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Low-energy excitonic condensate excitations in semimetal and semiconducting materials
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The low-energy excitation properties of the excitonic condensate in the semimetal and semiconducting ma-
terials are inspected in the extended Falicov-Kimball model. In the framework of the unrestricted Hartree-Fock
approximation, we have released a set of self-consistent equations so the excitonic condensate order parameter
and then the optical conductivity and the dynamical excitonic susceptibility function are evaluated. We find
that the optical conductivity becomes significant and shows a sharp peak at a frequency that is twice as of the
excitonic condensate order parameter once the system settles in the excitonic condensate. In the meanwhile,
out of the excitonic condensation state, the dynamical excitonic susceptibility function in the semimetal state
releases a dominant peak at low frequency if Coulomb interaction is sufficiently large. This character indicates
the possibility of the resonance bound excitonic condensate even in high-temperature normal semimetals. The
resonance is dramatically reinforced inside of the semiconducting state and that specifies the stability of the
bound excitonic coherent state of the preformed excitons in the semiconducting materials.
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I. INTRODUCTION

The macroscopic coherent state of excitons–bosonic quasi-
particles composited by electrons and holes owing to the
Coulomb interaction is always one of the most important is-
sues attracting much interest in research in condensed-matter
physics. Proposed theoretically more than 60 years ago [1–3],
the nature of the condensation state of excitons possibly sta-
bilizes in semimetals or semiconductors up to now is still in
debate. It has been widely understood that, in a semimetal, the
formation and condensate of excitons might establish simul-
taneously and be described by the Bardeen-Cooper-Schrieffer
(BCS) theory similar to the superconducting state, whereas,
in semiconductors, the excitonic condensate can be viewed as
the Bose-Einstein condensation (BEC) of preformed excitons
like neutral atoms [4,5]. However, recent optical conductivity
measurements have revealed that the excitons in quasi-one-
dimensional (1D) semimetal Ta2NiSe5 can be formed before
condensing even in the semimetal phase [6,7]. The obser-
vation has promoted investigating the dynamical signatures
of the excitonic condensate [8–12], which is an essential
point help us clear the nature of the excitonic condensation
fluctuations both above and below the critical point of the
condensation state.

To analyze theoretically the formation and condensation
of excitons in semimetal and semiconducting materials, a
two-band model describing the electron-hole system is usu-
ally applicable [1–4]. In that model, the Coulomb interaction
between electrons and holes is included, which induces the
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electron-hole hybridization, the coherent state of excitons
then might be established. One of the most typical two-
band models is an extended Falicov-Kimball model (EFKM)
that is the extension of the original Falicov-Kimball model
once the valence band is dispersed [5]. Using the EFKM,
the excitonic condensation state in semimetal-semiconducting
transition materials has been intensively investigated [5,13–
15]. However, in these studies, the dynamical properties of
the excitonic condensation state have not been examined. In
the meanwhile, analyzing dynamical signatures both inside
and outside of an ordered state is a crucial point in under-
standing the fluctuations of the coherent states and help us
clear the nature of the order state [6–9,11,12,16]. Indeed,
analyzing the optical conductivity spectra has revealed the
anomalous appearance of the excitons even before the exci-
tonic condensation in metallic Ta2NiSe5 [6,7]. The preformed
excitons are also found in the semiconductor side, the so-
called “halo” of the excitonic condensate by inspecting the
dynamical excitonic susceptibility in the EFKM [16] that
has been experimentally observed in the semiconductor side
of the two-dimensional (2D) semimetal-semiconductor tran-
sition compound TmSe0.45Te0.55 [17,18]. Or most recently,
by measuring the Raman conductivity, one has revealed
the anomalous excitonic fluctuations in Ta2NiSe5 whose in-
tensity grows inversely with temperature toward the Weiss
temperature [9].

