Mining Faculty; Innovations for Sustainable and Responsible Mining (ISRM) 

Research Group, Hanoi University of Mining and Geology, Hanoi 100000, Vietnam) 

 

摘  要：在深部地下采矿中，岩爆因具有许多不利影响（如，对人员、设备、隧道/地下矿山工

作面和开采周期等的影响）而被视为不确定性风险。由于其不确定性的特征，对岩爆趋势的准

确预测和分类具有一定难度，且已有研究成果较少。提出一种基于基因表达编程（GEP）和粒

子群优化（PSO）的鲁棒混合计算模型 GEP-PSO，用于预测和分类深部开口的岩爆趋势，提高

了预测和分类的准确性。在建立 GEP-PSO 模型过程中，评估了 GEP 模型中不同数量的基因

（1~4）和连接功能（例如，加法、提取、乘法和除法）。收集了 246 次岩爆发生的地质和施工

因素，用于建立岩爆分类的 GEP-PSO 模型；应用处理数据集缺失值的技术改进数据集的属性；

用相关矩阵选取潜在输入参数的特征；建立了 13个混合GEP-PSO模型，得到了各模型的精度。

结果表明：在 GEP 结构中具有 3 个基因和乘法连接函数的 GEP-PSO 模型具有最高的准确度

（80.49%）。将获得的最佳 GEP-PSO 模型的结果与基于相同数据集开发的各种已有模型进行比

较，结果表明：选择的 GEP-PSO 模型结果优于已有模型，表明提出的 GEP-PSO 模型在岩爆等
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级的预测和分类方面的准确性显著提高，可以应用于深开挖工程中，以准确预测和评估岩爆敏

感性。 
关键词：岩爆；GEP-PSO 模型；地下采矿；深开挖；风险评估 
中图分类号：TU457；TD311                                          文献标志码：A 

 

1 Introduction 
In the mining industry, especially in 

underground mines and tunnels, a sudden, violent 
rupture or highly stressed rock collapse is considered 
natural hazards with extreme risks [1-2], and it is called 
rockburst. Some rockburst events occurred, and their 
destruction level are presented in Fig. 1. This 
phenomenon is becoming increasingly common in 
recent years, especially in complex mining conditions 
and deep openings [7-8]. The rockburst problem has 
claimed the lives of hundreds of miners and many 

other valuable assets in United States, Germany, 
Australia, China, Canada, and other countries [9-14]. 

Understanding the risks and inherently dangers 
of rockburst, many scholars efforted to assess the risk 
of rockburst based on various approaches, such as 
seismic computed tomography detection [15], static 
and dynamic stresses [16], distance [2], geomechanics 

[8,17], to name a few. The evaluations showed that the 
rockburst susceptibility and the influential parameters 
are a critical overview of this phenomenon to forecast 
or prevent this happen. Nevertheless, along with these 
evaluations, the rockburst phenomenon has not been 
predicted, which is challenging for researchers. 

 
Fig. 1 Some rockburst events occurred and their destruction level [3-6] 



TRAN Quang-Hieu, et al: Classifying rockburst in deep underground mines using a robust hybrid computational model based on 
gene expression programming and particle swarm optimization 

3 

Based on previous researchers' evaluations, 
several scientists applied state-of-the-art 
computational models to forecast the rockburst 
susceptibility in deep openings. It is worth 
mentioning that soft computing models were not only 
applied in rockburst forecasting but also in 
geotechnical and geoengineering [18-26]. For instance, 
Dong et al. [27] used the Random Forest (RF) 
algorithm to predict the possible rockburst tendency. 
In another study, Wang et al. [28] applied the fuzzy 
matter-element model to predict the rockburst 
tendency, and it was confirmed as a reliable model to 
solve this problem. Based on the mechanism of 
rockburst and mining conditions (e.g., position, depth, 
rockburst magnitude, initiation time, distribution), 
Cai [29] used empirical computational models with in 
situ stress measurement, 3D numerical modeling 
analysis, and laboratory tests to predict and prevent 
the rockburst grade. Besides, Zhou et al. [30] 
developed various supervised learning models for 
predicting rockburst tendency, including k-nearest 
neighbor (KNN), multilayer perceptron neural 
network (MLPNN), random forest (RF), linear 
discriminant analysis (LDA), Naïve Bayes (NB), 
gradient-boosting machine (GBM), quadratic 
discriminant analysis (QDA), partial least-squares 
discriminant analysis (PLSDA), support vector 
machine (SVM), and classification tree (CT). Finally, 
they found that the GBM is the best model for 
classifying the rockburst tendency. A decision tree 
model was also applied by Pu et al. [31] to predict the 
rockburst potential. Different accuracies with 
acceptable results were reported in their study. By 
another approach, Pu et al. [32] applied the SVM model 
with the support of the t-distributed stochastic 
neighbor embedding and clustering technique for 
predicting rockburst. Eventually, they concluded that 
the proposed model based on the SVM model is a 
potential model with wide applications in the 
rockburst prediction. Zhou et al. [33] also converted 
this classification problem to a regression problem 
and applied a hybrid model based on artificial neural 
network (ANN) and artificial bee colony (ABC) to 
predict rockburst, and it is considered as another 
approach to predict rockburst. Based on the particle 
swarm optimization (PSO), Xue et al. [34] also 
developed an extreme learning machine (ELM) 
model to predict rockburst with a promising result. 
Faradonbeh et al. [35] also applied the fuzzy C-means 
(FCM) and self-organizing map (SOM) techniques to 
predict rockburst tendency. An accuracy of 75.8% 
was reported in their study for the FCM model, and is 
up to 100% for the SOM model. Nevertheless, only 
58 rockburst events were used in this study, and it is 
a small database that can not be represent for other 
areas. Zhang et al. [36] also applied a variety of 
ensemble machine learning models, such as ANN, 

