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Abstract
In this study, landslide susceptibility analysis were undertaken in the Astore region, Pakistan. The Geographical 
Information System (GIS) and Remote Sensing (RS) techniques were used along with the analytical hierarchy 
process (AHP) to find out the landslide susceptibility of the region. The Astore, lying in the Himalayan 
mountains, experiences frequent landslides due to several triggering factors. Factors including slope, lithology, 
aspect, topographic wetness index (TWI), plan curvature, stream power index (SPI), distance from drainage, 
land use land cover (LULC) and soil were used. Each factor was processed in the GIS environment and 
weighted through the AHP technique. AHP weights were derived with a consistency ratio of 0.06. Finally, the 
five zones, very low, low, moderate, high, and very high are respectively covering 20.5% (28.98 km2), 33.1% 
(46.78 km2), 30.6% (43.26 km2), 10.8% (15.28 km2), and 4.9% (6.92 km2). Slope, lithology and LULC were 
the most important factors in triggering landslides.
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Introduction

Landslides are one of the most destructive natural 
hazards, particularly in mountainous regions 
(Landslides. 2005; Yalcin et al., 2011). Like most 
other developing countries, Pakistan experiences 
several natural hazards, such as earthquakes, 
floods, landslides, etc. The mountainous northern 
area of Pakistan is geomorphologically very 
active, making landslides a frequent and ever-
present hazard for the people living there. The 
Centre for Research on the Epidemiology of 
Disasters (CRED) in their Emergency Disaster 
Database 2007 showed that landslides claimed 
around 1000 lives and damaged property worth $4 

billion annually (Emergency Disasters Data Base, 
2007; Sato and Harp, 2009). Our study area, the 
Astore region, experiences landslides on a regular 
basis. In 2002, landslides triggered by earthquake 
killed 23 people in the Astore region and made 
1500 people homeless in Astore and Gilgit 
areas (Iqbal et al., 2017). Landslides damaged 
buildings and infrastructure, transportation 
networks, ongoing projects and private property. 
This enormous loss of property is greater than 
caused by any other disaster, including floods 
and earthquakes (García-Rodríguez et al., 2008). 
Almost 72,496 square kilometers (km2) of 
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Pakistan’s land surface comprising high snow-
covered peaks with altitudes ranging up to 
8000 m above sea level (Kanwal et al., 2016). 
Three mountain ranges, Karakorum, Himalayas 
and Hindukush, make up the northern area of 
Pakistan. Being the youngest of the mountain 
system, the Himalayas experience 30% of the 
landslides occurring throughout the world due 
to intense and prolonged rain showers, active 
seismicity, erosion and high-topographic relief 
and most importantly, slope failure (Kanwal et 
al., 2016). Catastrophic landslide incidents such 
as the 2005 earthquake and Atta Abad landslides 
have also been widely reported throughout this 
region (Kamp et al., 2008; Khan et al. 2010; 
Cook and David, 2013). 
Landslide susceptibility mapping is the first 
step in landslide assessment, planning and 
disaster management. Since several factors cause 
landslide, this leads to decisional imprecision 
and uncertainty problem. In order to incorporate 
this, many studies have applied a multicriteria 
decision-making approach such as Analytical 
Hierarchy Process (AHP) (Kanwal et al., 2016; 
Chandio et al., 2013). 
Hence, it is critical to carry out landslide 
susceptibility mapping for better landslide hazard 
and risk management (Ahmed et al. 2014). 
Despite this knowledge, the amount of research 
done on landslides in Pakistan is very limited. 
The majority of the research has focused on only 
a few regions such as Murree, Kaghan valley, and 
Kashmir valley (Akbar and Ha, 2011; Rehman 
et al., 2011; Khan et al., 2013). In recent years, 
some studies have shifted their focus to other 
regions such as Hunza, Gilgit and Ghizer district 
(Ali et al., 2015, Rahim et al., 2018, Khan et al., 
2019). These studies have carried out landslide 
susceptibility analysis by applying Geographical 
Information System (GIS) and Remote Sensing 
(RS) techniques, but overall there is a dearth of 
reasrat on landslides reas assessment of most reas 
of Pakistan, including our study rea, the Astore 
reas (Kanwal et al., 2016), (Kamp et al. 2008; 
Rahman et al., 2014). Since landslide has a strong 