In experiments, dynamical properties in a condensed
state can be inspected in angle-resolved photoemission spec-
troscopy measurements. However, due to the limitation of
the measurement to occupied states below the Fermi level,
the formation of an excitation gap below a critical tem-
perature has not been unveiled. In the present paper, we
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investigate the dynamical properties of the excitonic con-
densation state in theoretically in signatures of the optical
conductivity and dynamical excitonic susceptibility function.
The former provides insight into the excitonic condensation
state in the systems, whereas, the latter emerges the electron-
hole coherent fluctuations before the stability of the excitonic
condensation state. In the framework of the unrestricted
Hartree-Fock (UHF) approximation, the optical conductivity
has been addressed in the EFKM under the influence of the
mass imbalance [10]. The optical conductivity in the EFKM
and the dynamical excitonic susceptibility in a similar EFKM
the so-called two-orbital Hubbard model have been also in-
vestigated by using respectively the dynamical density matrix
renormalization group method [6] and the dynamical mean-
field theory [11,12]. However, these studies are limited to the
weak coupling and low-temperature regime. That obviously
could not consider the halo phase and also high-temperature
excitonic fluctuations in the situation of strong Coulomb
interaction.

In the present paper, the optical conductivity and the dy-
namical excitonic susceptibility function are addressed in the
framework of the EFKM. By using the UHF approximation,
we find a set of self-consistent equations so the excitonic order
parameters and quasiparticle energies once the hybridization
between electron and hole driven by the Coulomb interaction
in the EFKM are resolved. That helps us evaluate explic-
itly the optical conductivity in the features of Kubo linear
response theory and the dynamical excitonic susceptibility
function in the random phase approximation. The numerical
results thus might reveal in detail the low-energy dynamical
features of the excitonic condensation state both below and
above the excitonic condensate points. We agree generally
that the UHF approximation is reliable for small interactions,
however, it might be also applicable even for large interacting
cases in some specific conditions. For instance, in the case
of the high-temperature with short or finite range interac-
tions, the correlation length ξ tends to zero as ξ ∼ T −1/2 [19].
The correlations in the systems thus become less important
in case of large temperature. That is synonymous with a
weak-coupling situation and reasonably the UHF approxima-
tion is applicable in a range of large temperature whatever
the interaction is weak or strong [20–22]. In our study, the
dynamical excitonic susceptibility function in the EFKM is
examined at a very large temperature and we believe that
the UHF approximation is reliable also for large Coulomb
interaction.

This article is organized as follows. In Sec. II, we introduce
the EFKM and its solutions in the UHF approximation. The
analytical evaluations for the dynamical quantities such as the
optical conductivity and the dynamical excitonic susceptibil-
ity function are presented briefly in Sec. III. Section IV shows
the numerical results and discussions. The conclusions of the
paper can be found in the final section.

II. HAMILTONIAN AND METHOD

In order to inspect the dynamical excitonic excitations, we
start with a consideration of the Hamiltonian that describes
the electron-hole system possibly forming excitons. The ap-
propriated Hamiltonian of the electron-hole system in the

tight-binding approximation might be written as follows:

H = −t a
∑
〈i, j〉

a†
i a j − t b

∑
〈i, j〉

b†
i b j + U

∑
i

na
i nb

i

+ (εa − μ)
∑

i

na
i + (εb − μ)

∑
i

nb
i , (1)

where a(†)
i and b(†)

i are respectively the spinless fermionic an-
nihilation (creation) operators of the conduction and valence
electrons at lattice site i. t a(b) is the nearest-neighbor hopping
integral of the conduction (valence) electrons. The first two
terms thus describe the kinetic energy of the electron-hole sys-
tem. The third term addresses the local Coulomb interaction
between the conduction and valence electrons with respect to
the occupation operators na

i = a†
i ai and nb

i = b†
i bi. εa(b) and

μ are on-site energy of the conduction (valence) electron and
chemical potential. In case t b = 0, i.e., all valence electrons
are localized, the Hamiltonian written in Eq. (1) recovers
the original Falicov-Kimball model [23], on the other hand,
with t a = t b it is the single band Hubbard model [24]. In a
general case, t b �= 0, the Hamiltonian in Eq. (1), the so-called
extended Falicov-Kimball model has been intensively adapted
to analyze the excitonic condensation state in the semimetal-
semiconductor transition materials [5,10,13,15,25]. Using the
Fourier transformation, for instance, a†

