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Classifying rockburst in deep underground mines using a robust hybrid
computational model based on gene expression programming and particle
swarm optimization

Quang-Hieu TRAN, Xuan-Nam BUI, Hoang NGUYEN
(Department of Surface Mining, Mining Faculty; Innovations for Sustainable and Responsible Mining (ISRM)
Research Group, Hanoi University of Mining and Geology, Hanoi 100000, Vietnam)

Abstract: In deep underground mining, rockburst is taken into account as an uncertainty risk with many adverse
effects (i.e., human, equipment, tunnel/underground mine face, and extraction periods). Due to its uncertainty
characteristics, accurate prediction and classification of rockburst tendency are challenging, and previous results are
poor. Therefore, this study proposed a robust hybrid computational model based on gene expression programming
(GEP) and particle swarm optimization (PSO), called GEP-PSO, to predict and classify rockburst tendency in deep
openings with an accuracy improved. A different number of genes (from 1 to 4) and linking functions (e.g., addition,
extraction, multiplication, and division) in the GEP model were also evaluated during the development of the GEP-
PSO model aim. Geotechnical and constructive factors of 246 rockburst events were collected and used to develop
the GEP-PSO models in terms of rockburst classification. Subsequently, a robust technique to handle missing values
of the dataset was applied to improve the dataset's attributes. The last step in the data processing stage is the feature
selection to select potential input parameters using a correlation matrix. Finally, 13 hybrid GEP-PSO models were
developed with different accuracies reported. The findings indicated that the GEP-PSO model with three genes in
the structure of GEP and the multiplication linking function provided the highest accuracy (i.e., 80.49%). The
obtained results of the best GEP-PSO model were then compared with a variety of previous models developed by
previous researchers based on the same dataset. The comparison results also showed that the selected GEP-PSO
model results outperform those of previous models. In other words, the accuracy of the proposed GEP-PSO model
was improved significantly in terms of prediction and classification of rockburst grade. It can be considered widely
applied in deep openings aiming to predict and evaluate the rockburst susceptibility accurately.

Keywords: rockburst; GEP-PSO model; underground-mining; deep openings; risk assessment
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1 Introduction

In the mining industry, especially in
underground mines and tunnels, a sudden, violent
rupture or highly stressed rock collapse is considered
natural hazards with extreme risks [!*2, and it is called
rockburst. Some rockburst events occurred, and their
destruction level are presented in Fig. 1. This
phenomenon is becoming increasingly common in
recent years, especially in complex mining conditions
and deep openings 81, The rockburst problem has
claimed the lives of hundreds of miners and many

NEAFRERS: A

other valuable assets in United States, Germany,
Australia, China, Canada, and other countries [*14],
Understanding the risks and inherently dangers
of rockburst, many scholars efforted to assess the risk
of rockburst based on various approaches, such as
seismic computed tomography detection 13, static
and dynamic stresses 1], distance [?], geomechanics
8171 to name a few. The evaluations showed that the
rockburst susceptibility and the influential parameters
are a critical overview of this phenomenon to forecast
or prevent this happen. Nevertheless, along with these
evaluations, the rockburst phenomenon has not been
predicted, which is challenging for researchers.

