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In this paper, the parametric resonance of third-order parametric nonlinear system with
dynamic friction and fractional damping is investigated using the asymptotic method. The
approximately analytical solution for the system is first determined, and the
amplitude—frequency equation of the oscillator is established. The stability condition of
the resonance solution is then obtained by means of Lyapunov theory. Additionally, the
effect of the fractional derivative on the system dynamics is analyzed. The effects of
the two parameters of the fractional-order derivative, i.e., the fractional coefficient and
the fractional order, on the amplitude—frequency curves are investigated.
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1 Introduction

Fractional-order calculus includes the operators of fractional-
order derivative and fractional-order integral, which is a generaliza-
tion of the traditional integer-order calculus to the fractional-order
and/or complex-order counterpart [1-4]. The most frequently
encountered definition of the fractional differential operator is the
definition of the Riemann—Liouville operator. In this paper, we use
the definition of the Riemann-Liouville fractional differential oper-
ator. The applications of fractional calculus in engineering and
physics have attracted lots of attention [5—8].

In order to study the periodic oscillation of nonlinear systems,
some classical analytical methods, including their improved
version, such as harmonic balance method, multiscale method,
perturbation method, averaging method, and Kryloff-Bogoliubov—
Mitropolskii (KBM) method, are used [9—-12]. These methods
may be applied to find periodic solutions of the systems having
the fractional-order derivative. In recent years, the study of non-
linear oscillations of Duffing systems [13-21], van der Pol sys-
tems [22-25], and Mathieu equation [26-28] has been studied
extensively by the averaging method, and the asymptotic method.
Compared to the traditional integer-order systems, the fractional-
order system has the advantage that it describes much closer to
the real nature of the world.

The theory of the parametric oscillation of the second-order
system has been investigated in a lot of publications [1-4]. In the
late 20th century, the vibrations of the third-order system and
higher order systems were studied by Dao [29-33]. The paramet-
ric resonance oscillations of the third-order nonlinear systems
have been studied in detail by the author. In Ref. [32], N.V. Dao
has been investigated the influence of the Coulomb friction and of
turbulent friction on the parametric oscillation. The author has
obtained the amplitude—frequency curves with different values of
the friction coefficients.

Based on the results of the paper [32], the parametric oscillation
of third-order nonlinear system with dynamic friction and
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fractional damping is analytically studied by the asymptotic
method in this paper. To calculate the oscillation of the system
with fractional-order derivative in the Appendix, we have intro-
duced an algorithm to calculate the fractional-order derivative of
trigonometric functions a(z)cos [Qf 4 (¢)] and a(¢)sin [Qr + (1))
when a(7) and y(¢) change slowly.

This study is organized in five sections. Section 2 presented the
way to find the approximate solution for harmonic resonance of
the third-order nonlinear system. Based on Lyapunov theory, the
existence condition in harmonic resonance and stability condition
for steady-state solution is mentioned in Sec. 3. The influences of
the fractional-order parameters on the existence condition in har-
monic resonance and on the stability condition for steady-state
solution are also analyzed. In Sec. 4, the influences of the
fractional-order parameter on the existence condition in harmonic
resonance, the steady-state amplitude, the amplitude—frequency
curves, and the system stability are studied by the numerical simu-
lation. A comparison between the integer-order and the fractional-
order systems is also made in this section [34,35]. Section 5
includes some concluding remarks of this study.

2 Construction of Approximate Solution Using the
Asymptotic Method

Let us consider the parametric oscillation of third-order nonlin-
ear system with dynamic friction and fractional damping governed
by differential equation

¥+ ok + o’k + oo’y + e[k + bt + hyi’sign i + 6,D"x
—cxcosQ =0 1)

where o, o, k, h, d,, ¢, Q are constants, /i, is positive constant, ¢ is
a small parameter, D”x is p-order fractional derivative of x(r), is
the function characterizing the nonlinear friction.