i = 1√
N

∑
k eiRika†

k, the
Hamiltonian in Eq. (1) can be rewritten in the momentum
space, likely as

H =
∑

k

(εa
ka†

kak + εb
kb†

kbk ) + U

N

∑
kk′q

b†
k+qbk′a†

k′−qak, (2)

where N is the number of lattice sites, and

ε
a(b)
k = εa(b) − 2t a(b)(cos kx + cos ky) − μ, (3)

are the electronic dispersion of conduction (valence) electrons
in a 2D hypercubic lattice. Here, we have written the Hamilto-
nian in 2D momentum space. That is applicable to describe the
excitonic states in the 2D semimetal-semiconductor transition
compound TmSe0.45Te0.55 or quasi-1D semimetal Ta2NiSe5.

Because of the many-body features, the Hamiltonian in
Eq. (1) is impossible to be solved exactly. In the present
paper, we use the unrestricted Hartree-Fock approximation by
leaving out all fluctuation parts, the effective Hamiltonian then
is written as

Heff =
∑

k

(ε̄a
ka†

kak + ε̄b
kb†

kbk ) + δ
∑

k

(b†
kak + a†

kbk ). (4)

Here the electronic excitation energies have been replaced
with the contribution of the Coulomb interaction given by

ε̄
a(b)
k = ε

a(b)
k + Unb(a), (5)

where na = ∑
k〈a†

kak〉/N and nb = ∑
k〈b†

kbk〉/N , respec-
tively, are the conduction and valence electronic densities
evaluated in the momentum space. δ in the effective Hamil-
tonian denotes for

δ = −U

N

∑
k

〈a†
qbq〉, (6)

which plays the role of the excitonic condensate order param-
eter, addressing a hybridization of the conduction and valence
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electrons, leading to the formation and a condensation of
excitons in the system.

The effective Hamiltonian in Eq. (4) might be diagonal-
ized by using the Bogoliubov transformation by defining new
fermionic operators

ā†
k = ξkb†

k + ηka†
k, (7)

b̄†
k = −ηkb†

k + ξka†
k, (8)

where ξk and ηk are chosen such that ξ 2
k + η2

k = 1, then one
finds

ξ 2
k = 1

2

[
1 + sgn

(
ε̄a

k − ε̄b
k

) ε̄a
k − ε̄b

k

�k

]
,

η2
k = 1

2

[
1 − sgn

(
ε̄a

k − ε̄b
k

) ε̄a
k − ε̄b

k

�k

]
, (9)

with

�k =
√(

ε̄b
k − ε̄a

k

)2 + 4|δ|2. (10)

In the new fermionic operator representation, the effective
Hamiltonian in Eq. (4) can be rewritten in a diagonal form as

Hdia =
∑

k

(Ea
k ā†

kāk + Eb
k b̄†

kb̄k ), (11)

with the respective quasiparticle energies

Ea/b
k = ε̄a

k + ε̄b
k+q

2
∓ sgn

(
ε̄a

k − ε̄b
k+q

)
2

�k. (12)

In the diagonal form of Eq. (11), one easily evaluates the
expectation values such that

〈na
k〉 = 〈a†

kak〉 = η2
knF

(
Ea

k

) + ξ 2
k nF

(
Eb

k

)
,

〈nb
k〉 = 〈b†

kbk〉 = ξ 2
k nF

(
Ea

k

) + η2
knF

(
Eb

k

)
, (13)

〈δk〉 = 〈a†
qbq〉 = [

nF
(
Eb

k

) − nF
(
Ea

k

)]
sgn

(
ε̄a

k − ε̄b
k

) δ

�k
,

where nF (Ek ) denotes for the Fermi distribution function,
given by

nF (Ek ) = 1

1 + eβEk
, (14)

with β = 1/T and T is the temperature.
From Eqs. (5), (6), and (13) one finds a set of self-

consistent equations, so the excitonic condensate order
parameters and quasi-particle energies can be evaluated by
several numerical calculation routines. These results might
help us evaluate some dynamical quantities addressed in the
following sections.