Fig. 1 Some rockburst events occurred and their destruction level 361
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Based on previous researchers' evaluations,
several scientists applied state-of-the-art
computational models to forecast the rockburst
susceptibility in deep openings. It is worth
mentioning that soft computing models were not only
applied in rockburst forecasting but also in
geotechnical and geoengineering ['-261. For instance,
Dong et al. 71 used the Random Forest (RF)
algorithm to predict the possible rockburst tendency.
In another study, Wang et al. 8! applied the fuzzy
matter-element model to predict the rockburst
tendency, and it was confirmed as a reliable model to
solve this problem. Based on the mechanism of
rockburst and mining conditions (e.g., position, depth,
rockburst magnitude, initiation time, distribution),
Cai ®1 used empirical computational models with in
situ stress measurement, 3D numerical modeling
analysis, and laboratory tests to predict and prevent
the rockburst grade. Besides, Zhou et al. [%
developed various supervised learning models for
predicting rockburst tendency, including k-nearest
neighbor (KNN), multilayer perceptron neural
network (MLPNN), random forest (RF), linear
discriminant analysis (LDA), Naive Bayes (NB),
gradient-boosting machine (GBM), quadratic
discriminant analysis (QDA), partial least-squares
discriminant analysis (PLSDA), support vector
machine (SVM), and classification tree (CT). Finally,
they found that the GBM is the best model for
classifying the rockburst tendency. A decision tree
model was also applied by Pu et al. 3! to predict the
rockburst potential. Different accuracies with
acceptable results were reported in their study. By
another approach, Pu et al. 3?! applied the SVM model
with the support of the t-distributed stochastic
neighbor embedding and clustering technique for
predicting rockburst. Eventually, they concluded that
the proposed model based on the SVM model is a
potential model with wide applications in the
rockburst prediction. Zhou et al. B3 also converted
this classification problem to a regression problem
and applied a hybrid model based on artificial neural
network (ANN) and artificial bee colony (ABC) to
predict rockburst, and it is considered as another
approach to predict rockburst. Based on the particle
swarm optimization (PSO), Xue et al. P4 also
developed an extreme learning machine (ELM)
model to predict rockburst with a promising result.
Faradonbeh et al. 3% also applied the fuzzy C-means
(FCM) and self-organizing map (SOM) techniques to
predict rockburst tendency. An accuracy of 75.8%
was reported in their study for the FCM model, and is
up to 100% for the SOM model. Nevertheless, only
58 rockburst events were used in this study, and it is
a small database that can not be represent for other
areas. Zhang et al. [ also applied a variety of
ensemble machine learning models, such as ANN,

SVM, KNN, NB, and logistic regression for
predicting rockburst intensity using 188 rockburst
intances. They indicated that the ensemble model can
classify rockburst better than single models witn an
improvement of 15.4%. He et al. 7] also evaluated
and predicted the rockburst behaviors in 13 deep
traffic tunnels in China. Nonetheless, only empirical
equations were applied in their study. In another
study, Zhou et al. 3% developed the firefly algorithm-
based ANN model (FA-ANN) for classifying
rockburst with a potential solution that can support
underground mines and tunnels determine and
prevent hazardous under different conditions.

Although many soft computational models have
been proposed to predict the rockburst tendency;
however, their accuracy is still limited, and the
accuracy of computational models is a challenge.
Therefore, this study presented a novel method to
improve computational models' accuracy for
classifying rockburst susceptibility, namely GEP-
PSO. Indeed, the gene express programming (GEP)
will be applied to classify the rockburst grade;
meanwhile, the PSO algorithm plays a role as an
optimization tool to improve the GEP model's
accuracy. Furthermore, a different number of genes
and linking functions will be surveyed to discover
their feasibility and accuracy in terms of rockburst
classification and evaluation. The details of this
methodology and obtained results are presented in the
next sections.

2 Principle of the machine learning

algorithms used

As stated above, this study aims to classify and
evaluate the rockburst phenomenon's capacity in deep
openings by a novel combination of the PSO
algorithm and GEP. Therefore, this section focuses
on the PSO and GEP models' principles to propose
the PSO-GEP model framework.

2.1 Gene expression programming (GEP)

GEP is well-known as an evolutionary theory
proposed by Ferreira [°1 based on genetic
programming (GP) and parse trees. Therefore, it uses
similar GP parameters, such as terminal conditions,
function set, control parameters, terminal set, and
fitness function (), GEP has greatly surpassed and
extremely versatile the existing evolutionary
techniques since it inherited the advantages from GP,
i.e., the expressive parse trees of varied shapes and
sizes "1, In brief, the evolution process of GEP can
be explained through the following steps:

Step 1: Initialization

In this step, the initial chromosomes are set
equal to the population dimension, and they are
generated randomly. Herein, each chromosome
consists of genes, and they are organized based on
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structures (head and tail) aiming to create a valid
solution 11, This stage is also called Karva, and it can
represent any mathematical or logical expression with
different sizes and shapes. Accordingly, all
chromosomes are converted to expression trees, and
then the generated solutions are performed to obtain
the fitness values.

Step 2: Selection and reproduction

In this step, the operator would select programs
to replicate the operator to copy into a new generation
a chromosome with high fitness. The potential
individuals are specified for the next generation based
on their fitness through the roulette wheel selection.
They are considered the main factors to guarantee the
cloning and survival of the new population's best
chromosomes. In the new population, the genetic
operations are applied to manipulate during

reproduction process based on randomly selected
chromosomes genetically. Thus, a chromosome in
GEP might be modified to better fit individuals in the
new generation. The genetic operations are applied
during the reproduction process, including mutation,
insertion sequence transposition, root insertion
sequence transposition, gene transposition, single and
double crossover, gene crossover, and inversion.

