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1 Introduction

Fractional-order calculus includes the operators of fractional-
order derivative and fractional-order integral, which is a generaliza-
tion of the traditional integer-order calculus to the fractional-order
and/or complex-order counterpart [1–4]. The most frequently
encountered definition of the fractional differential operator is the
definition of the Riemann–Liouville operator. In this paper, we use
the definition of the Riemann–Liouville fractional differential oper-
ator. The applications of fractional calculus in engineering and
physics have attracted lots of attention [5–8].

In order to study the periodic oscillation of nonlinear systems,
some classical analytical methods, including their improved
version, such as harmonic balance method, multiscale method,
perturbation method, averaging method, and Kryloff–Bogoliubov–
Mitropolskii (KBM) method, are used [9–12]. These methods
may be applied to find periodic solutions of the systems having
the fractional-order derivative. In recent years, the study of non-
linear oscillations of Duffing systems [13–21], van der Pol sys-
tems [22–25], and Mathieu equation [26–28] has been studied
extensively by the averaging method, and the asymptotic method.
Compared to the traditional integer-order systems, the fractional-
order system has the advantage that it describes much closer to
the real nature of the world.

The theory of the parametric oscillation of the second-order
system has been investigated in a lot of publications [1–4]. In the
late 20th century, the vibrations of the third-order system and
higher order systems were studied by Dao [29–33]. The paramet-
ric resonance oscillations of the third-order nonlinear systems
have been studied in detail by the author. In Ref. [32], N.V. Dao
has been investigated the influence of the Coulomb friction and of
turbulent friction on the parametric oscillation. The author has
obtained the amplitude–frequency curves with different values of
the friction coefficients.

Based on the results of the paper [32], the parametric oscillation
of third-order nonlinear system with dynamic friction and

fractional damping is analytically studied by the asymptotic
method in this paper. To calculate the oscillation of the system
with fractional-order derivative in the Appendix, we have intro-
duced an algorithm to calculate the fractional-order derivative of
trigonometric functions aðtÞcos ½Xtþ wðtÞ� and aðtÞsin ½Xtþ wðtÞ�
when a(t) and wðtÞ change slowly.

This study is organized in five sections. Section 2 presented the
way to find the approximate solution for harmonic resonance of
the third-order nonlinear system. Based on Lyapunov theory, the
existence condition in harmonic resonance and stability condition
for steady-state solution is mentioned in Sec. 3. The influences of
the fractional-order parameters on the existence condition in har-
monic resonance and on the stability condition for steady-state
solution are also analyzed. In Sec. 4, the influences of the
fractional-order parameter on the existence condition in harmonic
resonance, the steady-state amplitude, the amplitude–frequency
curves, and the system stability are studied by the numerical simu-
lation. A comparison between the integer-order and the fractional-
order systems is also made in this section [34,35]. Section 5
includes some concluding remarks of this study.

2 Construction of Approximate Solution Using the

Asymptotic Method

Let us consider the parametric oscillation of third-order nonlin-
ear system with dynamic friction and fractional damping governed
by differential equation

&x þ a€x þ x2 _x þ ax2xþ e½kx3 þ h _x3 þ h2 _x2sign _x þ dpDpx

� cx cos Xt� ¼ 0 (1)

where a;x; k; h; dp; c;X are constants, h2 is positive constant, e is
a small parameter, Dpx is p-order fractional derivative of xðtÞ, is
the function characterizing the nonlinear friction.