III. DYNAMICAL QUANTITIES

A. Optical conductivity

To discuss the dynamical properties of the excitonic
condensate in the system addressed in the Hamiltonian equa-
tion (1), firstly we consider the optical absorption spectrum
by analyzing the optical conductivity. In the linear response
theory, the optical conductivity can be inspected by using the

Kubo formula [26], given by

σ (ω) = i

ω

1

N2

∑
kk′

〈〈j†(k)|j(k′)〉〉H. (15)

Here 〈〈. . . 〉〉H denotes the two-particle retarded correla-
tion function with respect to a Hamiltonian H and j(k) is
the momentum dependence of the current operator. For the
electron-hole system described by the Hamiltonian in Eq. (2),
the current operator simply reads

j(k) = va
ka†

kak + vb
kb†

kbk, (16)

where v
a(b)
k = ∇ε

a(b)
k with the dispersion energy ε

a(b)
k is de-

fined in Eq. (3). Using the Bogoliubov transformation one can
express the current operators in the new fermionic operators
defined in Eqs. (7). Owing to the diagonal form of the Hamil-
tonian written in Eq. (11), we simply deliver an expression for
the real part of the optical conductivity as

σ (ω) = π

ω

1

N

∑
k

η2
kξ

2
k

(
va

k − vb
k

)2[
nF

(
Ea

k

) − nF
(
Eb

k

)]

× [
δ
(
ω + Ea

k − Eb
k

) − δ
(
ω − Ea

k + Eb
k

)]
(17)

where the prefactors ηk and ξk have been defined in Eqs. (9)
and the quasiparticle energies are given in Eq. (12). The real
part of the optical conductivity in the excitonic system can
be thus straightforwardly evaluated if the self-consistent solu-
tions in the previous section are delivered.

B. Dynamical excitonic susceptibility function

Another quantity to analyze the dynamical excitonic exci-
tations is the dynamical excitonic susceptibility function that
might induce signatures of the excitonic fluctuations close to
the critical points of the excitonic condensate transition. In
the momentum space, the dynamical excitonic susceptibility
function at a momentum q can be written as

χ (q, ω) = − 1

N

∑
kk′

〈〈a†
kbk+q|b†

k′+qak′ 〉〉H. (18)

The two-particle correlation function in the summation might
be evaluated by the equation of motion method, i.e., one
arrives at

ω〈〈a†
kbk+q|b†

k′+qak′ 〉〉H = 〈[a†
kbk+q; b†

k′+qak′ ]〉
+〈〈[a†

kbk+q;H]|b†
k′+qak′ 〉〉H.

(19)

With the Hamiltonian H given in Eq. (2) the last term in
Eq. (19) might appear the higher-order Green’s functions. In
the random phase approximation, the excess operators might
be factorized and one finds∑

k′′q1

〈〈a†
kbk′′a†

k′′−q1
ak+q−q1 |b†

k′+qak′ 〉〉H

≈
∑

q1

〈na
k+q−q1

〉〈〈a†
kbk+q|b†

k′+qak′ 〉〉H

−
∑

k2

〈na
k〉〈〈a†

k2
bk2+q|b†

k′+qak′ 〉〉H, (20)
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and ∑
k′′q1

〈〈b†
k+q1

bk′′a†
k′′−q1

bk+q|b†
k′+qak′ 〉〉H

≈
∑

q1

〈nb
k+q1

〉〈〈a†
kbk+q|b†

k′+qak′ 〉〉H

−
∑

k2

〈nb
k+q〉〈〈a†

k2
bk2+q|b†

k′+qak′ 〉〉H. (21)

In the evaluations above, we have assumed that the system
is in the normal state, all terms multiplying with the excitonic
order parameters, therefore, are eliminated. In the normal
state, δ = 0, the Hamiltonian in Eq. (4) has been diagonalized,
the expectation values in Eqs. (19)–(21) are simply deter-
mined and finally one delivers an expression of the dynamical
excitonic susceptibility function in a popular form