Step 3: Termination

The program executes the steps above and
repeats for a certain number of generations or
satisfied the stopping conditions (i.e., lowest error for
population). Finally, the best expression tree is found
out and exported as the output of the problem. The
flowchart of GEP is shown in Fig. 2, and its pseudo-
code is presented in Fig. 3.

Fig. 2 The procedure of the GEP algorithm
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GEP algorithm

Input: Generation p,,, Population g,e, Genes nymbers, Head jengm, Function g, Terminal o, Constants e genes DC timit
Crossover ;ye, Mutation ., Inversion ., Transposition .
Output: Solution pey.cost, Solution pegepr
// Initialization//
1. population €— initialize population (Population se, Genes nunperss Head i, Funetion w, Terminal ,e, Constants pe gene, DC tmit)
2. for each Solution ; € population do
// Translate the Chromosome into Expression Tree //
3. Solution ; gy €— translate breadth first (Solution ; gones)
// Execute the Corresponding Expression Tree//

4. | Solution ; o, €— execute (Solution; gy)
5. end

/1 Elitist selection & Replication //
6. Solution p.; €— select best solution (population)
7. population €— copy Solution peg
8. while stopping condition are not met do
// Parent Selection Process//
9. [parent; €— select parents (population)
10. |parent ; €— select parents (population)
// Crossover operator//
11. |offspring ;, €— crossover (parent ;, parent j, Crossover ;)
12. |offspring , €— crossover (parent ;, parent ;, Crossover )
/{ Mutation operator //
13. |offspring ,, €— mutation (offspring ;, Mutation )
14. |offspring ;, €— mutation (offspring ,, Mutation ,5.)
// Inversion operator //
15. |offspring | inyerion € inversion (offspring 1, Inversion )
16. | offSpring » inyersion €— inversion (offspring s, Inversion )
// Transposition operator //
17. [ OffSPring ; transposition €—  inversion (offSpring ; inversion, Transposition ry.)
18. | offspring » transposition €— inversion (offSpring | inversions 1TaNSPOSItion rye)
/f Traslate the Choromosme into Experession Tree//
19. | offspring ; gy €— ftranslate breadth first (offSpring ;_ransposition)
20. | offspring , ;r €— translate breadth first (offspring » transposition)
/f Execute the Corresponding Expression Tree //
21. | offspring ; coxr €— execute (offspring | gr)
22. | offspring ; .oy €— execute (offspring ; gr)
// Roulette Wheel Selection //
23. | population €— population update RWS (offspring | .ox, offspring ; cos)
24. end
25. return to best soloution

Fig. 3 Pseudo-code of the GEP algorithm

2.2 Particle swarm optimization (PSO)

PSO is well-known as a robust metaheuristic
algorithm that was successfully applied for different
optimization problems #2461, Tt was proposed by
Kennedy and Eberhart 7 based on the nature-based
behaviors of swarms (e.g., flock birds, bee, ant).
These behaviors are simulated under the moving
around the search space of the particles in the swarm.
Each individual is assigned a position (x;), and they
fly around the search space with a velocity (v;). For
each position, each particle's fitness is evaluated and
recorded, and the best fitness (Ppes) is shared with the
other individuals. Each particle keeps track of the
best fitness and expands the search space to find out
the better position (Gresr). The searching process
might be repeated many times to obtain satisfying
values. The optimization process of the PSO
algorithm is illustrated in Fig. 4. Further details of the
PSO algorithm can be read in the literature [48-34],
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Fig. 4 Optimization procedure of the PSO algorithm

2.3 PSO-based GEP model for classifying

rockburst in deep openings

As the primary purpose of this study, the GEP-
PSO framework is considered and proposed in this
section, aiming to improve the classification model of
rockburst, i.e., GEP. Accordingly, a mathematical

equation would be offered based on a customized
combination of PSO and GEP using the dependent
variables. In the first step, GEP is applied to build a
mathematical with an acceptable ROC curve result.
Subsequently, the established chromosomes are used
as the main parts of the modified GEP models in the
next step. The chromosomes are then embedded in
the PSO algorithm to determine a better performance
of'the ROC curve based on the correct structure of the
GEP model, called the GEP-PSO model. Note that the
number of genes and linking functions are taken into
account as the vital parameters of the GEP models,
and the performance of the GEP models is highly
dependent on these parameters.

