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Abstract
This paper investigates theoretically the excitonic condensation state at zero temperature in a double-
layer graphene structure. In the framework of the unrestrictedHartree–Fock approximation, the
electron-hole system in the structure described in the two-band electronicmodel is analyzed and one
finds a set of self-consistent equations determining the excitonic order parameter. The optical
properties of the excitonic condensation state then are examined in theKubo linear optical response
theory.Our results indicate that in the case of sufficiently largeCoulomb interaction, the BEC
excitonic condensation statemight occur at low electronic excitation density. By turning the external
electricfield, the superfluid state stabilizes in the BCS-type excitonic condensate. The optical
conductivity spectrum also provides usmore insight into the excitonic condensation states.

1. Introduction

Even proposed formore than half of a century [1, 2], excitonic condensation stability still remains one of the
most challenging and controversial problems in condensedmatter physics. In a semiconducting or a semimetal
material, an electronmight couple to a hole to originate a bosonic quasi-particle namely exciton. At low
temperatures, amacroscopic coherent statemight be established by the condensation of these excitons if their
density is sufficiently large, following the Bose–Einstein condensation (BEC) theory [3, 4]. In some senses, the
coherent bound state of the excitons is similar to the superfluid state of theCooper pairs described in the
microscopic Bardeen-Cooper-Schrieffer (BCS) theory [5]. However, if the condensation of theCooper pairs is
the superconducting state, i.e., the electric resistance is completely zero, the excitonic condensation state is the
insulating or non-conducting state. The excitonic condensate is thus sometimes called an excitonic insulator
state [3]. Even predicted for a long time, excitonic condensate is still rarely observed experimentally so far.

To be observable of the excitonic condensation state experimentally, a sufficiently large number of long-live
excitons is required. In a realmaterial, an exciton is unstable against the recombination of the close proximity
electron and hole. Excitons in a bulk semiconductor or semimetal have thus a very short lifetime. That is a reason
the excitonic condensate is rarely observed asmentioned above.However, by placing the electron and hole
spatially separated by an insulating barrier, the excitonmight live longer [6, 7]. The excitonic condensation state,
therefore, is effectually observed in a double-layer system (DLS). One of themost interestingDLSs is the double-
layer graphene (DLG)where the twomonolayers are graphene sheets [8, 9]. If an external electric field is applied
to the two layers, excitonsmight be originated due to a couple of electrons in one layer and holes in the opposite
layer by theCoulomb interaction. The excitonic condensation state in theDLG structure thusmight appear if
the exciton density is sufficiently large and the temperature is low enough [10–13]. In the studies, the excitonic
condensation state is triggered only in the BCS-type [11, 14–16]. The BEC-type andBCS-BEC crossover of the
excitonic condensation state thus have not been examined yet.However, in the unbiased case, the electron
conduction band and hole valance band inDLGmeet each other at theDirac points. In this case, theDLG
displays a zero-gap semiconductor character similar to a one-dimensional TMDTa2NiSe5 inwhich the BCS-
BEC crossover of the excitonic condensation has been experimentally observed [17, 18]. Studying the BEC-type
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and also BCS-BEC crossover of the excitonic condensation state in theDLG is thus extremely important. In the
present work, the tasks are considered by the use of an unrestrictedHartree–Fock (UHF) approximation to
examine the general two-band electronicmodel applied for the structure of the two-graphene sheets. In the
framework of theUHF approach, wefind a set of self-consistent equations determining the excitonic condensate
order parameter. The excitonic condensation state in the system thuswould be explicitly inspected.

To investigate inmore detail the excitonic condensation state, in the present study, we also consider the
optical response once the system stabilizes in the condensation state. The optical response is examined in the
meaning of the optical conductivity based on theKubo linear response theory [19].With the help of theUHFA,
the real part of the optical conductivity is explicitly evaluated. Analyzing the optical conductivity spectrum also
gives us a signature of the excitonic bound state, the hybridization features driven by theCoulomb interaction
between electrons and holes in the different sheets inDLG [13].