It is supposed that a parametric resonance relation is given as

er ¼ x2 1� g2
� �

; g ¼ X
2x

(2)
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Then Eq. (1) can be rewritten in the following form:

&x þ a€x þ X2

4
_x þ a

X2

4
xþ ef x; _x; €x;Dpxð Þ � ecx cos Xt ¼ 0 (3)

where

f ðx; _x; €x;DpxÞ ¼ r _x þ arxþ kx3 þ h _x3 þ h2 _x2 sign _x þ dpDpx

(4)

Using the asymptotic method, the periodic partial solution of
Eq. (3) can be found under the series

x ¼ a cos
X
2

tþ w

� �
þ eu1 a;w;

X
2

t

� �
þ e2u2 a;w;

X
2

t

� �
þ � � �

(5)

In which uiða;w; hÞ ði ¼ 1; 2;…Þ is the periodic function of w and
h; ðh ¼ Xt

2
Þ, with period 2p, and functions a(t) and w(t) are deter-

mined from the following equations:

da

dt
¼ eA1 a;wð Þ þ e2A2 a;wð Þ þ � � �

dw
dt
¼ eB1 a;wð Þ þ e2B2 a;wð Þ þ � � �

(6)

To determine the unknown functions us;As;Bs, the following
derivatives are calculated as:

dx

dt
¼ �X

2
a sin uþ e A1 cos u� aB1 sin uþ @u1

@t

� �
þ e2… (7)

d2x

dt2
¼ �X2

4
a cos uþ e �XA1 sin u� XaB1 cos uþ @

2u1

@t2

� �

þ e2… (8)

d3x

dt3
¼ X3

8
a sin uþ e � 3

4
X2A1 cos uþ 3

4
X2aB1 sin uþ @

3u1

@t3

� �

þ e2…

(9)

where

u ¼ X
2

tþ w (10)

Substituting Eqs. (5), (7), (8), and (9) into Eq. (3) and comparing
the coefficients of the same degree e on both sides, we obtain

@u3
1

@t3
þ a

@u2
1

@t2
þ X2

4

@u1

@t
þ a

X2

4
u1 �

X2

2
A1 þ XaaB1

� �
cos u

þ X2 a

2
B1 � XaA1

� �
sin u ¼ �f0 þ ac cos u cos Xt

(11)

where

f0 ¼ f a cos u;�X
2

a sin u;�X2

4
a cos u;Dp a cos uð Þ

� �

¼ �r
X
2

a sin uþ ara cos uþ ka3 cos 3u� h
X3

8
a3 sin 3u

þ h2 �
X
2

a sin u

� �2

sign �X
2

a sin u

� �
þ dpDp a cos uð Þ

(12)

From the Appendix it, is the following expressions:

Dp
t a tð Þcos Xtþ w tð Þð Þ½ � ¼ Xpa tð Þcos Xtþ w tð Þ þ p

p
2

� �
þ e :½ �

Dp
t a tð Þsin Xtþ w tð Þð Þ½ � ¼ Xpa tð Þsin Xtþ w tð Þ þ p

p
2

� �
þ e :½ �

(13)

The right side of Eq. (12) is now rewritten in the form

f0 ¼ �r
X
2

a sin uþ ara cos uþ ka3 cos 3u� h
X3

8
a3 sin 3u

þ h2

X2

4
a2 sin 2u sign �X

2
a sin u

� �

þ adp
X
2

� �p

cos
pp
2

cos u� sin
pp
2

sin u
� �

(14)

The function f0 in Eq. (14) is expanded in Fourier series as

f0 ¼
X1
m¼0

ðrmðaÞcos muþ smðaÞsin muÞ (15)

where

r0 ¼
1

2p

ð2p

0

f0du ¼ hf0i

rm ¼
1

p

ð2p

0

f0 cos mudu ¼ 2hf0 cos mui

sm ¼
1

p

ð2p

0

f0 sin mudu ¼ 2hf0 sin mui

(16)

in which hFi is the operator of the averaging function F on time.
Similarly, function u1 in Eq. (11) can be represented by a Fou-

rier series

u1 ¼
X

n

½Gnða;wÞcos nuþ Hnða;wÞsin nu� (17)

From the condition that the function u1 does not contain any reso-
nance terms, we conclude that the function u1 does not contain
cos u; sin u.