SVM, KNN, NB, and logistic regression for 
predicting rockburst intensity using 188 rockburst 
intances. They indicated that the ensemble model can 
classify rockburst better than single models witn an 
improvement of 15.4%. He et al. [37] also evaluated 
and predicted the rockburst behaviors in 13 deep 
traffic tunnels in China. Nonetheless, only empirical 
equations were applied in their study. In another 
study, Zhou et al. [38] developed the firefly algorithm-
based ANN model (FA-ANN) for classifying 
rockburst with a potential solution that can support 
underground mines and tunnels determine and 
prevent hazardous under different conditions.  

Although many soft computational models have 
been proposed to predict the rockburst tendency; 
however, their accuracy is still limited, and the 
accuracy of computational models is a challenge. 
Therefore, this study presented a novel method to 
improve computational models' accuracy for 
classifying rockburst susceptibility, namely GEP-
PSO. Indeed, the gene express programming (GEP) 
will be applied to classify the rockburst grade; 
meanwhile, the PSO algorithm plays a role as an 
optimization tool to improve the GEP model's 
accuracy. Furthermore, a different number of genes 
and linking functions will be surveyed to discover 
their feasibility and accuracy in terms of rockburst 
classification and evaluation. The details of this 
methodology and obtained results are presented in the 
next sections. 

2 Principle of the machine learning 
algorithms used 

As stated above, this study aims to classify and 
evaluate the rockburst phenomenon's capacity in deep 
openings by a novel combination of the PSO 
algorithm and GEP. Therefore, this section focuses 
on the PSO and GEP models' principles to propose 
the PSO-GEP model framework.  

2.1 Gene expression programming (GEP) 
GEP is well-known as an evolutionary theory 

proposed by Ferreira [39] based on genetic 
programming (GP) and parse trees. Therefore, it uses 
similar GP parameters, such as terminal conditions, 
function set, control parameters, terminal set, and 
fitness function [40]. GEP has greatly surpassed and 
extremely versatile the existing evolutionary 
techniques since it inherited the advantages from GP, 
i.e., the expressive parse trees of varied shapes and 
sizes [41]. In brief, the evolution process of GEP can 
be explained through the following steps: 

Step 1: Initialization 
In this step, the initial chromosomes are set 

equal to the population dimension, and they are 
generated randomly. Herein, each chromosome 
consists of genes, and they are organized based on 
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structures (head and tail) aiming to create a valid 
solution [41]. This stage is also called Karva, and it can 
represent any mathematical or logical expression with 
different sizes and shapes. Accordingly, all 
chromosomes are converted to expression trees, and 
then the generated solutions are performed to obtain 
the fitness values. 

Step 2: Selection and reproduction 
In this step, the operator would select programs 

to replicate the operator to copy into a new generation 
a chromosome with high fitness. The potential 
individuals are specified for the next generation based 
on their fitness through the roulette wheel selection. 
They are considered the main factors to guarantee the 
cloning and survival of the new population's best 
chromosomes. In the new population, the genetic 
operations are applied to manipulate during 

reproduction process based on randomly selected 
chromosomes genetically. Thus, a chromosome in 
GEP might be modified to better fit individuals in the 
new generation. The genetic operations are applied 
during the reproduction process, including mutation, 
insertion sequence transposition, root insertion 
sequence transposition, gene transposition, single and 
double crossover, gene crossover, and inversion. 