χ (q, ω) = −χ0(q, ω)

1 + Uχ0(q, ω)
, (22)

where

χ0(q, ω) = 1

N

∑
k

〈nb
k〉 − 〈na

k+q〉
ω + i0+ − ε̄a

k+q + ε̄b
k

(23)

plays as the bare excitonic susceptibility function with the
energies ε̄

a(b)
k given in Eq. (3) and 〈na(b)

k 〉 = nF (ε̄a(b)
k ). Similar

to the optical conductivity quantity in Eq. (17), the dynamical
excitonic susceptibility function in Eq. (22) can be easily eval-
uated in case of the solution of the self-consistent equations is
achieved.

IV. NUMERICAL RESULTS AND DISCUSSION

To analyze in detail the signatures of the dynamical prop-
erties of the excitonic condensation state in semimetallic and
semiconductor materials, in this section, we address numeri-
cal results of the optical conductivity and dynamical excitonic
susceptibility function evaluated analytically in Eqs. (17) and
(22), respectively. In doing so, one has to find a solution of the
self-consistent Eqs. (5), (6), and (13) for a set of parameters
given in the Hamiltonian (1). In our numerical calculation,
without generality, t a = 1 is chosen as the unit of energy and
t b = −0.3 is fixed to illustrate the direct band-gap situation
with the valence hole is usually more localized than the con-
duction electron. In this study, the chemical potential μ is
adjusted to ensure the half-filled band case, i.e., na + nb = 1.

First of all, we analyze the optical properties of the sys-
tem in the ground state by discussing the real part of the
optical conductivity spectra at zero temperature. The real part
of the optical conductivity represents the optical absorption
and provides information about the formation of excitons in
the system. In Fig. 1, the real part of the zero-temperature
optical conductivity σ (ω) is displayed for some values of
the Coulomb interaction U at εb = −2.0. Note here that
in our calculation, εb is specified in the case of εa = 0 is
fixed. At a value of Coulomb interaction in which the sys-
tem stabilizes in the excitonic condensation state, one always
finds that the optical conductivity gets a sharp peak and then
suddenly drops down to zero at a given energy ωc by lower-
ing frequency. For ω < ωc, the optical conductivity σ (ω) is
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ω

)
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U=1.0
U=1.5
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ω
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σ(
ω

)
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U=3.6
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ω

0
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2×10
-16

3×10
-16

σ(
ω

)

0 1 2 3 4 5
U

0

0.4

0.8
δ
ΔE

(a) (b)

Uc~3.3

BCS BEC

FIG. 1. The real part of the optical conductivity σ (ω) for dif-
ferent values of the Coulomb interaction U at εb = −2 and T = 0
in the semimetal (a) and semiconducting (b) situations. The larger
inset shows the excitonic condensate order parameter δ and energy
gap �E as functions of U . Uc = 3.3 indicates the critical Coulomb
interaction of the BCS-BEC excitonic crossover. The smaller inset in
the panel (b) plots σ (ω) for U = 3.6.

completely zero. Once U is small, the Coulomb interaction
is not sufficiently large enough to establish the electron-hole
bound state, the excitons are not formed and the system
stabilizes in the electron-hole plasma state. The optical con-
ductivity thus typifies the Drude behavior as found in the
normal metal [see black-solid line in Fig. 1(a)]. Increasing
the Coulomb interaction, the system stabilizes in the excitonic
condensation state (see the red symbols in the inset). The
excitonic condensate order parameter increases as increasing
the Coulomb interaction, that is also indicated in the signa-
ture of the optical conductivity spectra in which ωc increases
in the order of 2δ. Due to the presence of the sufficiently
large Coulomb interaction, electrons in the conduction band
can bind together with the hole in the valence band and the
hybridization between the bands develops corresponding to
establishing the coherent state of excitons. That interorbital
interaction is enough to yield the peak in the optical con-
ductivity. However, at small U , the hybridization happens
only in a narrow range around the Fermi level for a given
εb and one finds the sharp peak in the optical conductivity
spectrum. Increasing U , the hybridization is expanded with
more electrons and holes carrying momenta deviating from
the Fermi level contributing to the formation of the coherent
state. Meanwhile, owing to the Hartree shift, increasing U also
reinforces the separation between the conduction band and the
valence band. The Fermi level thus becomes less important.
The peak thus broadens and shifts to the higher energy and as
increasing the interaction strength. In this situation, the system
still settles in the semimetal state and the system typifies in the
BCS-type of the excitonic condensation state [see Fig. 1(a)].