Substituting Eqs. (15) and (17) into Eq. (11) leads to

X2

4

X
n

n2�1ð Þ X
n

2
Gn�aHn

� �
sinnu� X

n

2
HnþaGn

� �
cosnu

� �

� X2

2
A1þXaaB1

� �
cosuþ X2

2
aB1�XaA1

� �
sinu

¼ accosucosXt�
X1
m¼0

rm cosmuþ sm sinmuð Þ

(18)

On the other hand, we have

cos u cos Xt ¼ cos u cos 2u� 2wð Þ

¼ 1

2
cos �uþ 2wð Þ þ cos 3u� 2wð Þ½ �

¼ 1

2
cos 2w cos uþ sin 2w sin uþ cos 2w cos 3uð

þ sin 2w sin 3uÞ
(19)
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Substituting Eq. (19) into Eq. (18), we have

X2

4

X
n

n2�1ð Þ X
n

2
Gn�aHn

� �
sinnu� X

n

2
HnþaGn

� �
cosnu

� �

� X2

2
A1þXaaB1

� �
cosuþ X2

2
aB1�XaA1

� �
sinu

¼ ac

2
cos2wcosuþ sin2wsinuþ cos2wcos3uþ sin2wsin3uð Þ

�
X1
m¼0

rm cosmuþ sm sinmuð Þ

(20)

Comparing the coefficients of the harmonic functions cos u; sin u
on both sides of Eq. (20), we lead to

X2

2
A1 þ XaaB1 ¼ �

ac

2
cos 2wþ r1

XaA1 �
X2

2
aB1 ¼ �

ac

2
sin 2wþ s1

8>>><
>>>:

(21)

Comparing the coefficients of other harmonic functions, we have

X2

4
n2 � 1ð Þ X

n

2
Hn þ aGn

� �
¼ rn �

ac

2
cos 2wd3n

X2

4
n2 � 1ð Þ X

n

2
Gn � aHn

� �
¼ �sn þ

ac

2
sin 2wd3n

8>>>><
>>>>:

(22)

Here, ðn 6¼ 1Þ and

d3n ¼
0 ð n 6¼ 3Þ
1 ðn ¼ 3Þ

(
(23)

Equations (21) and (22) yield

Gn ¼
arn �

X
2

nsn þ
X
4

nac sin 2w� a
2

ac cos 2w

� �
d3n

X2

4
n2 � 1ð Þ a2 þ X2

4
n2

� �

Hn ¼

X
2

nrn þ asn �
X
4

nac cos 2wþ a
2

ac sin 2w

� �
d3n

X2

4
n2 � 1ð Þ a2 þ X2

4
n2

� �
(24)

and

A1 ¼
ahf0 sin ui þ xhf0 cos ui � x

4
ac cos 2w� 1

4
aca sin 2w

x a2 þ x2ð Þ

B1 ¼
ahf0 cos ui � xhf0 sin ui þ x

4
ac sin 2w� 1

4
aca cos 2w

Xa a2 þ x2ð Þ
(25)

For simplicity of writing, the following symbol is used:

R0 ¼ h2

X2

4
a2 sin2u sign �X

2
a sin u

� �

þ adp
X
2

� �p

cos
pp
2

cos u� sin
pp
2

sin u
� �

(26)

where

sign _x ¼
1 ð _x > 0Þ
�1 ð _x < 0Þ
0 ð _x ¼ 0Þ

8><
>: (27)

Equation (14) yields

hf0 cosui¼�r
X
2

ahsinucosuiþarahcos2uiþka3hcos4ui

�h
X3

8
a3hsin3ucosuiþhR0 cosui

¼ 1

2
araþ3

8
ka3þhR0 cosui

hf0 sinui¼�r
X
2

ahsin2uiþarahcosusinuiþka3hcos3usinui

�h
X3

8
a3hsin4uiþhR0 sinui

¼�1

4
rXa� 3

64
hX3a3þhR0 sinui

(28)