It is supposed that a parametric resonance relation is given as

Q

=5 ()

o 2(1 2
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Then Eq. (1) can be rewritten in the following form:
o? o?
X+ ok +ch + o + &f (x, X, %,D’x) — ecxcos Qr =0 (3)
where
flx,%,%,DPx) = ax% + aox + kx® + hi® 4 hyi® signx + 6p,DPx
)

Using the asymptotic method, the periodic partial solution of
Eq. (3) can be found under the series

Q Q Q
x:acos(zﬂrl//) + &uy (a,lﬁ,zt) +s2u2(a,tﬁ,§t) +

(&)

In which u;(a,y,0) (i = 1,2, ...) is the periodic function of i and
0, (0= %), with period 27, and functions a(z) and y(¢) are deter-
mined from the following equations:

d[/i (6)
O = Bi(a) + B )+

To determine the unknown functions u, Ay, By, the following
derivatives are calculated as:

de_ 9 sinp + ¢| A cos B sin +8 +&... (D
dar 20!1 ® 1 ¢ —abysme ot
d2 o’ >*u
ﬁszacosqﬂrs( QAlsm(praBlcosq)+ 82
+é... )
Px @ Puy
d_tf 2 asmgo—l—g(——QzAlcosq)+ Q?aB, sin @ + 814
+é2.
C)
where
Q
o=t (10)

Substituting Eqgs. (5), (7), (8), and (9) into Eq. (3) and comparing
the coefficients of the same degree ¢ on both sides, we obtain

3 2 o2 Q2 Q?
u E)ul Ou, el (7A1+roaBl>COS(P

+(92231 roA|>sinq> = —fo + accos ¢ cos Qt

(11)
where

2

fo=r1 {GCOS 0, — 4 acos ®,D" (acos @)]

Zasing, —
3

Q
= —aiasinq) + aoacos ¢ 4 ka’ cos*p — h?a'3 sin3¢

Q  \. Q
+hy —5asing | sign| —=asing + 0,D" (acos @)
(12)
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From the Appendix it, is the following expressions:
D?[a(t)cos(Q + (1)) = Pa(t)cos {Qt ) + pg} + e[

DP[a(t)sin(Qr + Y (1))] = Qa(r)sin [Qt + () +pﬂ +¢[]
13)
The right side of Eq. (12) is now rewritten in the form
Q 3 a3 o’ 303
fo=— O'E(l sin ¢ + aoacos ¢ + ka’ cos” ¢ — hga sin” ¢
QZ

Q
+ hy Taz sinZ¢ sign(—gasin (p)

a\’
+ad, (5) {cos Igcos ¢ — sin ]g sin 4

(14)
The function fj in Eq. (14) is expanded in Fourier series as
fo = (rm(@)cos mg + s, (a)sinmp) (1)
m=0
where
1 21
o — do =
=52, fido = )
21
oy = 7J fo cosmode = 2(fo cos me) (16)
T Jo

1 21
S = 7J Josinmpdp = 2(fy sinme)
TJo

in which (F) is the operator of the averaging function F on time.
Similarly, function u; in Eq. (11) can be represented by a Fou-
rier series

u = Z[Gn(a, W)cos np + H,(a, y)sin ng) (17)

n

From the condition that the function #; does not contain any reso-
nance terms, we conclude that the function u; does not contain
cos @, sin .

Substituting Eqgs. (15) and (17) into Eq. (11) leads to

QZ
e (n?—1) {(Qanffon) sinng — (Qan+aGn)cosn(p}

Q2 Q?
— (7A1 +Qo¢a31)cos<p+ (7a81 — roAl)sin(p

o0
=accos pcosQr — Z(rm CoSMQ + Sy, sinme)
m=0

(13)
On the other hand, we have

cos @ cos Qr = cos ¢ cos(2¢p — 2y)

= % [cos(—p + 24) + cos(3¢p — 2y)]

1
= —(cos 2y cos ¢ + sin 2y sin @ + cos 2y cos 3¢
2
+sin 2y sin3¢)
(19)
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Substituting Eq. (19) into Eq. (18), we have

o? n n
TZ(HZ -1) {(QEG” — ocH,,) sinng — (QEH" + chn) cos n(p}

o o
— (7A1 +QaaBl)cos¢+ <7aBl - roAl)singo

= % (cos2ycos @ +sin2yrsin ¢ + cos 2y cos 3¢ + sin 2y sin3¢)

(o]
- E (rmcosmep + s, sinme)
m=0

(20)

Comparing the coefficients of the harmonic functions cos ¢, sin ¢
on both sides of Eq. (20), we lead to

