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Abstract

This paper investigates theoretically the excitonic condensation state at zero temperature in a double-
layer graphene structure. In the framework of the unrestricted Hartree—Fock approximation, the
electron-hole system in the structure described in the two-band electronic model is analyzed and one
finds a set of self-consistent equations determining the excitonic order parameter. The optical
properties of the excitonic condensation state then are examined in the Kubo linear optical response
theory. Our results indicate that in the case of sufficiently large Coulomb interaction, the BEC
excitonic condensation state might occur at low electronic excitation density. By turning the external
electric field, the superfluid state stabilizes in the BCS-type excitonic condensate. The optical
conductivity spectrum also provides us more insight into the excitonic condensation states.

1. Introduction

Even proposed for more than half of a century[1, 2], excitonic condensation stability still remains one of the
most challenging and controversial problems in condensed matter physics. In a semiconducting or a semimetal
material, an electron might couple to a hole to originate a bosonic quasi-particle namely exciton. At low
temperatures, a macroscopic coherent state might be established by the condensation of these excitons if their
density is sufficiently large, following the Bose—Einstein condensation (BEC) theory [3, 4]. In some senses, the
coherent bound state of the excitons is similar to the superfluid state of the Cooper pairs described in the
microscopic Bardeen-Cooper-Schrieffer (BCS) theory [5]. However, if the condensation of the Cooper pairs is
the superconducting state, i.e., the electric resistance is completely zero, the excitonic condensation state is the
insulating or non-conducting state. The excitonic condensate is thus sometimes called an excitonic insulator
state [3]. Even predicted for along time, excitonic condensate is still rarely observed experimentally so far.

To be observable of the excitonic condensation state experimentally, a sufficiently large number of long-live
excitons is required. In a real material, an exciton is unstable against the recombination of the close proximity
electron and hole. Excitons in a bulk semiconductor or semimetal have thus a very short lifetime. That is a reason
the excitonic condensate is rarely observed as mentioned above. However, by placing the electron and hole
spatially separated by an insulating barrier, the exciton might live longer [6, 7]. The excitonic condensation state,
therefore, is effectually observed in a double-layer system (DLS). One of the most interesting DLSs is the double-
layer graphene (DLG) where the two monolayers are graphene sheets [8, 9]. If an external electric field is applied
to the two layers, excitons might be originated due to a couple of electrons in one layer and holes in the opposite
layer by the Coulomb interaction. The excitonic condensation state in the DLG structure thus might appear if
the exciton density is sufficiently large and the temperature is low enough [10—13]. In the studies, the excitonic
condensation state is triggered only in the BCS-type [11, 14—16]. The BEC-type and BCS-BEC crossover of the
excitonic condensation state thus have not been examined yet. However, in the unbiased case, the electron
conduction band and hole valance band in DLG meet each other at the Dirac points. In this case, the DLG
displays a zero-gap semiconductor character similar to a one-dimensional TMD Ta,NiSes in which the BCS-
BEC crossover of the excitonic condensation has been experimentally observed [17, 18]. Studying the BEC-type
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Hexagonal stacking Exciton

Figure 1. Schematic structure of double-layer graphene in hexagonal stacking system separated by a dielectric thickness d with
electron and hole carriers induced by external gate V, forming excitonic bound states due to their Coulomb attraction.

and also BCS-BEC crossover of the excitonic condensation state in the DLG is thus extremely important. In the
present work, the tasks are considered by the use of an unrestricted Hartree—Fock (UHF) approximation to
examine the general two-band electronic model applied for the structure of the two-graphene sheets. In the
framework of the UHF approach, we find a set of self-consistent equations determining the excitonic condensate
order parameter. The excitonic condensation state in the system thus would be explicitly inspected.

To investigate in more detail the excitonic condensation state, in the present study, we also consider the
optical response once the system stabilizes in the condensation state. The optical response is examined in the
meaning of the optical conductivity based on the Kubo linear response theory [19]. With the help of the UHFA,
the real part of the optical conductivity is explicitly evaluated. Analyzing the optical conductivity spectrum also
gives us a signature of the excitonic bound state, the hybridization features driven by the Coulomb interaction
between electrons and holes in the different sheets in DLG [13].