Step 3: Termination 
The program executes the steps above and 

repeats for a certain number of generations or 
satisfied the stopping conditions (i.e., lowest error for 
population). Finally, the best expression tree is found 
out and exported as the output of the problem. The 
flowchart of GEP is shown in Fig. 2, and its pseudo-
code is presented in Fig. 3. 

 
Fig. 2 The procedure of the GEP algorithm 
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Fig. 3 Pseudo-code of the GEP algorithm 

2.2 Particle swarm optimization (PSO) 
PSO is well-known as a robust metaheuristic 

algorithm that was successfully applied for different 
optimization problems [42-46]. It was proposed by 
Kennedy and Eberhart  [47] based on the nature-based 
behaviors of swarms (e.g., flock birds, bee, ant). 
These behaviors are simulated under the moving 
around the search space of the particles in the swarm. 
Each individual is assigned a position (xi), and they 
fly around the search space with a velocity (vi). For 
each position, each particle's fitness is evaluated and 
recorded, and the best fitness (Pbest) is shared with the 
other individuals.  Each particle keeps track of the 
best fitness and expands the search space to find out 
the better position (Gbest). The searching process 
might be repeated many times to obtain satisfying 
values. The optimization process of the PSO 
algorithm is illustrated in Fig. 4. Further details of the 
PSO algorithm can be read in the literature [48-54]. 
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Fig. 4 Optimization procedure of the PSO algorithm 

2.3 PSO-based GEP model for classifying 
rockburst in deep openings 

As the primary purpose of this study, the GEP-
PSO framework is considered and proposed in this 
section, aiming to improve the classification model of 
rockburst, i.e., GEP. Accordingly, a mathematical 

equation would be offered based on a customized 
combination of PSO and GEP using the dependent 
variables. In the first step, GEP is applied to build a 
mathematical with an acceptable ROC curve result. 
Subsequently, the established chromosomes are used 
as the main parts of the modified GEP models in the 
next step. The chromosomes are then embedded in 
the PSO algorithm to determine a better performance 
of the ROC curve based on the correct structure of the 
GEP model, called the GEP-PSO model. Note that the 
number of genes and linking functions are taken into 
account as the vital parameters of the GEP models, 
and the performance of the GEP models is highly 
dependent on these parameters. 

Furthermore, in each GEP model, weights (or 
coefficients) are often determined based on the 
dataset's characteristics and the chromosomes, genes, 
and linking function. However, weights can be 
adjusted to get better accuracy for the GEP models 
based on a specific number of genes and linking 
functions.  

In order to embed the PSO algorithm to GEP 
models, an initial number of populations is necessary 
for the optimization process of the PSO algorithm, 
and they might repeat many times to obtain a better 
ROC curve value. The PSO algorithm can modify the 
GEP model's coefficients to get higher ROC curve 
values. The algorithm would stop when the best ROC 
value is reached (satisfied), or the searching is 
repeated with the specified iterations. The framework 
is proposed in Fig. 5. 

 
Fig. 5 Proposed hybrid PSO-GEP algorithm for classifying rockburst 
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3 Data acquisition and processing 

3.1 Data acquisition 
First of all, it is necessary to emphasize that 

rockburst is a dangerous phenomenon in deep 
underground mines and tunnels, as mentioned above. 
It is difficult to observe these phenomena, and it is 
challenging to collect a dataset with multiple 

observations. Therefore, many previous researchers 
efforted to collect and merge many cases from 
different deep underground mines and tunnels [27, 55-56] 
as a dataset. Finally, 246 rockburst samples were 
collected in previous studies (Fig. 6), and they were 
summarized by Zhou et al. [30] and used to investigate 
and evaluate the performance of the proposed model 
in this study. 

 
Fig. 6 Data collection of the rockburst events using microseismic systems and some results (Modified after Ma et al. [57]) 

From the various datasets collected, there are 12 
variables recorded, including the depth of 
underground caverns (X1), maximum tangential stress 
of the cavern wall (X2), uniaxial compressive strength 
(X3), uniaxial tensile strength (X4), stress 
concentration factor (X5), X6-X10 are indexes of rock 
mass related to X3 and X4 and they are calculated as 
described in equations (1)-(5), elastic strain index 
(X11), and the rockburst ability (Y). 