Substituting Eq. (28) into Eq. (25), we obtain in the first approxi-
mation the following averaged equations of Eq. (6):

da

dt
¼ e

a2 þ x2

3

8
k � ax2hð Þa3 � 1

4
ac cos 2w� ac

2X
a sin 2wþ R1

� �
dw
dt
¼ e

2a a2 þ x2ð Þ
1

X
a2 þ x2ð Þraþ 3

4X
ak þ x4hð Þa3

�

þ ac

4
sin 2w� ac

2X
a cos 2wþ R2

i
(29)

where

R1 ¼ hR0 cos ui þ 2a
X
hR0 sin ui; R2 ¼

2a
X
hR0 cos ui � hR0 sin ui

(30)

From Eq. (26), one can obtain the averaging values
hR0 cos ui; hR0 sin ui

hR0 cos ui ¼ h2

*
X2

4
a2 sing �X

2
a sin u

� �
sin2u cos u

+

þadp
X
2

� �p

cos
pp
2
h cos2ui � sin

pp
2
h sin u cos ui

� �

¼ 1

2
adp

X
2

� �p

cos
pp
2

(31)

hR0 sin ui ¼ h2

*
X2

4
a2 sign �X

2
a sin u

� �
sin3u

+

þadp
X
2

� �p

cos
pp
2
h cos u sin ui � sin

pp
2
h sin2ui

� �

¼ � 1

3p
h2X

2a2 � 1

2
adp

X
2

� �p

sin
pp
2

(32)

Substituting Eqs. (31) and (32) into Eq. (30) yields

R1 ¼
1

2
adpx

p�1 x cos
pp
2
� a sin

pp
2

� �
� 4a

3p
h2xa2 (33)

R2 ¼
1

2
adpx

p�1 a cos
pp
2
þ x sin

pp
2

� �
þ 4

3p
h2x

2a2 (34)
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Then Eq. (29) have the following forms:

da

dt
¼ e

a2þx2

3

8
k�ax2hð Þa3�1

4
accos2w� ac

2X
asin2w

�

þ 1

2
adpx

p�1 xcos
pp
2
�asin

pp
2

� �
� 4a

3p
h2xa2

�
dw
dt
¼ e

2a a2þx2ð Þ
1

X
a2þx2ð Þraþ 3

4X
akþx4hð Þa3

�

þ ac

4
sin2w�� ac

2X
acos2wþ1

2
adpx

p�1 acos
pp
2
þxsin

pp
2

� �

þ 4

3p
h2x

2a2

�
(35)

Thus, in the first approximation, we have a partial solution of the
Eq. (1) in the form

x ¼ a cos
X
2

tþ w

� �
(36)

where a;w are solutions of the Eq. (35).

3 The Parametric Resonance Oscillation of System in

the First Order Approximation

3.1 Amplitude–Frequency Curve. The amplitude and the
phase of the stationary oscillation of the system (29) are deter-
mined by the following relation:

ca
2X

a0 sin 2w0 þ
c

4
a0 cos 2w0 ¼

3

8
k � ax2hð Þa3

0 þ R1

ca
2X

a0 cos 2w0 �
c

4
a0 sin 2w0 ¼

1

X
a2 þ x2ð Þra0 þ

3

4X
ak þ x4hð Þa3

0 þ R2

8>><
>>: (37)

The elimination of w0 in Eq. (37) yields the amplitude–frequency
equation

W a0;Xð Þ ¼ arþ 3

4
ka2

0 þ
2x2

a0 a2 þ x2ð Þ R1 þ
2a
X

R2

� �" #2

þx2 rþ 3

4
x2ha2

0 þ
1

a0 a2 þ x2ð Þ XR2 � 2aR1ð Þ
� �2

� c2

4
¼ 0

(38)

Substituting R1 and R2 from Eqs. (33) and (34) into Eq. (38), we
obtain

arþ 3

4
ka2

0 þ dpx
p cos

pp
2

� �2

þ x2 rþ 3

4
x2ha2

0 þ dpx
p�1 sin

pp
2
þ 8x

3p
h2a0

� �2

� c2

4
¼ 0

(39)