We organize the paper as follows. In section 2, we present a microscopic Hamiltonian describing the
electron-hole system in the DLG based on the low-energy electronic two-band model involving the Coulomb
interaction. Section 3 briefly addresses the UHF approximation applied for the model mentioned above in
section 2. The numerical results and discussions are left in section 4. Finally, section 5 ends the paper.

2. Microscopic Hamiltonian

In the present work, we consider a DLG structure fabricated by two graphene sheets separated by a dielectric
thickness d (see figure 1). The two graphene sheets are hexagonal stacking in which each sublattice in one layer is
on top of the corresponding sublattice in the other layer [20]. An external volgate V,is applied between the two
layers inducing the external electric field and then the potential difference.

To describe the electron-hole correlation in the DLG we use the following microscopic Hamiltonian written
in momentum space

H =Y (eege + exchih)
1 + N
; .
- Nzklkz,qro Uklkzq ek1+qek1hkz—qhk2’ (1)
where eS) and hlg) are the annihilation (creation) operators of electron and hole with momentum k,
respectively. The first term in the Hamiltonian expresses the non-interacting electron-hole system with respect
to the band dispersions read

k}/ \/gkx 1/2
T] —p 2

k
&/ =v|1+ 4c0527y + 4cos;cos

Here, 7y ~ 2.8 eV is the nearest-neighbor hopping integral [21]. Note here that the electron-hole system in the
DLG has been approximately described in the two-band models so filled valence and empty conduction bands of
the upper and lower layers, respectively, have been neglected [20]. The simplification is applicable in the low-
biased situation. In equation (2), 1 is the chemical potential. Zero-chemical potential iz = 0 indicates the
unbiased case, so the two bands of conduction and valance electrons touch each other at the K points. The
chemical potential can be tuned by the external electric field E. induced from the gate-voltage V,

[Eexe = Vg/(ed)], it = Ecxeed/2 [22]. The last term in equation (1) indicates the Coulomb interaction between the
conduction electrons in the upper layer and the valance-holes electrons in the lower layer. In the momentum
space, it reads
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where ¢; = 0y, — 0y, qisascatteringangle with 6 = atan(k, /k) [23]. Note here that the ¢ = 0 component
comprising the jellium background has been excluded from our evaluation. Equation (3) clearly expresses that
the long-ranged Coulomb interaction rapidly suppresses by a transferred momentum q. That is completely
different from the localized situation as assumed for TMD in the features of the extended Falicov-Kimball model
[24-26]. The strength of the Coulomb interaction depends on the distance d between the two sheets and also on
the embedding dielectric medium illustrated through a factor « defined as

Ukilog = K

2me?

gs > (4)
€

R =

with e is the dielectric constant of the space embedding between the two graphene sheets. Changing the distance
and also the dielectric constant might give us a complicated signature of the correlation picture in the DLG. In
the present work, a ground state competition of the excitonic condensation stabilities will be examined in the
influence of the Coulomb interaction through the factor x and dielectric thickness d. In the Hamiltonian (1), the
spin degeneracy has been neglected.

3. Unrestricted Hartree—Fock approximation

This section addresses the application of an unrestricted Hartree—-Fock (UHF) approximation adapting to the
microscopic Hamiltonian in equation (1) to investigate the excitonic condensation state in DLG. In the UHF
approach, decoupling with respect to the off-diagonal expectation values is allowed, meaning that the
hybridization between the conduction electron on one layer and valence hole on the opposite layer might be
considered. Then a solution of the spontaneous symmetry breaking field is thus possibly achieved. By leaving out
all fluctuation parts, an effective UHF Hamiltonian is delivered as

HU]—[F = Z[sf:eliek + gihlihk —+ (Akhkek + H.C.)], (5)
k

where all additional constants have been neglected. In the above equation, we have defined

K el (1 4 cos @) 5
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k+q> (6)

due to the off-diagonal coupling driven by the Coulomb interaction, indicating a spontaneous symmetry
breaking due to the formation of an electron-hole pair state. In equation (6), ¢ = i q — O and 6 = {efh)). Tn
this sense, one can consider both Ay and ¢y as the excitonic condensate order parameters.