Furthermore, in each GEP model, weights (or
coefficients) are often determined based on the
dataset's characteristics and the chromosomes, genes,
and linking function. However, weights can be
adjusted to get better accuracy for the GEP models
based on a specific number of genes and linking
functions.

In order to embed the PSO algorithm to GEP
models, an initial number of populations is necessary
for the optimization process of the PSO algorithm,
and they might repeat many times to obtain a better
ROC curve value. The PSO algorithm can modify the
GEP model's coefficients to get higher ROC curve
values. The algorithm would stop when the best ROC
value is reached (satisfied), or the searching is
repeated with the specified iterations. The framework
is proposed in Fig. 5.

Fig. 5 Proposed hybrid PSO-GEP algorithm for classifying rockburst
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3 Data acquisition and processing

3.1 Data acquisition

First of all, it is necessary to emphasize that
rockburst is a dangerous phenomenon in deep
underground mines and tunnels, as mentioned above.
It is difficult to observe these phenomena, and it is
challenging to collect a dataset with multiple
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observations. Therefore, many previous researchers
efforted to collect and merge many cases from
different deep underground mines and tunnels 27> 35-56]
as a dataset. Finally, 246 rockburst samples were
collected in previous studies (Fig. 6), and they were
summarized by Zhou et al. % and used to investigate
and evaluate the performance of the proposed model
in this study.
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Fig. 6 Data collection of the rockburst events using microseismic systems and some results (Modified after Ma et al. [>71)

From the various datasets collected, there are 12
variables recorded, including the depth of
underground caverns (X1), maximum tangential stress
of the cavern wall (X3), uniaxial compressive strength
(X3), uniaxial tensile strength (Xi), stress
concentration factor (Xs), Xs-X10 are indexes of rock
mass related to X3 and X4 and they are calculated as
described in equations (1)-(5), elastic strain index
(X11), and the rockburst ability (Y).

X
X, =— 1
T X, (1)
X7:ﬁ Q)
X, +X,
ngu 3)
2
X x X
Xy ="—— (4)
X.xX
10~ — ®)

3.2 Processing the collected rockburst
dataset

Before developing the classification models for
rockburst, the collected dataset should be processed
and prepared to ensure the dataset's generalized
characteristics and avoid overfitting the models. An
analysis shows that some values in the first variable
are missed, and they are variance account for 13% of

the whole number of observations, as illustrated in
Fig. 7.
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Fig. 7 Processing the missing data of rockburst

In this case, there are three options for solving
the X; variable, including removing the entire of this
variable, removing rows with missing values, or
filling the missing values. However, given the effects
of the input variables, many researchers indicated that
X1 significantly impacts the probability of rockburst
in deep openings. Therefore, the X1 variable was kept
on. Also, to avoid reducing the dataset's size, the rows
with missing values were kept on as well. Finally, a
data processing technique has been applied to fill the
missing values to the collected dataset, namely "mean
column values" %, The processed dataset's input
variables were then visualized as a scatter plot to
show their characteristics (Fig. 8).

T T T T
1520253
X11 15
10

1015 3
1 -

o
[ 500 300
- 400

300 x40

@

L
[ 20904500 2500
I 2500
~ 2000

I 1500 X8 1500
1000

0500 1500 500 - g
(1P 097

oo

o0

5]

Egog T T
L 250 150 250

- 200
- 150 X2 150 o

0 50100

oo

T T T . g —
| sooh000 2000
I 1500
X1
I 1000 ™' 1000 -
500

| o

500
[

Scatter Plot Matrix

Fig. 8 Scatter plot matrix of the processed dataset

Based on the scatter plot matrix in Fig. 8, we can
observe the randomness, distribution, and correlation

between the input variables. Interestingly, the
characteristics of the Xz, X9, X0, and X1 variables are
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highly similar, and even with the same distributions,
as shown in the crop of Fig. 9 below. Accordingly,
we can see that the correlation between X10 and X1 is
strong similar to the correlation between Xo and Xi1.
In addition, the correlation between Xz and X1 is not
strongly like the Xo and X, but it is also high
similarity compared to pairs of Xio-X11 and Xo-Xii.
Therefore, they should be removed to ensure the
accuracy of the models. Finally, this study only used
seven input parameters (from Xj to X7) to forecast and
classify the rockburst hazards.
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Fig. 9 A crop of scatter plot matrix and anal}sis of the
similarities and differences between X8-X11 variables