We organize the paper as follows. In section 2, we present amicroscopicHamiltonian describing the
electron-hole system in theDLGbased on the low-energy electronic two-bandmodel involving theCoulomb
interaction. Section 3 briefly addresses theUHF approximation applied for themodelmentioned above in
section 2. The numerical results and discussions are left in section 4. Finally, section 5 ends the paper.

2.MicroscopicHamiltonian

In the present work, we consider aDLG structure fabricated by two graphene sheets separated by a dielectric
thickness d (see figure 1). The two graphene sheets are hexagonal stacking inwhich each sublattice in one layer is
on top of the corresponding sublattice in the other layer [20]. An external volgateVg is applied between the two
layers inducing the external electric field and then the potential difference.

To describe the electron-hole correlation in theDLGweuse the followingmicroscopicHamiltonianwritten
inmomentum space
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where ek
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(†) are the annihilation (creation) operators of electron and holewithmomentum k,
respectively. Thefirst term in theHamiltonian expresses the non-interacting electron-hole systemwith respect
to the band dispersions read
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Here, γ0; 2.8 eV is the nearest-neighbor hopping integral [21]. Note here that the electron-hole system in the
DLGhas been approximately described in the two-bandmodels sofilled valence and empty conduction bands of
the upper and lower layers, respectively, have been neglected [20]. The simplification is applicable in the low-
biased situation. In equation (2),μ is the chemical potential. Zero-chemical potentialμ= 0 indicates the
unbiased case, so the two bands of conduction and valance electrons touch each other at theK points. The
chemical potential can be tuned by the external electric field Eext induced from the gate-voltageVg

[Eext= Vg/(ed)],μ= Eexted/2 [22]. The last term in equation (1) indicates the Coulomb interaction between the
conduction electrons in the upper layer and the valance-holes electrons in the lower layer. In themomentum
space, it reads

Figure 1. Schematic structure of double-layer graphene in hexagonal stacking system separated by a dielectric thickness dwith
electron and hole carriers induced by external gateVg forming excitonic bound states due to their Coulomb attraction.
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comprising the jelliumbackground has been excluded fromour evaluation. Equation (3) clearly expresses that
the long-rangedCoulomb interaction rapidly suppresses by a transferredmomentum q. That is completely
different from the localized situation as assumed for TMD in the features of the extended Falicov-Kimballmodel
[24–26]. The strength of theCoulomb interaction depends on the distance d between the two sheets and also on
the embedding dielectricmedium illustrated through a factorκ defined as
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with ò is the dielectric constant of the space embedding between the two graphene sheets. Changing the distance
and also the dielectric constantmight give us a complicated signature of the correlation picture in theDLG. In
the present work, a ground state competition of the excitonic condensation stabilities will be examined in the
influence of theCoulomb interaction through the factorκ and dielectric thickness d. In theHamiltonian (1), the
spin degeneracy has been neglected.

3.UnrestrictedHartree–Fock approximation

This section addresses the application of an unrestrictedHartree–Fock (UHF) approximation adapting to the
microscopicHamiltonian in equation (1) to investigate the excitonic condensation state inDLG. In theUHF
approach, decoupling with respect to the off-diagonal expectation values is allowed,meaning that the
hybridization between the conduction electron on one layer and valence hole on the opposite layermight be
considered. Then a solution of the spontaneous symmetry breaking field is thus possibly achieved. By leaving out
allfluctuation parts, an effectiveUHFHamiltonian is delivered as

e e h h h e H.c. , 5
k

k k k k k k k k kUHF [ ( )] ( )† †å e e= + + D ++ -
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due to the off-diagonal coupling driven by theCoulomb interaction, indicating a spontaneous symmetry
breaking due to the formation of an electron-hole pair state. In equation (6),f= θk+q− θk and e hk k k

† †d = á ñ. In
this sense, one can consider bothΔk and δk as the excitonic condensate order parameters.