In the case with U > Uc the system settles in the semi-
conducting state corresponding to the stability of the BEC
excitonic condensate (Uc here is the critical value of the
Coulomb interaction for the BCS-BEC crossover of the ex-
citonic condensate, see the inset). In this case, the peak
of optical conductivity strongly reduces and the spectrum
is widely expanded for ω > ωc. At ω < ωc, the optical
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-14
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)

FIG. 2. The real part of the optical conductivity σ (ω) for dif-
ferent εb at zero temperature and U = 3. The left inset shows the
optical conductivity spectrum at εb = −2.5 and the right inset plots
the excitonic condensate order parameter δ and the energy gap �E
as functions of εb.

conductivity signature also completely disappears. However,
these signatures are significant and valid only in the exci-
tonic condensation state with the spontaneous electron-hole
hybridization. Out of the stability, i.e., in the normal semicon-
ducting state, although one finds the disappearance, however,
it is owing to the gap �E opening due to the Hartree shift
that rapidly increases as increasing U (see the blue line in
the inset). The ωc thus becomes large, nevertheless, the height
of the peak suddenly becomes uncountable [see blue line in
Fig. 1(b)]. The optical conductivity spectra discussed above
can be applicable to analyze the low-energy excitonic con-
densate features of semimetal Ta2NiSe5 or semiconductor
Ta2NiS5 [6,7].

To address the external pressure affecting the optical prop-
erties of the excitonic condensation state in the system, we
show in Fig. 2 the real part of the optical conductivity σ (ω)
for various on-site valence electron energies εb at a given
Coulomb coupling U = 3 and at zero temperature. Note that
here we have fixed εa = 0, the on-site energy εb, therefore,
represents the overlap between the noninteracting valence and
conduction bands, indicating an effect of the external pressure
on the semimetal-semiconducting transition systems [27,28].
Indeed, at εb = 0, one finds a robust overlap between two
non-interacting conduction and valence bands corresponding
to the strong external pressure applied to the system. In this
case, the optical conductivity shows the sharp peak with high
spectral weight and suddenly drops down at ω = ωc. Lower-
ing εb moves the valence band far from the conduction band
with respect to reducing the external pressure and the peak
in the optical conductivity shifts to the left with decreasing
ωc. The decrease of the spectral weight by lowering εb also
indicates the depression of the electron-hole hybridization due
to decreasing of the external pressure (see also the red sym-
bols in the right inset). Especially, at very low εb, for instance
at εb = −2.5, the two bands are completely separated, the
system settles in the normal semiconducting state and the
optical seemingly to be insignificant (see the left inset and
blue line in the right inset in Fig. 2).

0 0.5 1 1.5
ω

0

0.02

0.04

0.06

σ(
ω

)

T=0
T=0.05
T=0.10
T=0.13
T=0.16
T=0.17
T=0.172

0 0.05 0.1 0.15 0.2
T

0

0.2

0.4

δ

T=0
T=0.05

FIG. 3. The real part of the optical conductivity σ (ω) for differ-
ent temperature T with U = 3 at εb = −2.0. The inset shows the
excitonic condensate order parameter δ depending on temperature T
for the set of parameters. Here we also zoom in to clear the signatures
of σ (ω) for large temperatures T = 0.17 and T = 0.172.