social and economic reasra the Astore reas and its 
people, our study would help identify areas that 
are more prone to landslides and help guide the 
decisions of the development authorities. This 
would ultimately reduce landslide’s impact on 
human life and infrastructure in Astore region. 
This study aimis study seeks to integrate GIS 
and RS to create a landslide susceptibility map 
of Astore region, identify areas that are more 
prone to landslides, and find out about the 
most important factors that trigger landslides. 
To achieve this outcome, we identified nine 
factors that can trigger landslides which are 
categorized into topographic parameters (slope, 
aspect, plan curvature, soil), hydrological 
parameters (distance to drainage, topographic 
wetness index and stream power index), human-
induced parameters (land use land cover) and 
lithology. We used the Analytical Hierarchy 
Process (AHP) technique, a heuristic approach, 
to handle uncertainty and decisional imprecision 
associated with this study (Chandio et al. 2013). 
A landslide susceptibility map is generated for 
the Astore region by applying these techniques 
and is reclassified into five zones: very low, low, 
moderate, high and very high.

Study Area

The Astore is one of ten districts of Gilgit-
Baltistan, which is an administrative territory of 
Pakistan. It is bounded to the north by the Gilgit 
district, to the south by Khyber-Pakhtunkhwa and 
Neelum districts of Azad Kashmir, to the east by 
Skardu district and the west by Diamer district. 
The region covers a total area of 5092 km2. The 
mean and median elevations of the Astore basin 
are 4100 and 4564 above sea level, respectively 
(Tahir et al., 2015). The climate of Astore is 
moderate during summer and cold during winter, 
with higher rainfall levels than surrounding areas 
(Tahir et al., 2016). Figure 1 shows the study area 
at national, regional and local extent. 
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Materials and Methods  

A heuristic approach based on qualitative indexes 
was applied alongside GIS and RS techniques 
to perform susceptibility mapping of the Astore 
region (Solaimani et al., 2013; Sørensen et al., 
2006; Hadmoko et al., 2009; Arnous, 2011; 
Akgun, 2012). The complete research processes 
undertaken in this study are presented in 
Figure 2. Landslide is a complex phenomenon 
influenced or triggered by the interaction of 
various factors or variables (Saha et al., 2002; 
Solaimani et al., 2013; Anbalagan et al., 2015). 
For this study, we selected nine factors for the 
landslide susceptibility analysis because of their 
importance and influence in the study area. 
These nine factors were categorized into four 
groups. The first group represents topographic 
parameters: slope, aspect, plan curvature, and 
soil. The second group comprises hydrological 
parameters containing topographic wetness 
index, stream power index, and distance to 
drainage. The third group includes land use land 
cover, an anthropogenic factor, while the fourth 
group consists of lithology.

Figure 1. The study area map of the Astore region at the global, regional and local extent.

Topographic factor
It includes parameters that define the topography 
of an area, such as slope, aspect, plan curvature 
and soil. A Digital Elevation Model (DEM) was 
downloaded free from the EarthExplorer website 
and used to create several thematic layers (Quan 
and Lee, 2012). 
The slope is known to cause landslides and 
hence, has been repeatedly employed in landslide 
susceptibility studies (Ercanoglu et al.. 2004). 
The Slope stability is dependent on the angle of 
the slope; the steeper the slope, the higher the 
probability of landslide (Rehman et al., 2011). 
A slope map was derived, as shown in figure 3, 
from the DEM with elevation values ranging 
from 0 to 87.5 and divided into five classes: 
very gentle slope (0-10°), gentle slope (10-20°), 
moderately steep slope (20-30°), steep slope (30-
50°), and extremely steep slopes or escarpments 
(>50°). Landslide occurrence is highly unlikely 
due to lower sheer shear stress in the first class. 
Each class was assigned weights on the principle 
that landslide susceptibility increases as slope 
steepness increases (Kanwal et al., 2016).

https://doi.org/10.6092/issn.2281-4485/12600


30

Afzal et al.

DOI: 10.6092/issn.2281-4485/12600

EQA  48 (2022): 27-40

Figure 2. Research flowchart systematically displaying the steps 
undertaken for this study.