2

Q
—A; + QouaB, = —ECOSZIﬁ + 1
2 2

) @

Q
QOCA] — 7&31 = —%SinZI// + 51

Comparing the coefficients of other harmonic functions, we have

o? n ac
T(n2 -1 (QEH" + ocGn) =r, — 7005 2403,
o? (22)
I(n2 -1) (Qan — D(Hn) = —s, +%sin 293,
Here, (n # 1) and
0 n#3
1 (n=3)
Equations (21) and (22) yield
Q Q
o, — —ns, + (— nac sin 2y — gac cos 2(//) 03
G 2 4 2
" ? Q?
T(i’lz — 1) <O(2 +Tl’l2)
(24)
Q Q o .
—nr, + os, — (— nac cos 2\ + —ac sin 2(//) 03
2 4 2
" o o
T(n2 — 1)(0(2 +7n2)
and
. (@) 1 .
a(fo sin @) + w(fo cos @) — 7 accos 2y — 79¢ sin 2y
1= (a2 + »?)
1
a(fo cos @) — o{fy sin @) + %ac sin 2y — gacacos 2y
B, =

Qalo? + w?)
(25)

For simplicity of writing, the following symbol is used:

2

Q Q
Ry = hy— 1 a” sin®p sign (—Easin (p)

0\?
+ad, <§) {cos lgcos @ — sin % sin (p} (26)
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where
1 (x>0)
signx =< -1 (x <0) (27)
0 (x=0
Equation (14) yields

Q
(focosp) =— 05a<sin @ cos @) +aca(cos’ @) +ka*(cos* p)
Q3
- h?zf (sin*pcos @) + (Rocos )

1 3
=500a +§ka3 + (Rocos @)

Q
{fosing) = — 05a<sin2 @) +aca(cos @sing) +ka (cos’ psin )
Q3
— h?c; (sin*@) + (Ry sin )
1 3
= —ZoQa - ahQ3a3 +(Rosing)
(28)
Substituting Eq. (28) into Eq. (25), we obtain in the first approxi-
mation the following averaged equations of Eq. (6):
da € 3
_ { (

1 ac
27) 3 :
—=———|=-lk- ——accosy —— 2y +R
T 2T a3 k — aw’ha accos 2y > o sin 2y 1

i{—lf S o] (a28+ ey {é (o + 0?)oa + % (ak + w*n)d®
+ 1 sm21// acos2lp + R,
(29)
where
Ry = (Rocos @) + 2—5 (Rosin ), Ry = 25(% (Ro cos @) — (R sin @)
(30)

From Eq. (26), one can obtain the averaging values
(Ro cos @), (R sin @)

Q? Q
(Ro cos @) = h2< ) a” sing (f 54 sin (p) sin?¢ cos (p>

w(){
o 5)

Q° Q
(Rosin @) = Iy < Taz sign (— 74 sin g{)> sin3<p>

P
+ad, (%) {cos [g (cos ¢ sin @) — sin % ( sin%p}}

1 1 o\’ pn
= — 0 — zaé,, <§) sin —

.. pm, .
(cos’@) — sin > (sin ¢ cos go)}

(3D

3n 2
(32)
Substituting Egs. (31) and (32) into Eq. (30) yields

1 _ pT pr 4o
R = Eaé,,(u” ! (w cos 5~ o sin 7) — 3—nh2wa (33)

4
+—ho*d (34

1
Rzziaé,,w”_l(occoslg—l—wsin@) i

2
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Then Eq. (29) have the following forms:
da € [3

1 ac
o 2 —ye2 ) 2 G
o 8(k aw*h)a 4acc052¢ 2rosm21p

1 4
+ Eaépw”_l (cocosl%7r — ocsinp—n) f—thwaz}

d ; 1 3
v ¢ {—(oczﬂ—wz)aaﬂ——(akﬂ—w“h)f

EZZa(ocquwz) Q 4Q
ac . ac 1 1 pr . pm
+ 1 sin2y 2roc032111+2a(31,a)1 (occos 5 + wsin 5
4
+—h2w2a2]
3n
(35)

co

2Q

co
2Q

The elimination of i, in Eq. (37) yields the amplitude—frequency
equation

\V(ao7 Q) =

3 20 20
o6 + > ka} S e (Rl +—R2)

4 ap(o? + w Q
2 3 27 2 1 :
+w |:O'+Zw hao +m(QR2 —20(R]):|
2
C
_Zi 0
(38)