The stability of the excitonic condensate is further
demonstrated by the temperature evolution of the optical
conductivity. In Fig. 3 we address the real part of the opti-
cal conductivity σ (ω) for different temperatures T at given
Coulomb coupling U = 3 and εb = −2. At low tempera-
ture, owing to the sufficient large Coulomb interaction the
hybridization between the electrons in the conduction band
and holes in the valence band might be formed and the exci-
tonic condensation state is established. That is indicated by
the sharp peak in the optical conductivity spectrum or the
nonzero value of the excitonic order parameter δ. Increasing
the temperature, the thermal fluctuations are reinforced, that
eliminate the electron-hole pairing state. The peak of the
optical conductivity spectrum, therefore, moves to the left
with reducing its spectral weight. At large temperatures, all
electron-hole pairs are destroyed and the system settles in
the high-temperature electron-hole plasma state. The optical
conductivity thus evaluates as the Drude form in the normal
semimetal state (see the maroon-solid line in Fig. 3).

Above optical conductivity spectra have addressed the
signatures of the optical absorption of excitons in the con-
densation state. The dynamical properties out of the order
state thus still missing. In the rest of this section, we focus
on discussing the excitonic fluctuations before the condensate
becomes stabilized by analyzing signatures of the dynamical
excitonic susceptibility function. Recent studies have released
that the zero-momentum excitons become most favored in the
forming of the excitonic condensation state in the semimetal
Ta2NiSe5 [8,9,29,30]. In this paper, therefore, we would in-
tently consider the dynamical excitonic susceptibility function
at momentum q = 0 to analyze the fluctuations of the exci-
tonic condensation state.

In Fig. 4, we illustrate the imaginary part of the dynam-
ical excitonic susceptibility function at the zero-momentum
Imχ (ω) ≡ Imχ (q = 0, ω) evaluated in Eq. (22) for different
Coulomb interactions U at εb = −2 and T = 0.25. In the
range of the parameters, the excitonic condensate is probably
out of the order and the dynamical excitonic susceptibility
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FIG. 4. The imaginary part of the dynamical excitonic suscepti-
bility function for different values of the Coulomb interaction U at
εa = −2.0 and T = 0.25.

function would express the excitonic excitations before the
condensed state becomes stabilized. For small Coulomb in-
teraction U � 3, one finds a wide spreading of the dynamical
susceptibility with low spectral weight. In this range of the
Coulomb interaction, the system settles in a high-temperature
semimetal state, the excitonic fluctuations thus seem to be
insignificant, although, by increasing U the susceptibility
function peak shifts to the lower frequency specifying that the
bound excitonic coherence becomes more or less established.
The bound of excitonic coherence becomes dramatically sig-
nificant in the case of large Coulomb interaction, i.e., at
U � 4. In this range, the system stabilizes in the high-
temperature semiconducting state. The imaginary part of the
dynamical excitonic susceptibility function shows a sharp
peak at low frequency. The dramatic accretion of the peak sig-
natures in the semiconducting state here specifies the extreme
development of the bound excitonic coherence before the
condensate transition and that corresponds to the formation of
excitons out of the condensation state in the semiconducting
side. This halo phase has been addressed in previous studies in
the EFKM [16] or in the simple effective-mass Mott-Wannier-
type model [4]. However, the coherence preformed excitons
in the semiconducting state in the present study is the most
significantly viewed in the signatures of the dynamical ex-
citonic susceptibility function. Increasing U with respect to
moving far from the boundary of the phase transition, the
higher frequency-shifted peak in the susceptibility indicates
the slacker bound coherence excitonic state. Note that the
dynamical excitonic susceptibility functions addressed here
are evaluated at the extremely large temperatures, the corre-
lations in the systems thus become less important, which is
synonymous with a weak-coupling situation [19]. The present
results examined in the UHF approximation thus are reliable
even for large Coulomb interaction [20–22].