Figure 3. Slope map of Astore region. Figure 4. Aspect map of Astore region
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Aspect is another topographic parameter 
employed in landslide susceptibility analysis. 
Meteorological events such as the amount of 
rainfall, exposure to sunlight, and discontinuities 
can also affect the possibility of landslides 
(Komac 2006). Aspect deals with these factors 
and breaks down the slope surfaces unevenly. 
Aspect was also derived from the DEM of the 
Astore region. It was observed in the literature 
that due to south-east to the south-west azimuth 
of periodic monsoon rainfall, slopes with south 
to north-west direction experienced the strongest 
impact (García-Rodríguez et al. 2008; Cook and 
David 2013). Based on this concept, the west 
side was given the highest weight, followed by 
the south-west and north-west. The resultant 
raster layer, as shown in figure 4, was classified 
into nine categories: north (0-22.5°, 337.5-360), 
northeast (22.5-67.5°), east (67.5-112.5°), south-
east (112.5-157.5°), south (157.5-202.5°), south-

west (202.5-247.5°), west (247.5-292.5°), and 
north-west (292.5-337.5°).
Curvature is defined as the second derivative of 
a surface or slope of the surface (Kimerling et al. 
2012). Curvature defines the shape and form of 
the topography. The curvature of a surface could 
be concave, convex or flat. A concave slope has 
a higher water retention capability after rainfall 
and could retain water for a greater period. On 
the contrary, the convex slope indicates a rocky 
outcrop of solid bedrock. It means that a concave 
slope has a higher possibility of landslide 
occurrence and convex slope a lower chance 
of landslide occurrence. A plan curvature raster 
layer was derived from depression-less Aster 
DEM (Abuckley 2010). A positive curvature 
value characterizes an ascendingly convex slope, 
whereas a negative curvature value represents a 
concave slope.

Figure 5. Plan curvature map of Astore 
region.

Figure 6. Soil map of Astore region.
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Zero value represents a flat surface (Poudyal et 
al. 2010). Based on the above relationship, we 
can say that a negative value poses a higher 
risk of landslide occurrence and vice versa. The 
curvature raster file was divided into four classes: 
<3, -3 – 0, 0 – 3, and >3, as shown in figure 5.
Soil type can also significantly influence the 
possibility of landslides. Different soil types 
have different properties such as compactness 
and water retention quality (Ray et al. 2010). 
The soil data was obtained from the International 
Soil Reference and Information Center (ISRIC). 
It was classified into three categories: Glacier, 
Eutric Cambisols, and Lithosols. Lithosols are 
found to have the highest potential for causing 
landslide. They are a soil type that contains 
weathered rock fragments and are present 
mostly on steep slopes. Cambisols are formed of 
silicate clay but lack adequate soil development 
(Wageningen). Lithosols were given the highest 
weight, followed by cambisols and glaciers, as 
shown in figure 6.

Hydrological factors
Topographic wetness index (TWI), stream power 
index (SPI), and drainage distance are considered 
hydrological parameters. TWI is used to measure 
how local topography controls local hydrological 
processes and shows the spatial spread of surface 
saturation and soil moisture (Sørensen et al. 2006). 
The algorithm for calculating TWI is different 
for different areas and depends on how the local 
upslope contributing area is calculated. The 
algorithm must show the impact of local terrain 
on drainage (Qin et al. 2011). The equation [1] 
(Sørensen et al. 2006; Qin et al. 2011) presents 
calculations for TWI:

 [1]

Where ‘As’ is the local upslope contributing 
area (m2/m) and β is the local slope gradient in 
degrees.
The resultant TWI raster layer contained positive 

values. An increase in TWI values indicates an 
increase in the catchment area and a decrease 
in slope angle. The higher the TWI value, the 
greater is the chance of landslide (Gorsevski et 
al. 2006; Lee and Min 2001). This TWI layer was 
reclassified into three categories: <8, 8 – 12, and 
>12, as shown in figure 7.
SPI calculates stream erosion power and adds 
instability in an area. It contains both negative 
and positive values. A higher value of SPI refers 
to steep and straight gorges, whereas a lower 
value of SPI represents wide alluvial flats and 
floodplains (Kamp et al. 2008). Equation [2] 
(Poudyal et al. 2010) was used to calculate SPI:

[2]

Where ‘As’ is the local upslope contributing 
area (m2/m) and β is the local slope gradient in 
degrees.
Slope values that were originally in degrees were 
converted into radians. The original raster layer 
was classified into four categories: - 5.5 – 0, 0 – 
3, 3 – 6, and >6, as shown in figure 8.
Distance to drainage is also another parameter 
that affects the stability of a slope. In mountainous 
areas such as the Astore region, topographic 
hill slopes are negatively altered by gorges and 
streams by erosion. Streams also saturate the 
slopes until the water level increases. Drainage of 
the Astore region was extracted from depression-
less ASTER GDEM by performing the watershed 
analysis (Tarboton and Maidment 2015). Four 
buffer zones were created of the distance to 
drainage: 0 – 500, 500 – 1000, 1000 – 1500, 1500 
– 2000, as shown in figure 9.