4 Development of the models and

results

To develop the GEP-PSO model for forecasting
and to classify the rockburst ability, the flowchart in
Fig. 4 was applied. Accordingly, an initial GEP
model was developed first, and the parameters of the
PSO algorithm was set up to optimize the weights of
the GEP model. The initial parameters of the GEP
model were set up as follow:

Number of chromosomes: 30

Head size: 8

Number of genes: from 1 to 4

Fitness function: ROC measure

Strategy: optimal evolution

Genetic operators: Mutation 0.00138; Inversion
0.00546;

Constants per gene: 10

Lower and upper bounds: [-10, 10]

Before developing the GEP-PSO models, the
parameters of the PSO algorithm, including local
coefficient (ci), global coefficient (c2), weight min
factor (w1), and weight max factor (w2) were also
setup as follows: 1.2, 1.2, 0.4, 0.9, respectively.

In GEP models, there are the initial parameters
described above. The number of genes and linking
functions are crucial criteria to decide on the forecast
models' accuracy. Therefore, this study developed 13
different GEP models based on different genes (from
1 to 4) and linking functions (e.g., additional,
subtraction, multiplication, and division). The PSO
algorithm then optimized these 13 GEP models, and
they are described in equations (1-13), as follow:

Model 1: This model was developed based on
only one gene and without any linking functions. The
PSO algorithm optimized the weights of the model,
and it is described in equation (6).

Gene 1: exp(Q/X;xX6+(X7><X4))—X

5

Rockburst=exp((‘/X53 x X, +(X7 ><X4))—X5

(6)
Model 2: This model was developed based on
two genes and the addition linking function. The PSO
algorithm optimized the weights of the model, and it
is described in equation (7).
Gene 1: log(Xf)

Gene 2: tan(sin((arctan(X6)X\/Z)—(Q/Z+X5)))

Rockburst =

tog (X3 + tan  sin (arctan (X, ) <X, )= (4/; + X5

(7)
Model 3: This model was developed based on
two genes and the subtraction linking function. It is
worth noting that these genes are different from the
genes developed in the Model 1 and Model 2. The
PSO algorithm optimized the weights of the model,
and it is described in equation (8).

Gene 1:
(-3.965.X, )" x X3 x(( X, —2.544) + tan (~2.248))
2
Gene 2: (-0841X;) xexp(arctan(X4))
—2.862X,x2.712
Rockburst =

[(-3.965,)" x X3 x((X, ~2.544) + tan (-2.248)) |x

(-0.841x,)’
—2.862X,x2.712

x exp(arctan (X, ))

(8)
Model 4: This model was developed based on
two genes and the multiplication linking function. It
is worth noting that these genes are different from the
genes which were developed in the Model 1, Model
2, and Model 3. The PSO algorithm optimized the
weights of the model, and it is described in equation

9).

Gene 1: (i, —(X, +16.11))- 22727

X, -10.54
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" Gene 2: tan(.X,)
Gene 2: 3 scos[X6——2] 2
\f X, Gene 3: i/Xl+(tan(,3/X3)+(X2—5.565))

Rockburst = Rockburst =
X
(X, — (X, +16.11)) - =222 |l deos| X, -2z 2 s —tan(X,) -
X, -10.54 X, 2\\
©) arctan (arctan((log()Q)) ))
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genes which were developed in the Model 1 — Model
9. The PSO algorithm optimized the weights of the
model, and it is described in equation (15).
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Model 11: This model was developed based on
four genes and the subtraction linking function. It is
worth noting that these genes are different from the
genes which were developed in the Model 1 — Model
10. The PSO algorithm optimized the weights of the
model, described in equation (16).
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Model 12: This model was developed based on
four genes and the multiplication linking function. It
is worth noting that these genes are different from the
genes which were developed in the Model 1 — Model
11. The PSO algorithm optimized the weights of the
model, described in equation (17).
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Model 13: This model was developed based on
four genes and the division linking function. It is
worth noting that these genes are different from the
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genes which were developed in the Model 1 — Model
12. The PSO algorithm optimized the weights of the
model, and it is described in equation (18).
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Once the GEP-PSO equations were well-
established for forecasting rockburst, their
performance was computed and evaluated through
various metrics, such as accuracy, positive predictive
value (PPV), recall, correl, F1 measure, and area
under the ROC Curve (AUC). Nevertheless, it is
challenging to conclude which model is the best in
forecasting rockburst ability based on various metrics.
Therefore, a ranking method was applied to classify
and rank the models' performance. The details of the
performances are shown in Tables 1 and 2.
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Table 1 Performances of the GEP-PSO models with different number of genes and linking functions (training phase)