The possibility of the appearance of the preformed excitons
in the semiconducting side is also indicated in the signatures
of the dynamical excitonic susceptibility function at a given
mediated Coulomb coupling but with small external pressure.
Indeed, Fig. 5 shows us that the imaginary part of χ (ω) gets
a sharp peak at a small frequency in the case of εb = −2.5. In
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FIG. 5. The imaginary part of the dynamical excitonic suscepti-
bility function for some values of the valence electron on-site energy
εb at U = 3 and T = 0.25.

that situation, the system settles into a semiconducting state
(see Fig. 2). Increasing the external pressure corresponding
to increasing the valence electron on-site energy εb, the sys-
tem sustains in the semimetal state, the peak thus moves to
the right with depressing the spectral weight. Especially, for
εb = 0, the signature of the Imχ (ω) releases the property of
the nearly free high-temperature electron-hole plasma sys-
tem.

Lastly, we analyze the impact of the thermal fluctuations
on the bound excitonic coherence state above the excitonic
condensate transition points by considering the tempera-
ture dependence of the dynamical excitonic susceptibility
function. Figure 6 addresses the imaginary part of the suscep-
tibility for some different temperatures at a given Coulomb
coupling for fixed εb = −2. At mediated Coulomb interac-
tion, U = 3 for instance, Fig. 6(a) shows us that at a given
temperature, the dynamical susceptibility function gets a sin-
gle peak. Lowering temperature shifts the peak to the left and
reinforces the spectral weight. That signature indicates the
tendency of the bound excitonic coherent state might appear
once the temperature reaches the critical points. The thermal
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FIG. 6. The imaginary part of the dynamical excitonic suscep-
tibility function for different values of the temperature T at U = 3
(a) and U = 4 (b) with εb = −2.
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fluctuations thus play an important role, that might destroy
the coherence of the excitons in case of sufficiently large
temperature. However, the signature of the excitonic coher-
ence only becomes significant once the system settles in the
semiconducting side. Indeed, at large Coulomb interaction,
Fig. 6(b) displays a sharp resonance peak at a low frequency
of the dynamical excitonic susceptibility function. The spec-
tral weight is much larger than that observed in the case of
mediated Coulomb coupling with respect to the semimetal
state [c.f Fig. 6(a)]. Signature of the Imχ (ω) in Fig. 6(b) thus
expresses the stability of the bound excitonic coherent state
above the transition points. The preformed excitons thus have
been specified in the high-temperature semiconducting state.
The impress of the thermal fluctuations once again appears
in this situation releasing that increasing the temperature has
pressed down the bound electron-hole pair coherence.

V. CONCLUSIONS

To conclude, we have addressed the low-energy dynamical
properties of the excitonic condensation state in semimetal
and semiconducting materials by analyzing the optical con-
ductivity and dynamical excitonic susceptibility functions. By
using the unrestricted Hartree-Fock approximation for the
extended Falicov-Kimball model we have derived a set of
self-consistent equations, so the quasiparticle energies can
be numerically evaluated. This helps us inspect the stabil-
ity of the excitonic condensation state in signatures of the
excitonic order parameters and the optical conductivity in

the Kubo formula. In the framework of the random phase
approximation, the dynamical excitonic susceptibility func-
tion for the model is also discussed. Our numerical results
release in detail the low-frequency dynamical properties of
the bound coherence excitonic state both inside and outside
of the excitonic condensation state. Indeed, inside the ex-
citonic condensation state, the optical conductivity shows a
sharp peak at a frequency that is twice as of the excitonic
condensate order parameter. The peak becomes less signifi-
cant if the system is out of the excitonic condensate. In the
meanwhile, the dynamical excitonic susceptibility function
presents the signatures of the excitonic fluctuations above
the transition points. In the semimetal side with sufficiently
large Coulomb interaction, one finds a dominant peak at low
frequency in the dynamical excitonic susceptibility spectra,
indicating the possibility of the resonance bound excitonic
condensate. The signature is dramatically reinforced inside of
the semiconducting state with large Coulomb interaction. In
this case, the dynamical susceptibility exhibits an extremely
high peak at low energy and that specifies the stability of
the bound excitonic condensation state of the preformed ex-
citons in the semiconducting materials. Contributions of the
quantum fluctuations beyond the present approximations in
considering the low-energy excitonic condensation properties
would be worthwhile for future studies.
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