() 81p2 k2 þ x6h2ð Þa4
0 þ 576x5hph2a3

0

þ 216p2ark þ 216p2dpkxp cos
pp
2
þþ216p2x4rh

�

þ 216p2xpþ3hdp sin
pp
2
þ 1024x4h2

2

�
a2

0

þ 768ph2x
3 rþ xp�1dp sin

pp
2

� �
a0 þ 144p2r2 a2 þ x2ð Þ

þ 144p2x2pd2
p þ þ 288p2rdpx

p a cos
pp
2
þ x sin

pp
2

� �
� 36c2p2 ¼ 0

(40)

3.2 The Existential Conditions for Periodic Oscillation. It
is supposed that the characteristic equation

k3 þ c1k
2 þ c2kþ c3 ¼ 0 (41)

has a pair of either complex roots or imaginary roots. We have the
following definitions:

(a) If the characteristic equation Eq. (41) has a negative root
and a pair of complex roots with a negative real pair: k1 ¼
�n; k2 ¼ �gþ iX; k3 ¼ �g� iX; then we have the non-
critical case.

(b) If the characteristic equation Eq. (41) has a negative root
and a pair of imaginary roots: k1 ¼ �n; k2 ¼ iX; k3 ¼ iX;
then we have the critical case. In addition, if X ¼ p=qx,
where and q are integers and X is the exciting frequency,
then we have the critical resonant case.

The noncritical case has been investigated in many books, and
the critical case has been investigated in Refs. [5–7].

3.3 Stability Condition of the Approximate Solution. Let
da and dw be the small perturbations and set
a ¼ a0 þ da;w ¼ w0 þ dw, where a0 and w0 are the stationary
values of a and w, determined from Eq. (29). Inserting the above
expressions into Eq. (37), the following variation equations are
obtained:

dda

dt
¼ e

a2 þ x2

3

4
k � ax2hð Þa2

0 þ a0

R1

a0

� �0" #
da

(

� 2

X
a2 þ x2ð Þra0 þ

3

2X
ak þ x4hð Þa3

0 þ 2R2

� �
dw

	
(42)

ddw
dt
¼ e

2 a2 þ x2ð Þ
3

2X
ak þ x4hð Þa0 þ R2

a0

� �0" #
da

(

þ 3

4
k � ax2hð Þa2

0 þ
2

a0

R1

� �
dw

	
(43)

The characteristic equation of the system according to Eqs. (42)
and (43) is

k2 � Zkþ S ¼ 0 (44)
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where notations Z and S are defined as

Z ¼ e
a2 þ x2

3

2
k � ax2hð Þa2

0 þ
1

a0

a0R1ð Þ0
� �

(45)

S ¼ e2a0

4x2 a2 þ x2ð Þ
@W

@a0

(46)

with W is defined by Eq. (38).
According to the stability criterion of Routh-Hurwitz [31], it is

obtained

3ðk � ax2hÞa3
0 þ 2ða0R1Þ0 < 0 (47)

@W

@a0

> 0 (48)

From Eqs. (33), (34), (47), and (48), the stability condition of sta-
tionary oscillation is determined by the following relations:

3 k�ax2hð Þa3
0þ2a0dpx

p�1 xcos
pp
2
�asin

pp
2

� �
�8a

p
h2xa2 < 0

(49)

3ka0 arþ 3

4
ka2

0 þ dpx
p cos

pp
2

� �

þ 2x2 rþ 3

4
x2ha2

0 þ dpx
p�1 sin

pp
2
þ 8x

3p
h2a0

� �
3

2
x2ha0 þ 8x

3p
h2

� �
> 0 (50)

4 Simulation Results

In order to demonstrate the effects of fractional-order damper
on the harmonic vibration of a third-order nonlinear parametric
system, a set of basic parameters are selected as follows:

x ¼ 1; a ¼ 1; e ¼ 1; dp ¼ 0:01; p ¼ 0:5; k ¼ �0:1;

h ¼ 0:01; h2 ¼ 0:01; c ¼ 0:05; g ¼ X
2x

The data used in this section are selected according to our research
experience, not from experimental models. The differential equa-
tion of oscillation of the system (1) is reduced to form

&x þ €x þ _x þ xþ 1½�0:1x3 þ 0:01 _x3 þ 0:001 _x2 sign _x

þ 0:01D1=2x� 0:05x cos Xt� ¼ 0 (51)

Using the amplitude–frequency equation according to Eq. (51),
the amplitude–frequency curves can be plotted as in Figs. 1–7,
where the solid line is for stable solution, the dashed line is for
unstable one.