To proceedwith our further calculation, we use a Bogoliubov transformation to diagonalize the
Hamiltonianwritten in equation (5), which results
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c c . 9k k k˜ ˆ ( )† †å t=a
b

ab
b

=

Here, we have denoted c ek kˆ(†) (†)=+ and c hk kˆ(†) (†)=- for the original annihilation (creation) operators of the
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From the diagonal formof equation (7), one can easily evaluate the expectation value δk in equation (6), which
reads
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has been used to define the Fermi function for temperatureT. Fromequations (6)

and (13) onefinds a self-consistent equation so the excitonic condensate order parameters can be evaluated self-
consistently.

With the results of theUHF approximation addressed above, the optical properties in the systemmight be
discussed by evaluating the optical conductivity. The real part of the optical conductivity in the framework of the
Kubo linear optical response theory can be defined as [19]
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j tˆ ( ) in equation (14) is the current operator.With respect to theHamiltonianwritten in equation (1), one has
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with vk ke= a a. The average in equation (14) is formedwith the originalHamiltonian, however, in theUHF
approximation, it can be taken following the diagonalHamiltonian in equation (7), then one easily arrives
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Here, the renormalized dispersions Ek
˜ b and Ek

˜ b¢ have been defined in equation (8)withβ or b¢ is either+ or−.

4.Numerical results

From equations (6) and (13), a solution of the excitonic condensate order parameters can be found by a
numericalmethod. Starting from an initial value of δk, the hybridization gapΔk is evaluated via equation (6).
The eigenenergies of the diagonalizedHamiltonian then are determined so the expectation value of δk is
recalculated. The iterative process can be stopped if onefinds an achieved convergence. The ground state of the
system is evaluated for zero temperature, i.e., atT= 0. In the present work, the numerical results are evaluated in
themomentum space specified instead of the hexagonal Brillouin zone but by an equivalent triangular Brillouin
given by vectors b 2 3 1, 31 ( )( )p= and b 2 3 1, 32 ( )( )p= - [13, 21].

To analyze the excitonic condensation state in theDLG structure, first of all, we show in figure 2 the band
dispersions once the system stabilizes in the excitonic condensate due to theCoulomb interaction in comparison
to the non-interacting case. In thewholefirst Brillouin zone, the band structures are illustrated for the unbiased
(Eext= 0) and biased (Eext= 1) cases. For the unbiased case, the conduction electron and the valance hole bands
touch each other at theDirac points with zero density of states at the Fermi level. The band dispersion looks like
that of themonolayer graphene [see figure 2(a)]. In that case, due to large Coulomb interaction,κ= 12 for
instance, the hybridization between a small number of the conduction electrons in the upper layer and the
valance holes in the lower layer sufficiently induces a gap opened around theK and K ¢-points of the band
structure. The excitonic condensation state thus occurs even in an unbiased situation [see figure 2(b)]. The
excitonic bound state in this case is completely driven by the strongCoulomb coupling for a very small density of
states around the Fermi level.When the external electric field isfinite due to applying the external gate-voltage,
the chemical potential is non-zero and two non-interacting conduction and valance electron bands are
overlapped [see figure 2(c)]. In this case, the density of electrons in the conduction band is enhanced and the
same for the holes in the valance band. That develops the possibility of the coupling between the electrons and
the holes to form an excitonic bound state. Due to the large Coulomb interaction, the hybridization is strong,
and a large band gap is opened at the Fermi level [see figure 2(d)] [27]. In this situation, a large number of
electrons and holes combine each other to form excitons around the Fermi level. At zero temperature, these
excitons condense in themacroscopic coherent state called excitonic condensate.