Parameters Performances Rank for performances
Model I:fu ;Eirs Linking function = Accuracy PPV Recall Correl F1 Measure = AUC ROC iirclﬁrtz;(z:ry E)ink fRoa;nk fRoa;nk ?imk or ifli?(lj( or 3:;:1?1
PPV Recall ~ Correl Measure ROC
MODEL 1 1 None 87.80 60.00 85.71 0377  0.706 0.930 7 7 11 8 10 12 55
MODEL 2 2 Addition 85.98 58.06 64.29 0.485 0.610 0.853 4 5 3 4 1 3 20
MODEL 3 2 Subtraction 86.59 56.52 9286  0.352  0.703 0.938 5 4 13 9 9 13 53
MODEL 4 2 Multiplication 85.37 55.00 78.57 0.47 0.647 0.900 2 3 6 5 2 25
MODEL 5 2 Division 87.20 5946 7857  0.039 0.677 0.854 6 6 12 7 4 41
MODEL 6 3 Addition 89.02 65.63  75.00 0.633 0.700 0.894 8 10 2 8 5 37
MODEL 7 3 Subtraction 90.85 7241 7500  0.635  0.737 0.920 11 11 4 1 12 11 50
MODEL 8 3 Multiplication 89.63 64.86 85.71 0.450 0.738 0.902 10 9 11 6 13 9 58
MODEL 9 3 Division 90.85 88.24 53,57  0.033  0.667 0.763 11 12 2 13 6 1 45
MODEL 10 4 Addition 89.02 64.71  78.57 0.398 0.710 0911 8 8 6 7 11 10 50
MODEL 11 4 Subtraction 85.37 5476 82.14 0487  0.657 0.898 2 2 9 3 5 6 27
MODEL 12 4 Multiplication 90.85 93.33  50.00 0.066 0.651 0.785 11 13 1 10 4 2 41
MODEL 13 4 Division 84.76 53.49 82.14 0.051 0.648 0.900 1 1 9 11 3 7 32

Note: The best GEP-PSO model is shown in bold type.
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Table 2 Performances of the GEP-PSO models with different number of genes and linking functions (testing phase)

Parameters Performances Rank for performances
Model I(:It}l ;EZZ Linking function Accuracy PPV Recall Correl F1 Measure = AUC ROC iirclﬁrtz;(z:ry E)ink E)ink E)ink ?imk or iﬁg o 3:;:1?1
PPV Recall Correl Measure ROC
MODEL 1 1 None 74.39 40.74 68.75 0.308 0512 0.770 5 6 8 4 8 8 39
MODEL 2 2 Addition 65.85 26.92 43.75 0.277 0.333 0.701 1 1 4 6 3 4 19
MODEL 3 2 Subtraction 70.73 36.67 68.75  0.169  0.478 0.727 3 4 8 10 7 5 37
MODEL 4 2 Multiplication 69.51 28.57 37.50 -0.065 0.324 0.519 2 2 3 13 2 1 23
MODEL 5 2 Division 74.39 36.84 4375  0.287  0.400 0.780 5 5 4 5 5 10 34
MODEL 6 3 Addition 80.49 50.00 68.75 0.456 0.579 0.811 9 9 8 1 13 12 52
MODEL 7 3 Subtraction 80.49 50.00 6250  0.362  0.556 0.779 9 9 6 12 9 47
MODEL 8 3 Multiplication 80.49 50.00 68.75 0.255 0.529 0.807 9 9 8 7 10 11 54
MODEL 9 3 Division 81.71 57.14 25.00 0.068  0.348 0.619 12 12 2 12 4 44
MODEL 10 4 Addition 78.05 45.83 68.75 0.236 0.550 0.762 7 7 8 8 11 48
MODEL 11 4 Subtraction 70.73 35.71 6250  0.232 0455 0.758 3 3 6 9 6 6 33
MODEL 12 4 Multiplication 82.93 75.00 18.75 0.090 0.300 0.679 13 13 1 11 1 3 42
MODEL 13 4 Division 79.27 47.83 68.75  0.323 0.514 0.838 8 8 8 3 9 13 49