Substituting R; and R, from Eqgs. (33) and (34) into Eq. (38), we
obtain

2
3
(aa + Zkaﬁ + 9,0 cos lg>

2
3 i _ 8 2
+ ? (0' + Za)zhag + bpo)p_l sin % + %hzao) — CZ =0
(39
= 817° (K2 + 0°h*)dg + 576w hnhya)

+ (21677:2aok + 216723,k cos ’% + 4216720 ch
+21672w3hd) sin ’% + 1024083 ) @
+768hy° (0' + w"_l(ﬁ,, sin %) ap + 14472 6% (o* + »°)

+ 1447120)2”(5[2, + + 2887t20(5,,w” (oc cos I; + wsin Ig)

—36¢272 =0
(40)

3.2 The Existential Conditions for Periodic Oscillation. It
is supposed that the characteristic equation

081004-4 / Vol. 17, AUGUST 2022

Thus, in the first approximation, we have a partial solution of the
Eq. (1) in the form

Q
xX= acos<§t+l//) (36)
where a,  are solutions of the Eq. (35).

3 The Parametric Resonance Oscillation of System in
the First Order Approximation

3.1 Amplitude-Frequency Curve. The amplitude and the
phase of the stationary oscillation of the system (29) are deter-
mined by the following relation:

3
ap sin 2y, + 2(10 cos 2y, = 3 (k — ac®h)al + R,

(3N

1 3
ap cos 2y, — 200 sin 2y, = a (o + w*)oay + — (ak + w4h)a(3, +R>

4Q

/13+C1/12+C2)V+C3 =0 (41)

has a pair of either complex roots or imaginary roots. We have the
following definitions:

(a) If the characteristic equation Eq. (41) has a negative root
and a pair of complex roots with a negative real pair: A, =
—¢&, = —n+iQ, A3 = —n — i€, then we have the non-
critical case.

(b) If the characteristic equation Eq. (41) has a negative root
and a pair of imaginary roots: 4y = —¢, A, =iQ, /13 =iQ,
then we have the critical case. In addition, if Q = p/qw,
where and q are integers and Q is the exciting frequency,
then we have the critical resonant case.

The noncritical case has been investigated in many books, and
the critical case has been investigated in Refs. [5-7].

3.3 Stability Condition of the Approximate Solution. Let
oa and Oy be the small perturbations and set
a=ay+ oa,y =, + oY, where ay and V), are the stationary
values of a and , determined from Eq. (29). Inserting the above
expressions into Eq. (37), the following variation equations are
obtained:

déa ¢ 3 N R’
dl‘—M{|:4(kfxwh)a0+ao(ao) 5(1

- {é (e + w*)oay + % (ak + w*h)a) + 2R2} 5zp} 42)

2Q ao

Aoy ; 3 R\’
WW{ 2 ko (_2”5“

+ F (k — awzh)ag + 3Rl} 51,//} 43)
4 ap

The characteristic equation of the system according to Egs. (42)
and (43) is

J2—Zi+5=0 (44)
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where notations Z and § are defined as

& 3

1
R _ 2 2 - /
= o |2 2 hdi + - (ki) (45)

_ &ay oW
T 40?(a? + w?) Dag
with W is defined by Eq. (38).

According to the stability criterion of Routh-Hurwitz [31], it is
obtained

(46)

3(k — aw’h)ay + 2(aR;) < 0 47)
AL (48)
Oag

From Egs. (33), (34), (47), and (48), the stability condition of sta-
tionary oscillation is determined by the following relations:

8,
3(k— awzh)ag + 2a06,,a)1”1 (wcoslg — otsinlg) — —xhzwa2 <0

7
49)

3
3kay (aa + Zkaé + Jpa” cos Ig)
2 3 9, 9 -wpq;Pﬂ 8w
+2w a—}—Zw hagy + 9, sln7+§hzao
3 8

(5 w*ha® + ﬁhz) >0 (50)

4 Simulation Results
In order to demonstrate the effects of fractional-order damper

on the harmonic vibration of a third-order nonlinear parametric
system, a set of basic parameters are selected as follows:

w=1, a=1, ¢=1, 6,=001, p=05 k=-0.1,
Q

n=5-

h=0.01, h,=0.01, c¢=0.05,
2m

The data used in this section are selected according to our research
experience, not from experimental models. The differential equa-
tion of oscillation of the system (1) is reduced to form

¥ 4% 4+ % +x+ 1[-0.1x" + 0.0Li* + 0.001i* sign ¥
+0.01D"%x — 0.05xcos Q1] = 0 (51)

Using the amplitude—frequency equation according to Eq. (51),
the amplitude—frequency curves can be plotted as in Figs. 1-7,
where the solid line is for stable solution, the dashed line is for
unstable one.