3
6

4

X
X

X
     (1) 

3 4
7

3 4

X X
X

X X





   (2) 

3 4
8 2

X X
X


    (3) 

3 4
9 2

X X
X


    (4) 

3 4
10 2

X X
X


    (5) 

3.2 Processing the collected rockburst 
dataset 

Before developing the classification models for 
rockburst, the collected dataset should be processed 
and prepared to ensure the dataset's generalized 
characteristics and avoid overfitting the models. An 
analysis shows that some values in the first variable 
are missed, and they are variance account for 13% of 
the whole number of observations, as illustrated in 
Fig. 7.  
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Fig. 7 Processing the missing data of rockburst 

In this case, there are three options for solving 
the X1 variable, including removing the entire of this 
variable, removing rows with missing values, or 
filling the missing values. However, given the effects 
of the input variables, many researchers indicated that 
X1 significantly impacts the probability of rockburst 
in deep openings. Therefore, the X1 variable was kept 
on. Also, to avoid reducing the dataset's size, the rows 
with missing values were kept on as well. Finally, a 
data processing technique has been applied to fill the 
missing values to the collected dataset, namely "mean 
column values" [58]. The processed dataset's input 
variables were then visualized as a scatter plot to 
show their characteristics (Fig. 8). 

 
Fig. 8 Scatter plot matrix of the processed dataset 

Based on the scatter plot matrix in Fig. 8, we can 
observe the randomness, distribution, and correlation 

between the input variables. Interestingly, the 
characteristics of the X8, X9, X10, and X11 variables are 
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highly similar, and even with the same distributions, 
as shown in the crop of Fig. 9 below. Accordingly, 
we can see that the correlation between X10 and X11 is 
strong similar to the correlation between X9 and X11. 
In addition, the correlation between X8 and X11 is not 
strongly like the X9 and X10, but it is also high 
similarity compared to pairs of X10-X11 and X9-X11. 
Therefore, they should be removed to ensure the 
accuracy of the models. Finally, this study only used 
seven input parameters (from X1 to X7) to forecast and 
classify the rockburst hazards. 

 
Fig. 9 A crop of scatter plot matrix and analysis of the 
similarities and differences between X8-X11 variables 

4 Development of the models and 
results 

To develop the GEP-PSO model for forecasting 
and to classify the rockburst ability, the flowchart in 
Fig. 4 was applied. Accordingly, an initial GEP 
model was developed first, and the parameters of the 
PSO algorithm was set up to optimize the weights of 
the GEP model. The initial parameters of the GEP 
model were set up as follow: 

Number of chromosomes: 30 
Head size: 8 
Number of genes: from 1 to 4 
Fitness function: ROC measure 
Strategy: optimal evolution 
Genetic operators: Mutation 0.00138; Inversion 

0.00546;  
Constants per gene: 10 
Lower and upper bounds: [-10, 10] 
Before developing the GEP-PSO models, the 

parameters of the PSO algorithm, including local 
coefficient (c1), global coefficient (c2), weight min 
factor (w1), and weight max factor (w2) were also 
setup as follows: 1.2, 1.2, 0.4, 0.9, respectively. 

In GEP models, there are the initial parameters 
described above. The number of genes and linking 
functions are crucial criteria to decide on the forecast 
models' accuracy. Therefore, this study developed 13 
different GEP models based on different genes (from 
1 to 4) and linking functions (e.g., additional, 
subtraction, multiplication, and division). The PSO 
algorithm then optimized these 13 GEP models, and 
they are described in equations (1-13), as follow: 

Model 1: This model was developed based on 
only one gene and without any linking functions. The 
PSO algorithm optimized the weights of the model, 
and it is described in equation (6). 

Gene 1:   34
5 6 7 4 5exp X X X X X     

Rockburst=   34
5 6 7 4 5exp X X X X X     

     (6) 
Model 2: This model was developed based on 

two genes and the addition linking function. The PSO 
algorithm optimized the weights of the model, and it 
is described in equation (7). 

Gene 1:  3
2log X  

Gene 2:       4
6 1 2 5tan sin arctan X X X X    

Rockburst = 

        3 4
2 6 1 2 5log tan sin arctanX X X X X   

     (7) 
Model 3: This model was developed based on 

two genes and the subtraction linking function. It is 
worth noting that these genes are different from the 
genes developed in the Model 1 and Model 2. The 
PSO algorithm optimized the weights of the model, 
and it is described in equation (8). 

Gene 1:  

      4 3
5 7 63.965 2.544 tan 2.248X X X       

Gene 2:     
2

3
4

6

0.841
exp arctan

2.862 2.712

X
X

X




 
 

Rockburst =  

      
    

4 3
5 7 6

2

3
4

6

3.965 2.544 tan 2.248

0.841
exp arctan

2.862 2.712

X X X

X
X

X

        
 

 
   

     (8) 
Model 4: This model was developed based on 

two genes and the multiplication linking function. It 
is worth noting that these genes are different from the 
genes which were developed in the Model 1, Model 
2, and Model 3. The PSO algorithm optimized the 
weights of the model, and it is described in equation 
(9). 