To proceed with our further calculation, we use a Bogoliubov transformation to diagonalize the
Hamiltonian written in equation (5), which results

Haia = Y B 6,8 )
a=%
where
. sen(ey + &)
B = 3%k T )y, 8)
2
indicate the electronic quasiparticle energies with respect to new fermionic operators
&, = > e 611'[,. 9
B=+
Here, we have denoted 51(;2 = elg) and E](l) = hlg) for the original annihilation (creation) operators of the
conduction and valance electrons. The prefactors T(ﬁﬂ are
__ 1
it =—1" = E‘/l + Ik
1
=t = ?/1 — T, (10)
where
o L Ekter
Ik = sgn(ey + g)———— (11)
k
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and

Wi = (& + €0 + 4 AR, (12)

From the diagonal form of equation (7), one can easily evaluate the expectation value dy in equation (6), which
reads

b= ~ LB — F BOlsgn(ey + ). (13)
Wi
Here f(E,) = 1 / (1 + ¢5/T)hasbeen used to define the Fermi function for temperature T. From equations (6)
and (13) one finds a self-consistent equation so the excitonic condensate order parameters can be evaluated self-
consistently.
With the results of the UHF approximation addressed above, the optical properties in the system might be

discussed by evaluating the optical conductivity. The real part of the optical conductivity in the framework of the
Kubo linear optical response theory can be defined as [19]

U(w) _ Rel foo dteiw’<[f(t)’ f(O)]> (14)
w Yo

f (t) in equation (14) is the current operator. With respect to the Hamiltonian written in equation (1), one has

HOED IR RGN ) (15)
k,o

with v = Ve}. The average in equation (14) is formed with the original Hamiltonian, however, in the UHF
approximation, it can be taken following the diagonal Hamiltonian in equation (7), then one easily arrives

1 / W g 3
@) = =Yg, aa’ ViV wl”

< B ~ FESw + B — B, (16)

Here, the renormalized dispersions Ekﬁ and El‘{g/ have been defined in equation (8) with Sor 3’ is either 4 or —.

4. Numerical results

From equations (6) and (13), a solution of the excitonic condensate order parameters can be found by a
numerical method. Starting from an initial value of 8y, the hybridization gap Ay is evaluated via equation (6).
The eigenenergies of the diagonalized Hamiltonian then are determined so the expectation value of 8y is
recalculated. The iterative process can be stopped if one finds an achieved convergence. The ground state of the
system is evaluated for zero temperature, i.e., at T = 0. In the present work, the numerical results are evaluated in
the momentum space specified instead of the hexagonal Brillouin zone but by an equivalent triangular Brillouin
given byvectors b, = (27/3)(1, +/3)and b, = 27/3)(1, —~/3)[13,21].

To analyze the excitonic condensation state in the DLG structure, first of all, we show in figure 2 the band
dispersions once the system stabilizes in the excitonic condensate due to the Coulomb interaction in comparison
to the non-interacting case. In the whole first Brillouin zone, the band structures are illustrated for the unbiased
(Eext = 0) and biased (E.; = 1) cases. For the unbiased case, the conduction electron and the valance hole bands
touch each other at the Dirac points with zero density of states at the Fermi level. The band dispersion looks like
that of the monolayer graphene [see figure 2(a)]. In that case, due to large Coulomb interaction, x = 12 for
instance, the hybridization between a small number of the conduction electrons in the upper layer and the
valance holes in the lower layer sufficiently induces a gap opened around the K and K’-points of the band
structure. The excitonic condensation state thus occurs even in an unbiased situation [see figure 2(b)]. The
excitonic bound state in this case is completely driven by the strong Coulomb coupling for a very small density of
states around the Fermilevel. When the external electric field is finite due to applying the external gate-voltage,
the chemical potential is non-zero and two non-interacting conduction and valance electron bands are
overlapped [see figure 2(c)]. In this case, the density of electrons in the conduction band is enhanced and the
same for the holes in the valance band. That develops the possibility of the coupling between the electrons and
the holes to form an excitonic bound state. Due to the large Coulomb interaction, the hybridization is strong,
and alarge band gap is opened at the Fermi level [see figure 2(d)] [27]. In this situation, a large number of
electrons and holes combine each other to form excitons around the Fermi level. At zero temperature, these
excitons condense in the macroscopic coherent state called excitonic condensate.