When the coefficient J, changes, the fractional order p =0.5,
the frequency—amplitude curves are shown in Fig. 1. If the coeffi-
cient 6,=0.01 and the fractional order p change, the
frequency—amplitude curves are shown in Fig. 2. We found that
when the fractional order p increases, the amplitude of the oscilla-
tion decreases, when the coefficient of the fractional derivative
increases, the amplitude of the oscillation does not increase, but
the phase of oscillation changes.

Figure 3 shows the amplitude—frequency curves corresponding
to different values of the friction coefficient A, and
0p = 0.01,p = 0.5. It also shows the important influence of the
coefficient of friction on the frequency—amplitude curve. When
the coefficient of friction /, increases, the amplitude of the oscil-
lation decreases.

With the parameter set selected above, when 6, =0; p=0.5;
h, =0.01, from Egs. (39) and (2) we deduce the equation for the
frequency—amplitude curve as

2 2 2
0.3 0.03 0.08 0.05
1— 2222 1— 2 202 2 Y0 ) _ _
( n 4a0>+( n+4a0+3na0 1 =0

(52)

When 6,=0.01; p=0.5; h,=0.01, the equation for the
amplitude—frequency curve has the following form:

0.3 :
(1 — =+ o.oosfz)

2
0.03 , 0.08
+ <l—n2+—a§+?ao+0.005\/§) ~

0.05>
=0
4 4

(53)

Using the symbol #? = > — 0.005v/2, Eq. (53) has the form as
the Eq. (52). Therefore, if we translate the frequency—amplitude
curve when 6, =0 to the right one segment 0.005v2, we will
obtain the graph of the amplitude—frequency curve corresponding
to 6, =0.01. We can easily see these properties in Figs. 4-6.

The graphs in Figs. 4-6 show the dependence of the
amplitude—frequency curve on the parameters o,, p, and /4. The
crossed regions in Figs. 4-6 are unstable regions where
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Fig.1 The amplitude—frequency curve, where p = 0.5, and different values of 5,
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inequalities (49) and (50) are not satisfied. It is noted that the
unstable area shifts from left to right as h changes from 0.01
to 0.1.

It should be noted that in Fig. 7 the solid curve is the solution
calculated by analytical method, the circles denote the solution
calculated by numerical integration [35]. Figure 7 clearly shows
that there is good agreement between the numerical and analytical
results.

5 Conclusions

In this paper, the parametric resonance of a third-order nonlin-
ear vibration system with dynamic friction and fractional damping
was investigated by the asymptotic method. The new findings
made in this study are summarized as follows:

(1) Using the asymptotic method, an approximate solution
expression of the third-order nonlinear system with
dynamic friction and fractional damping has been built.

(2) The amplitude and the phase of the stationary oscillation of
the approximate solution are determined. The stability con-
ditions of the approximate solution have been studied.

(3) The effects of the fractional coefficient, the fractional-order
and the dynamic coefficient on the approximate solution
were characterized by the equivalent damping coefficient
and the equivalent stiffness coefficient, which were also
illustrated by some typical amplitude-frequency curves.
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Appendix

A formula for calculating the fractional-order derivative of the
trigonometric functions a(¢)cos[Qr+y(¢)] and a(f)sin[Qr+y(1)]

THEOREM. It is assumed that the frequency Q is a constant, and
a(t) and (t) are given by the differential equations

da(r) =¢A(a, ) + EAs(a, ) + - --
. dt (A1)

where ¢ is a small positive parameter, we have the following
approximate expressions:

DP[a(r)cos(Qr + y(1))] = Qa(r)cos {Qt + (1) +pz} + &[]

DP[a(t)sin(Qt + (1))] = Qa(t)sin [Qt + (1) +pg:| +¢[]
(A2)

Proof. Using the Leibniz’s rule for fractional differentiation of
a product of two functions f and g [1], it is obtained