Gene 1:   2 4
4

22.727
16.11

10.54
X X

X
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Gene 2: 23 5
6

1

cos
X

X
X

 
 

 
 

Rockburst =  

   23 5
2 4 6

4 1

22.727
16.11 cos

10.54

X
X X X

X X

   
         

     (9) 
Model 5: This model was developed based on 

two genes and the division linking function. It is 
worth noting that these genes are different from the 
genes which were developed in the Model 1 – Model 
4.  The PSO algorithm optimized the weights of the 
model, and it is described in equation (10). 

Gene 1:  5
2

3 5

2

1
exp

1
X

X

  

Gene 2:  2sin 4.558

0.198

X  

Rockburst = 

 

 

5
2

3 5

2

2

1
exp

1

sin 4.558

0.198

X

X

X




 (10) 

Model 6: This model was developed based on 
three genes and the addition linking function. It is 
worth noting that these genes are different from the 
genes developed in the Model 1 – Model 5. The PSO 
algorithm optimized the weights of the model, and it 
is described in equation (11). 

Gene 1:     5 4
5 6 7 5cos tanX X X X    

 

Gene 2:  3log X  

Gene 3:  

    5 3
3 7 2ln 1.698 6.643X X X      

 
 

Rockburst = 

      

    

5 4
5 6 7 5 3

5 3
3 7 2

cos tan log

ln 1.698 6.643

X X X X X

X X X

      
      
 

 

     (11) 
Model 7: This model was developed based on 

three genes and the subtraction linking function. It is 
worth noting that these genes are different from the 
genes which were developed in the Model 1 – Model 
6. The PSO algorithm optimized the weights of the 
model, and it is described in equation (12). 

Gene 1: 

    
2

3
3

2

3arctan arctan log

X

X
  
  

  

 

Gene 2:  4tan X  

Gene 3:     4
35

1 3 2tan 5.565X X X    

Rockburst =  
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3
2

3

4
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1 3 2

tan

arctan arctan log

tan 5.565

X
X

X

X X X

 
  
  

  

  

 

      (12) 
Model 8: This model was developed based on 

three genes and the multiplication linking function. It 
is worth noting that these genes are different from the 
genes which were developed in the Model 1 – Model 
7. The PSO algorithm optimized the weights of the 
model, and it is described in equation (13). 

Gene 1: 5X  

Gene 2: 

        3

2 1 6cos arctan 619.415 1.149 619.415X X X      

Gene 3: 

     2 4 6 4cos tan 2 8.19X X X X       

Rockburst = 

        
     

3

5 2 1 6

2 4 6 4

cos arctan 619.415 1.149 619.415

cos tan 2 8.19

X X X X

X X X X

      

     
     (13) 

Model 9: This model was developed based on 
three genes and the division linking function. It is 
worth noting that these genes are different from the 
genes which were developed in the Model 1 – Model 
8. The PSO algorithm optimized the weights of the 
model, and it is described in equation (14). 

Gene 1:  
22

6
4

1

sin
log

8.757

X
X

X

  
      

 

Gene 2:   
3

3
5 12.68 667.169
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X
X X
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4
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X               

 

Rockburst = 
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6
4
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4
3 4

3 4
5 1
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log
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2.68 667.169 arccos cos cos
1.65 4.225

X
X

X

X X
X X

  
      

                           
     (14) 

Model 10: This model was developed based on 
four genes and the addition linking function. It is 
worth noting that these genes are different from the 
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genes which were developed in the Model 1 – Model 
9.  The PSO algorithm optimized the weights of the 
model, and it is described in equation (15). 

Gene 1: 
7X  

Gene 2: 4
5X  

Gene 3:   1ln ln X  

Gene 4:  34
7 41.506 expX X  

Rockburst = 

    4 34
5 1 7 4ln ln 1.506 expX X X X    

    (15) 
Model 11: This model was developed based on 

four genes and the subtraction linking function. It is 
worth noting that these genes are different from the 
genes which were developed in the Model 1 – Model 
10. The PSO algorithm optimized the weights of the 
model, described in equation (16). 

Gene 1:  3 2 6
5

1
expX X X

X

  
       

 

Gene 2: 5X  

Gene 3:   
3

3
5

5 28.569 6.143X X
       

 

Gene 4:     6 6 1 2552.579X X X X     

Rockburst = 

 

    

3 2 6 5
5

6 6 1 2

1
exp

552.579

X X X X
X

X X X X

   
            

     

 (16) 

Model 12: This model was developed based on 
four genes and the multiplication linking function. It 
is worth noting that these genes are different from the 
genes which were developed in the Model 1 – Model 
11. The PSO algorithm optimized the weights of the 
model, described in equation (17). 