When the coefficient dp changes, the fractional order p¼ 0.5,
the frequency–amplitude curves are shown in Fig. 1. If the coeffi-
cient dp¼ 0.01 and the fractional order p change, the
frequency–amplitude curves are shown in Fig. 2. We found that
when the fractional order p increases, the amplitude of the oscilla-
tion decreases, when the coefficient of the fractional derivative
increases, the amplitude of the oscillation does not increase, but
the phase of oscillation changes.

Figure 3 shows the amplitude–frequency curves corresponding
to different values of the friction coefficient h2 and
dp ¼ 0:01; p ¼ 0:5. It also shows the important influence of the
coefficient of friction on the frequency–amplitude curve. When
the coefficient of friction h2 increases, the amplitude of the oscil-
lation decreases.

With the parameter set selected above, when dp¼ 0; p¼ 0.5;
h2¼ 0.01, from Eqs. (39) and (2) we deduce the equation for the
frequency–amplitude curve as

1� g2� 0:3

4
a2

0

� �2

þ 1� g2þ 0:03

4
a2

0þ
0:08

3p
a0

� �2

� 0:052

4
¼ 0

(52)

When dp¼ 0.01; p¼ 0.5; h2¼ 0.01, the equation for the
amplitude–frequency curve has the following form:

1� g2 � 0:3

4
a2

0 þ 0:005
ffiffiffi
2
p� �2

þ 1� g2 þ 0:03

4
a2

0 þ
0:08

3p
a0 þ 0:005

ffiffiffi
2
p� �2

� 0:052

4
¼ 0

(53)

Using the symbol g2
1 ¼ g2 � 0:005

ffiffiffi
2
p

, Eq. (53) has the form as
the Eq. (52). Therefore, if we translate the frequency–amplitude
curve when dp¼ 0 to the right one segment 0:005

ffiffiffi
2
p

, we will
obtain the graph of the amplitude–frequency curve corresponding
to dp¼ 0.01. We can easily see these properties in Figs. 4–6.

The graphs in Figs. 4–6 show the dependence of the
amplitude–frequency curve on the parameters dp, p, and h2. The
crossed regions in Figs. 4–6 are unstable regions where

Fig. 1 The amplitude–frequency curve, where p 5 0.5, and different values of dp
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Fig. 3 The amplitude–frequency curve, where dp 5 0.01, p 5 0.5, and h2 changes

Fig. 2 The amplitude–frequency curve, where dp 5 0.01 and p changes

Fig. 4 The amplitude–frequency curve, where dp 5 0; p 5 0:5; h2 5 0:01
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Fig. 5 The amplitude–frequency curve, where dp 5 0:01; p 5 0:5; h2 5 0:01

Fig. 6 The amplitude–frequency curve, where dp 5 0:01; p 5 0:5; h2 5 0:1

Fig. 7 The amplitude–frequency curve, where dp 5 0:01; p 5 0:5; h2 5 0:005

Journal of Computational and Nonlinear Dynamics AUGUST 2022, Vol. 17 / 081004-7

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/com

putationalnonlinear/article-pdf/17/8/081004/6871769/cnd_017_08_081004.pdf by Seoul N
ational U

niversity user on 09 M
ay 2022



inequalities (49) and (50) are not satisfied. It is noted that the
unstable area shifts from left to right as h changes from 0.01
to 0.1.