Anthropogenic factors
Land use land cover is one of the main 
anthropogenic factors that can strongly affect 
slope stability by controlling the mechanical 
and hydrological mechanisms. The land cover 
works as a natural shelter and prevents soil 
erosion and landslides. Vegetation affects soil 
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hydrology in terms of infiltration, interception, 
and evapotranspiration.  
Roots hold the soil and increase soil strength 
which can significantly decrease the chances of 
landslide occurrence. On the other hand, Barren 
land is more susceptible to landslides because it 
is exposed. Roots also enhance soil permeability 

Figure 7. Topographic wetness index 
map of Astore region.

Figure 8. Stream power index map of 
Astore region.

Figure 9. Distance to drainage map of 
Astore region.

Figure 10. Land use land cover map of 
Astore region.

and, ultimately, conductivity and infiltration. This 
allows for better water collection in the soil (Reis 
et al. 2012). For this study, Land use land cover 
(LULC) was prepared, as shown in figure 10, by 
performing Maximum Likelihood Classification 
on the satellite imagery of the Astore region. 
LULC was divided into the following classes: 
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settlements, settlements with cultivated land, 
waterbody, streams, forest land, cultivated land, 
cloud cover orchard, floodplain, grassland, and 
snow-cover and hill/barren land.

Lithology/Geology
A landslide is a geomorphological event that 
is very much associated with the lithological 
characteristics of the land. Various lithological 
units have varying strength and different 
susceptibility degrees (Yalcin et al. 2011). 
Lithological data was acquired from the 
Geological Map of Pakistan prepared by the 
Survey of Pakistan (SoP).  According to the 

classification defined by SOP, the Astore region 
contained six different rock classes. For our 
analysis, these lithological units were classified 
into three rock types: Hard, medium and soft 
depending on their power to cause landslide; 
hard (Gg, Pz, m), medium (Kv), and soft (MPv, 
pC) (Fig. 11).
Apart from these factors, there are also many other 
factors that can influence a landslide event, such 
as rainfall and fault lines (Quan and Lee 2012; 
Kanwal et al. 2016; Feizizadeh and Blaschke 
2011). But these factors were not considered in 
this research due to the non-availability of data.

Figure 11. Lithology map of Astore 
region.

Figure 12. Landslide Susceptibility 
Index map of Astore region displaying 
the five susceptibility zones.

1.1.1 AHP Technique
The weights of all the parameters were determined 
using AHP based on local topographic and 
atmospheric characteristics, previous literature 
and expert judgement (Chandio et al. 2013; 
Feizizadeh and Blaschke 2011; Kanwal et al. 
2016; Pourghasemi et al. 2013; Quan and Lee 
2012; Reis et al. 2012; Saaty 2001). Before 

creating the landslide susceptibility map, each 
factor’s weight and rating value was calculated. 
Each factor was broken down into different 
classes and systematically assigned a rating 
value from 1 to 9, based on Saaty’s fundamental 
scale (Table 1).
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Fundamental Scale for Pair-wise Comparisons Table 1. Fundamental 
scale for pair-wise 
comparisons

1 Equal importance
3 Moderate importance
5 Essential or strong importance
7 Very strong or demonstrated importance
9 Extremely high importance

2, 4, 6, 8 Intermediate values

Following the same procedure, weight values 
were calculated. The weight value provides the 
relative importance of each factor among other 
factors. The rating and weight value increased 
as the degree of susceptibility increased 
(Saaty, 1980). Pair-wise comparison allowed 
for the comparison of elements against each 
other (Thanh and De Smedt, 2012) (for more 
information on the AHP technique, see Saaty 
(2001)). We measured the consistency of our 
expert judgement by calculating the consistency 
index (CI), which is defined by the following 
equation [3] (Saaty, 2001; Saaty, 1980).

[3]

Where λmax is the principal eigenvalue of the 
matrix and n is the order of the matrix. We 
use this index to compare it with the Random 
Consistency Index (RI). Finally, the consistency 
ratio was calculated using equation [4]:

[4]

Ideally, this value should be 0. But if the value is 
less than 0.1, then the comparison is consistent. 
Otherwise, values within the matrix based on 
subjective judgment need to be revised (Gao and 
Wang 2016). For all our comparisons, this value 
was less than 0.1.