The excitonic condensation state is also indicated by a non-zero value of & = (a; b, ) characterizing the
density of the electron-hole pairs condensed in the coherent state. Apparently, it directly induces the energy gap
Ay in the band-dispersions due to the hybridization in equation (6). Figure 3 displays the momentum

4



10P Publishing

Phys. Scr. 97 (2022) 105707 T-H-HDoetal

I O — S )
AbRio=mws

R . ™)
[ N L

() (d)

Figure 2. Band dispersions Eki in case of the non-interacting electron-hole system (left panels) and in the excitonic condensation state
(right panels) in the whole first Brillouin zone specified by b; and b, of DLG for the unbiased case or the external electric field E., = 0
[(a) & (b)] and for the biased situation with E.,, = 1 [(c) & (d)]. Here, one chooses the dielectric thicknessd = 1and k = 12.

Figure 3. Excitonic condensate order parameter & = (b} in the whole first Brillouin zone specified by b, and b, of DLG with the
dielectric thicknessd = 1and k = 12 for E.,; = 0 (@) and E.,, = 1 (b).

distribution of ¢y in the whole first Brillouin zone of DLG for the set of parameters set as in figure 2. For the
unbiased case, figure 3(a) shows us that & is almost zero except at some momenta close to the Kand K’ points.
In this case, the Fermi surface shrinks to one point. At the Kand K’ points, 6 get sharp peaks indicating that the
excitonic condensation state typifies the condensation of a more local two-body BEC- like bound state. That is
completely different from the biased case in figure 3(b) in which the & gets peaks at momenta deviating from the
Kand K’ points. In the biased situation, two non-interacting bands of conduction and valance electrons overlap.
The Fermi surface in this case plays an important role in establishing the formation of excitons like the Cooper
pairs in the BCS theory for the superconducting state. In this situation, one specifies the excitonic condensate as
the BCS type driven by the large Coulomb interaction. A detailed discussion about the excitonic condensate
BCS-BEC crossover in DLG will be addressed below in figure 5.

To discuss the influence of the Coulomb interaction and external voltage on the excitonic condensation state
in the DLG system, in figure 4 we show an external electric field dependence of § = (1/N) Y 18 for some values of
r once dielectric thickness d = 1. For a given value of k, one always finds the excitonic condensate region
expands by increasing the external electric field. For small and intermediate values of x, x < 10 for instance, the
critical value of the external electric field is finite with respect to being biased. That makes sense because, at small
or intermediate Coulomb interaction, the excitons might be formed only if the two non-interacting bands of
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Figure 4. Excitonic condensate order parameter ¢ as a function of  for some values of E.,, with d = 1.
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Figure 5. The excitonic condensate ground state phase diagram of the DLG in the (x, Ecx)-plane for some values d. The excitonic
condensation state typifying either BCS- or BEC-type is indicated, respectively, by green or gray.

conduction and valance electrons overlap. Enlarging the overlap develops a probability of the excitons
formation. If the Coulomb interaction is larger, x = 12 for instance, one can find a non-zero value of § even at
zero external electric field E., = 0 (see the blue line in figure 4). That indicates the excitonic condensate stability
in the unbiased DLG as long as the Coulomb interaction is strong enough.