The excitonic condensation state is also indicated by a non-zero value of a bk k k
†d = á ñcharacterizing the

density of the electron-hole pairs condensed in the coherent state. Apparently, it directly induces the energy gap
Δk in the band-dispersions due to the hybridization in equation (6). Figure 3 displays themomentum
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distribution of δk in thewhole first Brillouin zone ofDLG for the set of parameters set as infigure 2. For the
unbiased case, figure 3(a) shows us that δk is almost zero except at somemomenta close to theK and K ¢ points.
In this case, the Fermi surface shrinks to one point. At theK and K ¢ points, δk get sharp peaks indicating that the
excitonic condensation state typifies the condensation of amore local two-body BEC- like bound state. That is
completely different from the biased case infigure 3(b) inwhich the δk gets peaks atmomenta deviating from the
K and K ¢ points. In the biased situation, two non-interacting bands of conduction and valance electrons overlap.
The Fermi surface in this case plays an important role in establishing the formation of excitons like theCooper
pairs in the BCS theory for the superconducting state. In this situation, one specifies the excitonic condensate as
the BCS type driven by the large Coulomb interaction. A detailed discussion about the excitonic condensate
BCS-BEC crossover inDLGwill be addressed below infigure 5.

To discuss the influence of theCoulomb interaction and external voltage on the excitonic condensation state
in theDLG system, infigure 4we show an external electric field dependence of δ= (1/N)∑kδk for some values of
κ once dielectric thickness d= 1. For a given value ofκ, one alwaysfinds the excitonic condensate region
expands by increasing the external electric field. For small and intermediate values ofκ,κ� 10 for instance, the
critical value of the external electric field isfinite with respect to being biased. Thatmakes sense because, at small
or intermediate Coulomb interaction, the excitonsmight be formed only if the two non-interacting bands of

Figure 2.Band dispersions Ek
˜ in case of the non-interacting electron-hole system (left panels) and in the excitonic condensation state

(right panels) in the wholefirst Brillouin zone specified by b1 and b2 ofDLG for the unbiased case or the external electric field Eext = 0
[(a) & (b)] and for the biased situationwithEext = 1 [(c) & (d)]. Here, one chooses the dielectric thickness d = 1 andκ = 12.

Figure 3.Excitonic condensate order parameter a bk k k
†d = á ñ in thewhole first Brillouin zone specified by b1 and b2 of DLGwith the

dielectric thickness d = 1 andκ = 12 for Eext = 0 (a) andEext = 1 (b) .
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conduction and valance electrons overlap. Enlarging the overlap develops a probability of the excitons
formation. If the Coulomb interaction is larger,κ= 12 for instance, one canfind a non-zero value of δ even at
zero external electric fieldEext= 0 (see the blue line infigure 4). That indicates the excitonic condensate stability
in the unbiasedDLG as long as theCoulomb interaction is strong enough.

Asmentioned before in equation (3) that the Coulomb interaction depends on both the factorκ (or the
dielectric constant) and the distance d of amedium embedded between two sheets inDLG, considering the
instability of the excitonic condensate as a function ofκ and d thus is necessary. Infigure 5, we show the excitonic
condensate phase diagram at zero temperature in the (κ,Eext)-plane for some values of d. For afixed d, one
alwaysfinds a stabilized regime of the excitonic condensation statewhen the external electric field Eext is large
than a critical value E c

ext that is suppressed by increasing theκ factor. Ifκ is large enough, the excitonic
condensate can be found even at zero external electricfield, or unbiasedDLG system. For a given small dielectric
thickness d, the excitonic condensation state typifies both the BCS (at largeEext) andBEC (at smallEext) types.
The BEC regime spreads out both sides ofEext axis by enlarging the factorκ or theCoulomb interaction. By
increasing theCoulomb attraction, the excitonic BEC-BCS crossover thus shifts to the right. As in some
semimetal-semiconductor transitionmaterials, onefinds the BEC excitonic condensation state in the ranges of
small excitation charge density and large Coulomb interaction corresponding to small d, largeκ, and lowEext.
Increasing d leads to the decrease of the Coulomb interaction, the BEC regime is thus suppressed, whereas, the
BCS regime is expanded [see figure 5(a)–(c)]. Once the two sheets of theDLG are separatedwidely enough, i.e., d
is sufficiently large, the Coulomb interactionwould be small in the range ofκ so onefinds only the BCS excitonic
condensation state [see figure 5(d)].