Gene 1:     2

5 4 1arctan 0.297X X X    

Gene 2:       
3

3
4 2 5 4tan sinX X X X    

Gene 3: 
6X  

Gene 4:     2

7 4 5 5cos 12.269 X X X X     
 

Rockburst = 
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3
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2 5 4 6

2

7 4 5 5

arctan 0.297 tan
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cos 12.269

X X X X

X X X X

X X X X

    

   

     
     (17) 

Model 13: This model was developed based on 
four genes and the division linking function. It is 
worth noting that these genes are different from the 

genes which were developed in the Model 1 – Model 
12. The PSO algorithm optimized the weights of the 
model, and it is described in equation (18). 
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3

3

2

1
2

tan 6.482

X
X

X


 

 
 

 

Gene 3:   4 7sin lnX X  

Gene 4: 6
7X  

Rockburst = 

    

   

3

5

6
3 4 7 7

3

2

tan sin tan cos

1
2 sin ln

tan 6.482
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X
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      (18) 

Once the GEP-PSO equations were well-
established for forecasting rockburst, their 
performance was computed and evaluated through 
various metrics, such as accuracy, positive predictive 
value (PPV), recall, correl, F1 measure, and area 
under the ROC Curve (AUC). Nevertheless, it is 
challenging to conclude which model is the best in 
forecasting rockburst ability based on various metrics. 
Therefore, a ranking method was applied to classify 
and rank the models' performance. The details of the 
performances are shown in Tables 1 and 2. 
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Table 1 Performances of the GEP-PSO models with different number of genes and linking functions (training phase) 

Model 

Parameters Performances Rank for performances 

Number 
of genes 

Linking function Accuracy PPV Recall Correl F1 Measure AUC ROC 
Rank for 
Accuracy 

Rank 
for 
PPV 

Rank 
for 
Recall 

Rank 
for 
Correl 

Rank for 
F1 
Measure 

Rank for 
AUC 
ROC 

Total 
rank 

MODEL 1 1 None 87.80 60.00 85.71 0.377 0.706 0.930 7 7 11 8 10 12 55 

MODEL 2 2 Addition 85.98 58.06 64.29 0.485 0.610 0.853 4 5 3 4 1 3 20 

MODEL 3 2 Subtraction 86.59 56.52 92.86 0.352 0.703 0.938 5 4 13 9 9 13 53 

MODEL 4 2 Multiplication 85.37 55.00 78.57 0.47 0.647 0.900 2 3 6 5 2 7 25 

MODEL 5 2 Division 87.20 59.46 78.57 0.039 0.677 0.854 6 6 6 12 7 4 41 

MODEL 6 3 Addition 89.02 65.63 75.00 0.633 0.700 0.894 8 10 4 2 8 5 37 

MODEL 7 3 Subtraction 90.85 72.41 75.00 0.635 0.737 0.920 11 11 4 1 12 11 50 

MODEL 8 3 Multiplication 89.63 64.86 85.71 0.450 0.738 0.902 10 9 11 6 13 9 58 

MODEL 9 3 Division 90.85 88.24 53.57 0.033 0.667 0.763 11 12 2 13 6 1 45 

MODEL 10 4 Addition 89.02 64.71 78.57 0.398 0.710 0.911 8 8 6 7 11 10 50 

MODEL 11 4 Subtraction 85.37 54.76 82.14 0.487 0.657 0.898 2 2 9 3 5 6 27 

MODEL 12 4 Multiplication 90.85 93.33 50.00 0.066 0.651 0.785 11 13 1 10 4 2 41 

MODEL 13 4 Division 84.76 53.49 82.14 0.051 0.648 0.900 1 1 9 11 3 7 32 

Note: The best GEP-PSO model is shown in bold type. 
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Table 2 Performances of the GEP-PSO models with different number of genes and linking functions (testing phase) 

Model 

Parameters Performances Rank for performances 

Number 
of genes 

Linking function Accuracy PPV Recall Correl F1 Measure AUC ROC 
Rank for 
Accuracy 