It should be noted that in Fig. 7 the solid curve is the solution
calculated by analytical method, the circles denote the solution
calculated by numerical integration [35]. Figure 7 clearly shows
that there is good agreement between the numerical and analytical
results.

5 Conclusions

In this paper, the parametric resonance of a third-order nonlin-
ear vibration system with dynamic friction and fractional damping
was investigated by the asymptotic method. The new findings
made in this study are summarized as follows:

(1) Using the asymptotic method, an approximate solution
expression of the third-order nonlinear system with
dynamic friction and fractional damping has been built.

(2) The amplitude and the phase of the stationary oscillation of
the approximate solution are determined. The stability con-
ditions of the approximate solution have been studied.

(3) The effects of the fractional coefficient, the fractional-order
and the dynamic coefficient on the approximate solution
were characterized by the equivalent damping coefficient
and the equivalent stiffness coefficient, which were also
illustrated by some typical amplitude-frequency curves.
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Appendix

A formula for calculating the fractional-order derivative of the
trigonometric functions aðtÞcos½XtþwðtÞ� and aðtÞsin½XtþwðtÞ�

THEOREM. It is assumed that the frequency X is a constant, and
a(t) and wðtÞ are given by the differential equations

da tð Þ
dt
¼ eA1 a;wð Þ þ e2A2 a;wð Þ þ � � �

dw tð Þ
dt
¼ eB1 a;wð Þ þ e2B2 a;wð Þ þ � � �

(A1)

where e is a small positive parameter, we have the following
approximate expressions:

Dp
t a tð Þcos Xtþ w tð Þð Þ½ � ¼ Xpa tð Þcos Xtþ w tð Þ þ p

p
2

� �
þ e :½ �

Dp
t a tð Þsin Xtþ w tð Þð Þ½ � ¼ Xpa tð Þsin Xtþ w tð Þ þ p

p
2

� �
þ e :½ �

(A2)

Proof. Using the Leibniz’s rule for fractional differentiation of
a product of two functions f and g [1], it is obtained

Dp½f ðtÞgðtÞ� ¼
X1
k¼0

p

k

 !
Dkf ðtÞDp�kgðtÞ

¼ f ðtÞDpgðtÞ þ
X1
k¼1

p

k

 !
Dkf ðtÞDp�kgðtÞ (A3)

By the choice f¼ a (t), g¼ cosðXtþ wÞ ¼ cos uðtÞ, according to
Eq. (A3) we have

Dp½acosðXtþwÞ� ¼ aðtÞDp½cosðXtþwÞ�

þ
X1
k¼1

p

k

 !
Dk½aðtÞ�Dp�k½cosðXtþwÞ�

� aðtÞDp½cosðXtþwÞ�

þ
p

1

 !
D1½aðtÞ�Dp�1½cosðXtþwÞ�

þ
p

2

 !
D2½aðtÞ�Dp�2½cosðXtþwÞ�þ �� � (A4)

Now, we compute the fractional derivatives Da½cosðXtþ wðtÞÞ�
with a ¼ p; p� 1; p� 2. Using the linearity of the fractional dif-
ferential operator, we have

Da½cosðXtþ wðtÞÞ� ¼ Da½cos Xt cos w� sin Xt sin w�
¼ Da½cos Xt cos w� � Da½sin Xt sin w�

(A5)

For f ¼ cos wðtÞ; g ¼ cos Xt, according to Eq. (A3) we have

Da½cos w cos Xt� ¼ cos wDaðcos XtÞ

þ
X1
k¼1

a
k

� �
Dkðcos wÞDa�kðcos XtÞ (A6)

By similar calculations, we obtain

Da½sin w cos Xt� ¼ sin wDaðsin XtÞ

þ
X1
k¼1

a
k

� �
Dkðsin wÞDa�kðsin XtÞ (A7)

By substituting Eqs. (A6), (A7) into Eq. (A5), it is obtained

Da½cosðXtþ wÞ� ¼ cos wDaðcos XtÞ � sin wDaðsin XtÞ

þ
X1
k¼1

a

k

 !
Dkðcos wÞDa�kðcos XtÞ

�
X1
k¼1

a

k

 !
Dkðsin wÞDa�kðsin XtÞ (A8)