Note: The best GEP-PSO model is shown in bold type.
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5 Discussion

The PSO algorithm was applied to optimize 13
GEP models for classifying the rockburst
susceptibility in deep openings. The experimental
results in Tables 1 and 2 proved the high effectiveness
of the proposed GEP-PSO models. Of those, the
GEP-PSO models with multiple genes tend to better
than the GEP-PSO model with only one gene.
Nevertheless, not all models with multiple genes
outperform the model with only one gene. The GEP-
PSO 1 model with only one gene provided an
unstable performance on the training and testing
phase. Thus, it can be seen that the GEP-PSO model
with only one gene and without linking function is
unstable for classifying rockburst.

Considering the GEP-PSO models with multiple
genes and different linking functions, it can be seen
that the GEP-PSO 8 model with three genes and the
multiplication linking function was used, provided
the best performance on both the training and testing
phases (i.e., Accuracy = 89.63, PPV = 64.86, Recall
= 85.71, Correl = 0.450, F1 measure = 0.738, and
AUC ROC =0.902, and the total ranking of 58 on the
training dataset; Accuracy = 80.49, PPV = 50.00,
Recall = 68.75, Correl = 0.255, F1 measure = 0.529,
AUC ROC =0.807, and the total ranking of 54 on the
testing dataset). Although the GEP-PSO models'
performances are different; however, their accuracy
is high and strongly improved with the support of the
PSO algorithm, compared with that of other models
in the previous studies [*% 31, Fig. 10 shows the ROC
Curve performance of the GEP-PSO models
developed in this study to classify rockburst in
different underground projects.

ROC Curve performance of the models

I I 1

TP Rate(Sensitivity)

0 0.2 0.4 0.6 0.8 1
FP Rate(1-Specificity)

——GEP-PSO 1 - GEP-PSO 2 GEP-PSO 3
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—GEP-PSO7 ——GEP-PSO 8 GEP-PSO 9

—— GEP-PSO 10 ——GEP-PSO 11 —GEP-PSO 12

—— GEP-PSO 13 - - -Random

Fig. 10 ROC curve of the GEP-PSO models for classifying
rockburst

It can be observed that the GEP-PSO 4 model
with two genes and the multiplication linking
function provided the poorest ROC Curve
performance even though it used more than one gene
and linking function. This finding indicates that the
GEP-PSO model with two genes and the
multiplication linking function should not be used for
classifying rockburst in this study since its poor and
unstable performance. The other GEP-PSO models
are also potential models, and their implementation is
acceptable.

For further assessment of the proposed hybrid
PSO-based GEP models for classifying rockburst, the
classification scatter plots of 13 proposed models
were draw on the testing dataset based on the false
negative (FN), false positive (FP), true negative (TN),
true positive (TP), and the cutoff points of the models,
as shown in Fig. 11. Accordingly, the best model
provided the FN, FP, TN, and TP on or nearest the
cutoff points. In other words, the best convergence of
FN, FP, TN, TP and the cutoff points, the best model
for classifying rockburst.

(a) Model 1

(b) Model 2

(c) Model 3



TRAN Quang-Hieu, et al: Classifying rockburst in deep underground mines using a robust hybrid computational model based on
gene expression programming and particle swarm optimization

(d) Model 4 (1) Model 9
(e) Model 5 (j) Model 10
() Model 6 (k) Model 11
(g) Model 7 (1) Model 12
(h) Model 8 (m) Model 13
Fig. 11 Classification scatter plot of the proposed hybrid
models

From the classification scatter plot of the
proposed hybrid models in Fig. 11, it is clear that the
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proposed hybrid GEP-PSO models provided the
classification systems with pretty good accuracy. The
Model 8 and Model 9 provided the highest accuracy
in classifying rockburst phenomenon with greater TN
and TP points. Taking a closer look at Figures 11h
and 11i, it can be seen that the Model 8 model
provided better accuracy than those of the Model 9
model with greater TN and TP points. The model's
accuracy based on the dummy variable is very high,
with the lowest range of the model and the cutoff
point is approximate 0. These findings indicated that
the Model 8 is the best expert system for classifying
rockburst phenomenon in underground openings. A
comparison of the obtained results of this study with
that of the previous studies based on the same dataset
is shown in Table 3.