Rank 
for 
PPV 

Rank 
for 
Recall 

Rank 
for 
Correl 

Rank for 
F1 
Measure 

Rank for 
AUC 
ROC 

Total 
rank 

MODEL 1 1 None 74.39 40.74 68.75 0.308 0.512 0.770 5 6 8 4 8 8 39 

MODEL 2 2 Addition 65.85 26.92 43.75 0.277 0.333 0.701 1 1 4 6 3 4 19 

MODEL 3 2 Subtraction 70.73 36.67 68.75 0.169 0.478 0.727 3 4 8 10 7 5 37 

MODEL 4 2 Multiplication 69.51 28.57 37.50 -0.065 0.324 0.519 2 2 3 13 2 1 23 

MODEL 5 2 Division 74.39 36.84 43.75 0.287 0.400 0.780 5 5 4 5 5 10 34 

MODEL 6 3 Addition 80.49 50.00 68.75 0.456 0.579 0.811 9 9 8 1 13 12 52 

MODEL 7 3 Subtraction 80.49 50.00 62.50 0.362 0.556 0.779 9 9 6 2 12 9 47 

MODEL 8 3 Multiplication 80.49 50.00 68.75 0.255 0.529 0.807 9 9 8 7 10 11 54 

MODEL 9 3 Division 81.71 57.14 25.00 0.068 0.348 0.619 12 12 2 12 4 2 44 

MODEL 10 4 Addition 78.05 45.83 68.75 0.236 0.550 0.762 7 7 8 8 11 7 48 

MODEL 11 4 Subtraction 70.73 35.71 62.50 0.232 0.455 0.758 3 3 6 9 6 6 33 

MODEL 12 4 Multiplication 82.93 75.00 18.75 0.090 0.300 0.679 13 13 1 11 1 3 42 

MODEL 13 4 Division 79.27 47.83 68.75 0.323 0.514 0.838 8 8 8 3 9 13 49 

Note: The best GEP-PSO model is shown in bold type. 
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5 Discussion 
The PSO algorithm was applied to optimize 13 

GEP models for classifying the rockburst 
susceptibility in deep openings. The experimental 
results in Tables 1 and 2 proved the high effectiveness 
of the proposed GEP-PSO models. Of those, the 
GEP-PSO models with multiple genes tend to better 
than the GEP-PSO model with only one gene. 
Nevertheless, not all models with multiple genes 
outperform the model with only one gene. The GEP-
PSO 1 model with only one gene provided an 
unstable performance on the training and testing 
phase. Thus, it can be seen that the GEP-PSO model 
with only one gene and without linking function is 
unstable for classifying rockburst. 

Considering the GEP-PSO models with multiple 
genes and different linking functions, it can be seen 
that the GEP-PSO 8 model with three genes and the 
multiplication linking function was used, provided 
the best performance on both the training and testing 
phases (i.e., Accuracy = 89.63, PPV = 64.86, Recall 
= 85.71, Correl = 0.450, F1 measure = 0.738, and 
AUC ROC = 0.902, and the total ranking of 58 on the 
training dataset; Accuracy = 80.49, PPV = 50.00, 
Recall = 68.75, Correl = 0.255, F1 measure = 0.529, 
AUC ROC = 0.807, and the total ranking of 54 on the 
testing dataset). Although the GEP-PSO models' 
performances are different; however, their accuracy 
is high and strongly improved with the support of the 
PSO algorithm, compared with that of other models 
in the previous studies [30, 55]. Fig. 10 shows the ROC 
Curve performance of the GEP-PSO models 
developed in this study to classify rockburst in 
different underground projects.  

 
Fig. 10 ROC curve of the GEP-PSO models for classifying 

rockburst 

It can be observed that the GEP-PSO 4 model 
with two genes and the multiplication linking 
function provided the poorest ROC Curve 
performance even though it used more than one gene 
and linking function. This finding indicates that the 
GEP-PSO model with two genes and the 
multiplication linking function should not be used for 
classifying rockburst in this study since its poor and 
unstable performance. The other GEP-PSO models 
are also potential models, and their implementation is 
acceptable.  

For further assessment of the proposed hybrid 
PSO-based GEP models for classifying rockburst, the 
classification scatter plots of 13 proposed models 
were draw on the testing dataset based on the false 
negative (FN), false positive (FP), true negative (TN), 
true positive (TP), and the cutoff points of the models, 
as shown in Fig. 11. Accordingly, the best model 
provided the FN, FP, TN, and TP on or nearest the 
cutoff points. In other words, the best convergence of 
FN, FP, TN, TP and the cutoff points, the best model 
for classifying rockburst. 

 
(a) Model 1 

 
(b) Model 2 

 
(c) Model 3 
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(d) Model 4 

 
(e) Model 5 

 
(f) Model 6 

 
(g) Model 7 

 
(h) Model 8 

 
(i) Model 9 

 
(j) Model 10 

 
(k) Model 11 

 
(l) Model 12 

 
(m) Model 13 

Fig. 11 Classification scatter plot of the proposed hybrid 
models 

From the classification scatter plot of the 
proposed hybrid models in Fig. 11, it is clear that the 
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proposed hybrid GEP-PSO models provided the 
classification systems with pretty good accuracy. The 
Model 8 and Model 9 provided the highest accuracy 
in classifying rockburst phenomenon with greater TN 
and TP points. Taking a closer look at Figures 11h 
and 11i, it can be seen that the Model 8 model 
provided better accuracy than those of the Model 9 
model with greater TN and TP points. The model's 
accuracy based on the dummy variable is very high, 
with the lowest range of the model and the cutoff 
point is approximate 0. These findings indicated that 
the Model 8 is the best expert system for classifying 
rockburst phenomenon in underground openings. A 
comparison of the obtained results of this study with 
that of the previous studies based on the same dataset 
is shown in Table 3. 