Figure 4.Excitonic condensate order parameter δ as a function ofκ for some values ofEext with d = 1.

Figure 5.The excitonic condensate ground state phase diagramof theDLG in the (κ,Eext)-plane for some values d. The excitonic
condensation state typifying either BCS- or BEC-type is indicated, respectively, by green or gray.
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Last, in figure 6we discuss the real part of the optical conductivityσ(ω) evaluated from equation (16) for the
systemwith dielectric thickness d= 1. The left panel offigure 6 illustratesσ(ω) forκ= 12with some different
values ofEext, whereas, the right panel gives thatσ(ω) for Eext= 0.3 by varyingκ or strength of theCoulomb
interaction. In all cases, one alwaysfinds that a peak appears in the optical conductivity spectrum, at afinite
frequencyωc. At a frequencyω< ωc, the optical conductivity is almost zero. Otherwise, forω> ωc, it drops down
as in the normal state. The peak appearance in the optical conductivity signature indicates the resonance state
due to the strong hybridization of electrons and holes corresponding to the stability of the excitonic condensate.
As discussed before in figure 4, one learns that, for a largefixedCoulomb interaction, increasing the external
electric field Eext strengthens the stability of the excitonic condensation state due to the development of the
possibility for the formation of the bound electron-hole pairs. The peak in the optical spectrum thus shifts
towards higher frequencies by increasing Eext [see figure 6(a)]. Forκ= 12, one can find the excitonic
condensation state even at zero external electric fields. In the unbiased case, the system settles like a zero-gap
semiconductor and due to the large Coulomb interaction, a small amount of electron-hole pairs slightly around
Dirac pointsmight be originated. At zero temperature, the excitons condense in the BEC type indicated by a
small peak signature at low frequency. At a given large enough Eext,Eext= 0.3 for instance, increasing Coulomb
interaction by increasingκ, the feature of the real part of optical conductivity is remained and the peak is shifted
up to the higher frequency by reinforcing its spectral weight. That behavior indicates the enhancement of the
electron-hole coherence by increasing theCoulomb interaction in the biasedDLG system.

5. Concluding remarks

In summary, we have discussed the ground state properties of the excitonic condensation state in theDLG
structure. In doing so, the electron-hole correlations in the system are described by an electronic two-band
model involving the interlayer Coulomb interaction. In the framework of the unrestrictedHartree–Fock
approximation, we derive equations thatmight help us to evaluate numerically the excitonic condensate order
parameter once themodel parameters are given. In the excitonic condensation state, the real part of the optical
conductivity is also evaluated based on theKubo linear response theory. For a large Coulomb interaction, we
find that the ground state of the system stabilizes in the excitonic condensate, even in an unbiased situation.
Turning a gated voltage reinforces the excitonic condensation stability. Depending on theCoulomb interaction
and the external bias, the excitonic condensate BCS-BEC crossover in the structure is addressed. As increasing
theCoulomb interaction, the BEC excitonic condensate region expands in the range of a small external electric
field. In the present work, optical properties in the instability state of the electron-hole systems have been also
discussed. Due to theCoulomb interaction, hybridization between electrons and holes in the two opposite sheets
might originate in the excitonic bound state, which is indicated by a sharp peak raised in the real part of the
optical conductivity spectrum.Our findings, in oneway, show a possibility of the BEC-type andBCS-BEC
crossover of the excitonic condensate stabilizing in aDLG system, other ways, discuss the properties of the
optical signatures in the condensation state. The results thus are purposeful for inspecting experimentally the
excitonic bound state stability by analyzing the optical response in a double-layer system.

Figure 6.The real part of the optical conductivityσ(ω) in d = 1DLG for some values Eext withκ = 12 (left panel) and for some
different values ofκwithEext = 0.3 (right panel).
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