By substituting Eq. (A8) into Eq. (A4) yields

Dp½acosðXtþwÞ�¼ aðtÞfcoswDp½cosðXtÞ�� sinwDp½sinðXtÞ�

þ
X1
k¼1

p

k

 !
Dk½cosw�Dp�k½cosðXtÞ�

�
X1
k¼1

p

k

 !
Dk½sinw�Dp�k½sinðXtÞ�

þ
p

1

 !
D1½aðtÞ�fcoswDp�1½cosðXtÞ�

� sinwDp�1½sinðXtÞ�

þ
X1
k¼1

p�1

k

 !
Dk½cosw�Dp�1�k½cosðXtÞ�

�
X1
k¼1

p�1

k

 !
Dk½sinw�Dp�1�k½sinðXtÞ�g

þ
p

2

 !
D2½aðtÞ�fcoswDp�2½cosðXtÞ�

� sinwDp�2½sinðXtÞ�

þ
X1
k¼1

p�2

k

 !
Dk½cosw�Dp�2�k½cosðXtÞ�

�
X1
k¼1

p�2

k

 !
Dk½sinw�Dp�2�k½sinðXtÞ�gþ �� �

(A9)
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Using the assumptions (A1), we have

D1 a½ � ¼ da

dt
¼ eA1 þ e2A2 þ � � �

D2 a½ � ¼ d2a

dt2
¼ e

dA1

dt
þ e2 dA2

dt
þ � � �

D1 cos w½ � ¼ d cos wð Þ
dt

¼ �sin w
dw
dt
¼ �sin w eB1 þ e2B2 þ � � �

� �

D2 cos w½ � ¼ d2 cos wð Þ
dt2

¼ �
d sin w

dw
dt

� �
dt

¼ �cos w
dw
dt

� �2

� sin w
d2w
dt2

¼ �cos w eB1 þ e2B2 þ � � �
� �2

� sin w e
dB1

dt
þ e2 dB2

dt
þ � � �

� �

D1 sin w½ � ¼ d sin wð Þ
dt

¼ cos w
dw
dt
¼ cos w eB1 þ e2B2 þ � � �

� �

D2 sin w½ � ¼ d2 sin wð Þ
dt2

¼
d cos w

dw
dt

� �
dt

¼ �sin w
dw
dt

� �2

þ cos w
d2w
dt2

¼ �sin w eB1 þ e2B2 þ � � �
� �2

þ cos w e
dB1

dt
þ e2 dB2

dt
þ � � �

� �
(A10)

Substituting Eqs. (A10) into Eq. (A9) it is obtained

Dp½a cosðXtþ wÞ� ¼ aðtÞf cos wDp½cosðXtÞ� � sin wDp½sinðXtÞ�g
þ e½:�

(A11)

Using the formulas [36]

Dp
x cos xxð Þ½ � ¼ xp cos xxþ p

p
2

� �
;

Dp
x sin xxð Þ½ � ¼ xp sin xxþ p

p
2

� � (A12)

the formula (A11) can be transformed in the following form:

Dp acos Xtþwð Þ½ �

¼ a tð Þ coswXp cos Xtþp
p
2

� �
� sinwXp sin Xtþp

p
2

� �� 	
þ e :½ �

¼Xpa tð Þcos Xtþwþp
p
2

� �
þ e :½ �

(A13)

or

Dp
t a tð Þcos Xtþ w tð Þð Þ½ � ¼ Xpa tð Þcos Xtþ w tð Þ þ p

p
2

� �
þ e :½ �

(A14)

Similarly, we can prove the formula

Dp
t a tð Þsin Xtþ w tð Þð Þ½ � ¼ Xpa tð Þsin Xtþ w tð Þ þ p

p
2

� �
þ e :½ �

(A15)

�
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