Table 3 Comparison of the proposed GEP-PSO model (of 
this work) and previous models (by previous researchers) 

References Model Inputs Accuracy 
[30] GBM X1, X2, X3, X4, 

X5, X6, X11 
76.6% 

[59] Cloud model 
with rough set 

X1, X2, X3, X4, 
X5, X6, X11 

71.05% 

This study GEP-PSO X1, X2, X3, X4, 
X5, X6, X7 

80.49% 

Based on the comparisons of Table 3, we can see 
that this study also used seven input parameters; 
however, the last input variable is different from the 
previous studies. X7 variable was used instead of X11 
in the previous studies based on the data analyses of 
the collected database. This finding indicated that the 
X7 variable should be used instead of the X11 
variable to get better performance with the proposed 
GEP-PSO model. 

6 Validation of the models 
To demonstrate the selected hybrid GEP-PSO 

model's accuracy, we used six other observations as 
the unseen dataset in practice. It is worth noting that 
these observations have not been used to develop the 
models and tested on the testing dataset. The input 
parameters of these six observations were entered 
into the selected hybrid model to validate the outcome 
predictions. Finally, they were compared with the 
experimental results to decide the developed expert 
systems. The input parameters of the validation 
dataset and the forecasted results are shown in Table 
4. 

Table 4. Validation dataset and the forecasted results of the proposed GEP-PSO model 

X1 X2 X3 X4 X5 X6 X7 Y GEP-PSO Match 

500 25.34 90 6.55 0.52 16.25 0.83 0 0 OK (TN) 

535 47.06 125 7.5 0.36 22.15 0.9 0 0 OK (TN) 

458 34.66 85.96 8.12 0.65 18.22 0.85 1 0 Wrong (FN) 

605 21.08 80.5 5.44 0.28 25.35 0.95 0 0 OK (TN) 

780 68.25 92.35 7.12 0.88 14.25 0.88 1 1 OK (TP) 

850 77.62 115.2 8.55 0.76 28.19 0.9 1 1 OK (TP) 

 
Based on the forecasted results in Table 4, it can 

be seen that the classification accuracy and error of 
the selected GEP-PSO model is pretty high, with an 
accuracy of 83.33% (i.e., 5 correct predictions and 1 
wrong prediction). The predicted results on the 
validation dataset are summarized in Table 5 through 
the classification accuracy and error, and confusion 
matrix. These results demonstrated that the proposed 
and selected GEP-PSO model is a potential expert 
system to predict the practice's rockburst 
phenomenon. It is a useful tool to prevent the 
rockburst tendency. 

 
Table 5. Summary of the predicted results on the validation 

dataset 

Validation data summary:   

Classification Accuracy & Error   

  Counts Percent 

Correct: 5 83.33% 

Wrong: 1 16.67% 
   

Confusion matrix   

  Yes (predicted) No (predicted) 

Yes (actual) 2 1 

No (actual) 0 3 
   

Confusion matrix (in percentages) 

  Yes (predicted) No (predicted) 

Yes (actual) 33.33% 16.67% 

No (actual) 0.00% 50.00% 

7 Conclusions and remarks 
Rockburst hazard is a geological phenomenon 

encountered in deep openings and tunnels that lead to 
injuries and deaths, damaged equipment, and 
deformation of underground/tunnel faces. Due to 
those adverse effects, soft computational models for 
predicting and classifying rockburst grades are 
considered potential approaches to early warning the 
rockburst susceptibility and evaluating the intensity 
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of rockburst. This study proposed a novel soft 
computational model, i.e., the GEP-PSO model, to 
predict and classify rockburst tendency with high 
accuracy. The results showed that the accuracy of the 
proposed GEP-PSO model was significantly 
improved based on the corrected values of missing 
values and the number of genes and linking functions 
of the GEP model. Besides, the PSO algorithm also 
played an essential role in improving the accuracy of 
the GEP model. The obtained results indicated that 
the proposed GEP-PSO model provided a superior 
accuracy compared with that of the published 
classification models. In conclusion, the GEP-PSO 
model should be used as an expert system in practical 
engineering to warn the rockburst susceptibility and 
prevent this phenomenon from reducing this severe 
problem's losses. 
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