Random Consistency Index (RI) Table 2.
The random 
consistency 
index table

n 1 2 3 4 5 6 7 8 9 10

RI 0 0 0.58 0.9 1.12 1.24 1.32 1.41 1.45 1.49

Landslide susceptibility index
Once all the factors are classified and their pair-
wise comparison-based matrices are generated, 
the landslide susceptibility index (LSI) was 
calculated with the help of the following equation 
[5] (Kanwal et al. 2016; Gao and Wang 2016):

[5]

where: Wj = weight value for parameter j;  Wij 
= rating value or weight value of class I in 
parameter j;  n = number of parameters.
LSI values were classified into five categories: 
very low, low, moderate, high and very high 
susceptibility.

Results

One of our research objectives was to determine 
the most important factors that trigger landslides 
using AHP. The -AHP pair-wise comparison 
matrix results showed that slope received the 
highest weightage of 0.304, followed by geology/
lithology (0.243) and LULC (0.140). A complete 
calculated score of each factor can be found in 
Table 3. The consistency ratio was found to be 
0.062. Slope received the highest weight because 
it is considered as the prime factor in inducing 
landslides. In the lithology layer, soft rock type 
was given the highest weight because soft rocks 
such as tuff, lava, Dogra slates etc. easily break 
down and are more prone to landslides due to 
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weak composition, spaces in between and more 
water content, compared to hard rocks such as 

granite, schist, gneiss etc.

Table 3. AHP weight matrices sheet displaying the weightage value of each factor along 
with the λmax, consistency index and consistency ratio values

Pair-wise comparison matrix, factors weight, λ max, CI and CR 
Factors 1 2 3 4 5 6 7 8 9 Weightage
(1) Slope 1.00 9.00 6.00 2.00 7.00 8.00 4.00 3.00 5.00 0.304
(2) Aspect 0.11 1.00 0.33 0.13 0.33 0.50 0.17 0.20 0.25 0.020
(3) Plan Curvature 0.17 3.00 1.00 0.20 2.00 3.00 0.25 0.33 0.50 0.052
(4) Geology 0.50 8.00 5.00 1.00 6.00 7.00 3.00 4.00 5.00 0.243
(5) SPI 0.14 3.00 0.50 0.17 1.00 2.00 0.20 0.25 0.33 0.038
(6) TWI 0.13 2.00 0.33 0.14 0.50 1.00 0.20 0.25 0.33 0.028
(7) Soil 0.25 6.00 4.00 0.33 5.00 5.00 1.00 2.00 3.00 0.140
(8) LULC 0.33 5.00 3.00 0.25 4.00 4.00 0.50 1.00 2.00 0.105
(9) Distance from 
Streams

0.20 4.00 2.00 0.20 3.00 3.00 0.33 0.50 1.00 0.070

λ max 9.713
CI 0.089

CR 0.061

Figure 12 shows the final landslide susceptibility 
map, the composite map of all nine layers. The 
map was divided into five susceptibility zones: 
very low, low, moderate, high and very high. 
The Astore region is spread over 141.1 km2 with 
4.9% (6.92 km2) of the area under the very high 

susceptibility zone. Similarly, 10.8% (15.28 
km2) of the area was labelled high susceptibility 
zone. As seen in Table 4, the low susceptibility 
zone occupied the largest area which is 33.1%, 
followed by 30.6% occupied by the moderate 
susceptibility zone.

Value Count LS Zone Area
(Km2)

Percentage 
Area

Table 4. Landslide 
susceptibility zone area 
distribution showing 
the pixel count, actual 
area in km2 and 
percentage area

1 1034777 Very low 28.98 20.5%
2 1670192 Low 46.78 33.1%
3 1544547 Moderate 43.26 30.6%
4 545627 High 15.28 10.8%
5 247037 Very high 6.92 4.9%