Table 3 Comparison of the proposed GEP-PSO model (of
this work) and previous models (by previous researchers)

Based on the comparisons of Table 3, we can see
that this study also used seven input parameters;
however, the last input variable is different from the
previous studies. X7 variable was used instead of X11
in the previous studies based on the data analyses of
the collected database. This finding indicated that the
X7 variable should be used instead of the X11
variable to get better performance with the proposed
GEP-PSO model.

6 Validation of the models

To demonstrate the selected hybrid GEP-PSO
model's accuracy, we used six other observations as
the unseen dataset in practice. It is worth noting that
these observations have not been used to develop the
models and tested on the testing dataset. The input
parameters of these six observations were entered
into the selected hybrid model to validate the outcome

References Model Inputs Accuracy predictions. Finally, they were compared with the
[30] GBM X1, Xo, X3, Xa,  76.6% experimental results to decide the developed expert
Xs, Xo, X1 systems. The input parameters of the validation
[59] Cloud model Xi, X2, X3, X4, 71.05% ’ he f ! h . 1
with rough set X5, X, Xi1 dataset and the forecasted results are shown in Table
This study GEP-PSO X1, X2, X3, Xa,  80.49% 4.
Xs, Xo, X7
Table 4. Validation dataset and the forecasted results of the proposed GEP-PSO model
Xi Xo X3 Xa Xs Xo X7 Y GEP-PSO Match
500 25.34 90 6.55 0.52 16.25 0.83 0 0 OK (TN)
535 47.06 125 7.5 0.36 22.15 0.9 0 0 OK (TN)
458 34.66 85.96 8.12 0.65 18.22 0.85 1 0 Wrong (FN)
605 21.08 80.5 5.44 0.28 25.35 0.95 0 0 OK (TN)
780 68.25 92.35 7.12 0.88 14.25 0.88 1 1 OK (TP)
850 77.62 115.2 8.55 0.76 28.19 0.9 1 1 OK (TP)
Based on the forecasted results in Table 4, it can Confusion matrix
be seen that the classification accuracy and error of . .
. . . Yes (predicted No (predicted
the selected GEP-PSO model is pretty high, with an ® ) ® )
accuracy of 83.33% (i.e., 5 correct predictions and 1 Yes (actual) 2 1
wrong prediction). The predicted results on the No (actual) 0 3
validation dataset are summarized in Table 5 through
the classification accuracy and error, and confusion Confusion matrix (in percentages)
matrix. These results demonstrated that the proposed P g
and selected GEP-PSO model is a potential expert Yes (predicted) ~ No (predicted)
system to predict the practice's rockburst Yes (actual) 33.33% 16.67%
phenomenon. It is a useful tool to prevent the No (actual) 0.00% 50.00%

rockburst tendency.

Table 5. Summary of the predicted results on the validation
dataset

Validation data summary:

Classification Accuracy & Error

Counts Percent
Correct: 5 83.33%
Wrong: 1 16.67%

16

7 Conclusions and remarks

Rockburst hazard is a geological phenomenon
encountered in deep openings and tunnels that lead to
injuries and deaths, damaged equipment, and
deformation of underground/tunnel faces. Due to
those adverse effects, soft computational models for
predicting and classifying rockburst grades are
considered potential approaches to early warning the
rockburst susceptibility and evaluating the intensity



TRAN Quang-Hieu, et al: Classifying rockburst in deep underground mines using a robust hybrid computational model based on

gene expression programming and particle swarm optimization

of rockburst. This study proposed a novel soft
computational model, i.e., the GEP-PSO model, to
predict and classify rockburst tendency with high
accuracy. The results showed that the accuracy of the
proposed GEP-PSO model was significantly
improved based on the corrected values of missing
values and the number of genes and linking functions
of the GEP model. Besides, the PSO algorithm also
played an essential role in improving the accuracy of
the GEP model. The obtained results indicated that
the proposed GEP-PSO model provided a superior
accuracy compared with that of the published
classification models. In conclusion, the GEP-PSO
model should be used as an expert system in practical
engineering to warn the rockburst susceptibility and
prevent this phenomenon from reducing this severe
problem's losses.
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