Dlf(0) i( )Dkf (D74t

k=0
- (r)Df’g(rHZ(i)Dkf(r)Dpkgo) (a3)
k=1

By the choice f=a (1), g =cos(Qt + ) = cos (), according to
Eq. (A3) we have

081004-8 / Vol. 17, AUGUST 2022

DPlacos(Qt+ )] = a(t)D’ [cos(Qt + )]

+i( )Dk[a Y|DP ¥ [cos(Qt + )]

=1
~a(t)DP[cos(Qr+ )]

( D'[a(£)]D" " cos(Qt + )]
+(Z)Dz[a(z‘)]D”_z[cos(QtJrl//)]+--- (A4)

Now, we compute the fractional derivatives D*[cos(Q + /(1))]
with o = p, p — 1, p — 2. Using the linearity of the fractional dif-
ferential operator, we have

D*[cos(Qz + Y (t))] = D*[cos Qt cos yy — sin Qr sin | (A5)
= D%[cos Qtcos ] — D*[sin Qrsin |

For f = cosy(t), g = cosQt, according to Eq. (A3) we have
D*[cos i cos Q1] = cos yD*(cos Qr)

+Z( )Dk cosh)D* *(cos Qr)  (A6)

By similar calculations, we obtain
D*[siny cos Q¢] = sin yyD*(sin Q1)

+ Z( )Dk siny)D* F(sinQr) (A7)

By substituting Egs. (A6), (A7) into Eq. (AS), it is obtained
D*[cos(Qt + )] = cos yD*(cos Qt) — sin yD*(sin Q)

—|—Z < )Dk cos ) D* ¥ (cos Qr)

i( >Dk siny)D* k(sinQr)  (A8)
&

By substituting Eq. (A8) into Eq. (A4) yields
DP[acos(Qt+y)] = a(t) {cosyDP[cos(Qr)] — sinyyD? [sin(Q)]

- Z ( )Dk[smw D7 ~[sin(€2)]

+ ( >D1 [a(t)]{ cosyDP~ [cos(Q1)]

— siny D"~ [sin(Qr)]

+§:1 (p ; ! )Dk [cosy]DP~ ! F[cos(Q)]

i( >Dk [siny/]DP~'*[sin(Q)] }

k
+ (’2’ >D2 la(1)]{ cosyD"2[cos(€)]
— S1

inyDP =2 [sin(Qr)]

-

i < )D" [cosy]DP~2 ¥ [cos(Q)]
i < )Dk siny]DP =2 K [sin(Qs)]} + - -

(A9)

k=
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Using the assumptions (A1), we have

da
Dl[a] == eA| + %Ay + -

d*a dA, dA,
Dl ]__2: o e & dr
D'[cos Y] = M fsinl//% = —siny(eB) +&*By + - --)
. dy
D*[cos Y] = o (cos l//) - d<sm l//E) = —cosy (dw>2
dr? dt dt
2
— simp%
= —cosy(eBy + ¢By + -- .)2
- sinw(s%+ 2d5: +- )
D'[siny] = (Sm V) = cos lﬁa;—l/t/ =cosy(eB) + By + -+
dy
) & (si d(cosx//d—) . T\
D*[siny] = (;1;21 ¥) = a = —smtﬁ(d—l’lb)

&
+cos1p

= 7Sinl//(831 +&®By 4 - ~)2

dB,  ,dB;
+COS[//(87+8 o )

(A10)

Substituting Eqs. (A10) into Eq. (A9) it is obtained

DPlacos(Qt + )] = a(r){ cos YyDP [cos(Qt)] — sin yDP[sin(Q¢)] }
+¢[]
(Al1)
Using the formulas [36]
DP[cos(wx)] = o’ cos (wx —|—pg) ,
(A12)

DP[sin(wx)] = «’ sin ((ux _|_pg)

the formula (A11) can be transformed in the following form:
DPlacos(Qr+ 1))
= a(l){ cosy Y cos (Qt—i—pg) —siny/ QY sin (Qt—i—pg) } +e[]
=a(t)cos <Qt+ W +pg> +é[
(A13)

or

D?[a(t)cos(Qt + (1)) = Qa(t)cos {Qt ) + pg} + e[

(A14)
Similarly, we can prove the formula
D2la(t)sin(Q + ()] = Pali)sin {Qt )+ pg} ]
(A15)
| |
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