Discussion

The results show the majority of the high and 
very high landslide susceptibility is present in the 
area with a steep slope of 30 – 50°, soft rocks, 
hill/barren land, and a distance of 0-500 meters 
to the drainage. In most cases, precipitation is 
the triggering factor that causes landslides. But 
since the precipitation is evenly distributed over 
the whole area and is mainly influenced by the 

lithology and landscape, it was not included as 
a factor (Yalcin et al. 2011). A number of studies 
have found slope, lithology, LULC and distance 
to drainage as the most critical factors in causing 
landslides (Sarkar et al. 2014). Rainstorms 
or earthquakes are more likely to cause slope 
failure on steep slopes than on moderate or gentle 
slopes. Hence, 30-50° class received the highest 
weight within the pair-wise based comparison 
matrix of slope parameters. Mountains inherently 
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have slopes that vary in degree, and this is the 
most important reason along with the lithology 
as to why landslides are a more frequent 
phenomenonphenomenon in mountainous 
regions. The vertical distance rocks travel due to 
landslides increases their acceleration and causes 
more destruction.
Other than slope, LULC also influenced the 
occurrence of landslides in an area. anthropogenic 
activities in the region are causing land changes 
for various purposes such as building roads, 
houses and hotels, agricultural purposes, or 
simply cutting trees for personal or commercial 
use. These activities have caused a change in 
the area’s topography, which puts the area under 
stress (Kanwal et al. 2016). As seen in our results, 
barren land is most vulnerable to floods and 
landslides as it provides exposed surfaces for the 
free and rapid movement of water (Chandio et al. 
2013). Trees are considered important buffers to 
floods as they reduce the speed of running water 
and prevent soil erosion. 
Following this, the results showed that 96% of 
the high and very high landslide is present in soft 
rock type. In contrast to hard rocks, soft rocks 
are more likely to be a victim of weathering and 
erosion as a result of it. A number of studies 
have found the geology of an area as one of the 
most important landslide triggering factors. In 
the Astore region, soft rock groups contained 
Precambrian sedimentary rocks such as Dogra 
slate and Late Palaeozoic rocks such as lava, 
turf and agglomerate. These rock types are more 
likely to be weathered by microorganisms, water 
and ice, which makes them easy to slide and 
erode under the influence of gravity (Owen et al. 
2008). Other factors such as distance to drainage, 
SPI, TWI, plan curvature, aspect and soil were 
also important. For instance, the closer the area 
was to the drainage, more likely it was to be 
affected by landslide. This is because streams and 
gorges shape the earth’s surface by eroding the 
material with them. All of these factors define the 
characteristics of an area and their influence on 
triggering landslide, but slope, lithology, LULC 

and distance to drainage were recognized as the 
prime factors in landslide susceptibility analysis. 
It is important to acknowledge some of the 
limitations of our study. The non-availability 
of landslide inventory data by far is the most 
important limitation of this study. It posed a big 
challenge and limited our choice of methodology 
(Guzzetti et al. 2012). Therefore, the AHP 
technique was adopted since it compensates for 
the lack of landslide inventory data and identifies 
areas based on their inherent susceptibility to 
landslide. The DEM downloaded from earth 
explorer had a spatial resolution of 30 m x 30 
m. The spatial resolution of DEM higher than 30 
meters would have yielded more accurate results 
and improved the accuracy of different layers 
derived from DEM. Although rainfall, road 
and fault lines are important landslide inducing 
factors, they were not included in this study due 
to the non-availability of data. Adding these data 
sets into the study would have improved the 
study’s accuracy. The AHP used in this research 
is a rating-based system using expert judgement. 
Expert input could be very beneficial, but it also 
raises the issue of subjectivity. Expert opinions 
may differ depending on their level of knowledge 
and perspective. The results may be subjected to 
subjectivity and uncertainty.

Conclusions

This study carried out landslide assessment to 
highlight high and low vulnerable areas. We 
identified nine topographical, hydrological, 
anthropogenic and geological factors that are 
likely to cause landslides in the Astore region. 
Given that a combination of these factors 
causes landslides and the relative importance 
of each of these factors varies from one area to 
another, we adopted a qualitative index-based 
heuristic approach. We carried out multicriteria 
decision analysis with the help of the analytical 
hierarchy process. It allowed us to deal with 
multiple variables using a systematic approach 
by breaking it down into classes and carrying 
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out pair-wise comparisons. We also incorporated 
GIS and RS into our overall data analysis. With 
the help of GIS, we created spatial layers of each 
of our factors and categorized them into various 
classes. The final landslide susceptibility map of 
the Astore region was generated by applying a 
landslide susceptibility index formula within a 
GIS environment. This map was divided into five 
zones, from low to high susceptibility zones. The 
results showed that slope, lithology, LULC and 
soil were the most important landslide causing 
factors. In doing all this, we achieved all three 
of our research aims and objectives. Studies like 
this one would help highlight the threat posed 
by a landslide to life and property and show the 
importance of carrying out landslide susceptibility 
mapping of landslide-prone regions.
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