As mentioned before in equation (3) that the Coulomb interaction depends on both the factor « (or the
dielectric constant) and the distance d of a medium embedded between two sheets in DLG, considering the
instability of the excitonic condensate as a function of x and d thus is necessary. In figure 5, we show the excitonic
condensate phase diagram at zero temperature in the (s, E.y)-plane for some values of d. For a fixed d, one
always finds a stabilized regime of the excitonic condensation state when the external electric field E.,, is large
than a critical value E¢, that is suppressed by increasing the  factor. If k is large enough, the excitonic
condensate can be found even at zero external electric field, or unbiased DLG system. For a given small dielectric
thickness d, the excitonic condensation state typifies both the BCS (at large E.,,) and BEC (at small E.y,) types.
The BEC regime spreads out both sides of E.y, axis by enlarging the factor « or the Coulomb interaction. By
increasing the Coulomb attraction, the excitonic BEC-BCS crossover thus shifts to the right. Asin some
semimetal-semiconductor transition materials, one finds the BEC excitonic condensation state in the ranges of
small excitation charge density and large Coulomb interaction corresponding to small d, large , and low E.y,.
Increasing dleads to the decrease of the Coulomb interaction, the BEC regime is thus suppressed, whereas, the
BCS regime is expanded [see figure 5(a)—(c)]. Once the two sheets of the DLG are separated widely enough, i.e., d
is sufficiently large, the Coulomb interaction would be small in the range of  so one finds only the BCS excitonic
condensation state [see figure 5(d)].
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Figure 6. The real part of the optical conductivity o(w) in d = 1 DLG for some values E,, with £ = 12 (left panel) and for some
different values of x with E,,, = 0.3 (right panel).

Last, in figure 6 we discuss the real part of the optical conductivity o(w) evaluated from equation (16) for the
system with dielectric thickness d = 1. The left panel of figure 6 illustrates o(w) for kK = 12 with some different
values of E,,, whereas, the right panel gives that o(w) for E., = 0.3 by varying « or strength of the Coulomb
interaction. In all cases, one always finds that a peak appears in the optical conductivity spectrum, at a finite
frequency w,. Ata frequency w < w,, the optical conductivity is almost zero. Otherwise, for w > w,, it drops down
asin the normal state. The peak appearance in the optical conductivity signature indicates the resonance state
due to the strong hybridization of electrons and holes corresponding to the stability of the excitonic condensate.
As discussed before in figure 4, one learns that, for a large fixed Coulomb interaction, increasing the external
electric field E, strengthens the stability of the excitonic condensation state due to the development of the
possibility for the formation of the bound electron-hole pairs. The peak in the optical spectrum thus shifts
towards higher frequencies by increasing E.,. [see figure 6(a)]. For x = 12, one can find the excitonic
condensation state even at zero external electric fields. In the unbiased case, the system settles like a zero-gap
semiconductor and due to the large Coulomb interaction, a small amount of electron-hole pairs slightly around
Dirac points might be originated. At zero temperature, the excitons condense in the BEC type indicated by a
small peak signature at low frequency. At a given large enough E.y,, E.x, = 0.3 for instance, increasing Coulomb
interaction by increasing x, the feature of the real part of optical conductivity is remained and the peak is shifted
up to the higher frequency by reinforcing its spectral weight. That behavior indicates the enhancement of the
electron-hole coherence by increasing the Coulomb interaction in the biased DLG system.

5. Concluding remarks

In summary, we have discussed the ground state properties of the excitonic condensation state in the DLG
structure. In doing so, the electron-hole correlations in the system are described by an electronic two-band
model involving the interlayer Coulomb interaction. In the framework of the unrestricted Hartree—Fock
approximation, we derive equations that might help us to evaluate numerically the excitonic condensate order
parameter once the model parameters are given. In the excitonic condensation state, the real part of the optical
conductivity is also evaluated based on the Kubo linear response theory. For a large Coulomb interaction, we
find that the ground state of the system stabilizes in the excitonic condensate, even in an unbiased situation.
Turning a gated voltage reinforces the excitonic condensation stability. Depending on the Coulomb interaction
and the external bias, the excitonic condensate BCS-BEC crossover in the structure is addressed. As increasing
the Coulomb interaction, the BEC excitonic condensate region expands in the range of a small external electric
field. In the present work, optical properties in the instability state of the electron-hole systems have been also
discussed. Due to the Coulomb interaction, hybridization between electrons and holes in the two opposite sheets
might originate in the excitonic bound state, which is indicated by a sharp peak raised in the real part of the
optical conductivity spectrum. Our findings, in one way, show a possibility of the BEC-type and BCS-BEC
crossover of the excitonic condensate stabilizing in a DLG system, other ways, discuss the properties of the
optical signatures in the condensation state. The results thus are purposeful for inspecting experimentally the
excitonic bound state stability by analyzing the optical response in a double-layer system.
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