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7 In this paper, we propose an analytical approach based on the Laplace transform and Mittag–Leffler functions combining
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9 time-varying delay. The concept of finite-time stability is extended to the fractional-order neural networks and the delay

10 function is assumed to be non-differentiable, but continuous and bounded. We first prove some important lemmas on the

11 existence of solutions and on estimation of the Caputo derivative of specific quadratic functions. Then, new delay-
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14 to demonstrate the effectiveness and validity of the theoretical results.
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18

19 1 Introduction

20 In the real world, neural networks have been found

21 everywhere such as in weather forecasting and business

22 processes because neural networks can create simulations

23 and predictions for complex systems and relationships

24 [1–6]. It is well-known that fractional-order systems

25 (FOSs) have attracted much attention due to their important

26 applications in various areas of applied sciences over the

27 past decades [7–9]. Fractional analysis has been considered

28 and developed in the context of neural networks as artificial

29neural networks, Hopfield neural networks, etc. In fact, the

30fractional-order derivative provides neurons with a funda-

31mental and general computational ability that contributes to

32efficient information processing and frequency-indepen-

33dent phase shifts in oscillatory neuronal firings [10–16]. So

34far, most of the existing literature have concerned with

35Lyapunov asymptotic stability, however, in many practical

36cases, one concerns the system behavior on finite-time

37interval, i.e., finite-time stability (FTS) [17]. The concept

38of FTS has been developed to control problems, which

39concern the design of a admissible controllers ensuring the

40FTS of the closed-loop system. Many valuable results on

41finite-time control problems such as finite-time stabiliza-

42tion, finite-time optimal control, adaptive fuzzy finite-time

43optimal control, etc. have been obtained for this type of

44stability, see, [18–21] and the references therein. There-

45fore, problem of finite-time stability (FTS) for neural net-

46works described by fractional differential equations has

47attracted a lot of attention from scientists. It is notable that

48most of the results on the stability of FOS neural networks

49did not consider time delay. In many practical applications,

50time delay is well-known to be unavoidable and it can

51cause oscillation or instability of the system.
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52 There are various approaches to studying FTS for FOSs

53 with delays including Lyapunov function method, Gron-

54 wall and Holder inequality approach, etc. The authors of

55 [22–24] studied FTS of linear FOSs by using a generalized

56 fractional Gronwall inequality lemma. In [25], Yang et al.

57 studied FTS of fractional-order neural networks (FONNs)

58 with delay. Chen et al. in [26] used some Holder-type

59 inequalities to propose new criteria for FTS. Combining the

60 Holder inequality and Gronwall inequality, Wu et al. [27]

61 obtained sufficient conditions for FTS of FONNs with

62 constant delay. Based on this approach the authors of

63 [28, 29] developed the similar results for the systems with

64 proportional constant delays. On the other hand, noting that

65 the Lyapunov–Krasovskii function (LKF) method is one of

66 the powerful techniques to studying stability of FOSs with

67 delays, however, the LKF method can not be helpfully

68 applied for fractional-order time-delay systems. The diffi-

69 culty lies in the finding LKF to apply the fractional Lya-

70 punov stability theorem. In [30–33], the authors used

71 fractional Lyapunov stability theorem to find appropriate

72 LKF for FOSs with time-varying delay, however, the proof

73 of the main theorem provides a gap due to a wrong

74 application of fractional Lyapunov stability theorem.

75 Hence, it is worth investigating the stability of FONNs with

76 time-varying delay. In the paper [34], the authors provided

77 some sufficient conditions for the FTS of singular frac-

78 tional-order systems with with time-varying delay. Very

79 recently, to avoid finding LKF the authors of [35]

80 employed fractional-order Razumikhin stability theorem to

81 derive criteria for H1 control of FONNs with time-varying

82 delay. To our knowledge, problem of FTS for fractional-

83 order neural networks with time-varying delays has not yet

84 been fully studied in the literature.

85 Motivated the above discussion, in this paper, we

86 investigate problem of FTS for a class of FONNs with

87 time-varying delay. Especially, the time-varying delay

88 considered in the FONNs is only required to be continuous

89 and interval bounded. The contribution of this paper is

90 twofold. First, considering FONNs with interval time-

91 varying delay, we propose some auxiliary lemmas on the

92 existence of solutions and on estimating the Caputo

93 derivative of some specific quadratic functions. Second,

94 using a proposed analytical approach based on the factional

95 calculus combining with LMI technique, we provide suf-

96 ficient conditions for FTS. The conditions are established

97 in terms of a tractable LMI and Mittag–Leffler functions. It

98 should be noted that the proposed approach of Laplace

99 transforms and inf–sup method has not yet seen in the field

100 of FONNs with time-varying delay, and the stability con-

101 ditions obtained in this paper are delay-dependent and

102 novel.

103 The article is structured as follows. Section 2 presents

104 formulation of the problem and some auxiliary technical

105lemmas. In Sect. 3, the main result on FTS is presented

106with an illustrative example and its simulation.

107Notations. Rþ denotes the set of all real positive num-

108bers; Rn denotes the Euclidean n� dimensional space with

109its scalar product xtopy; R
n�r denotes the space of all

110ðn� rÞ-matrices; Atop denotes the transpose of A; matrix A

111is positive semi-definite ðA� 0Þ if x>Ax� 0; for all x 2 R
n
;

112A is positive definite ðA[ 0Þ if x>Ax[ 0 for all x 6¼ 0;

113A�B means A� B� 0; Cð½�s; 0�;RnÞ denotes the set of

114vector valued continuous functions from ½�s; 0� to R
n;

1152 Preliminaries

116We first recall from [7] basic concepts of fractional cal-

117culus and some auxiliary results for the use in next section.

118Definition 1 [7] For a 2 ð0; 1Þ and f 2 L1½0; T �; the frac-

119tional integral Iaf ðtÞ; the Riemann derivative Da
Rf ðtÞ and

120the Caputo derivative Da
Caf ðtÞ of order a;, respectively, as

Iaf ðtÞ ¼
1

CðaÞ

Z t

0

ðt � sÞa�1
f ðsÞds;

Da
Rf ðtÞ ¼

d

dt
ðI1�af ðtÞÞ; Da

Cf ðtÞ ¼ Da
Rðf ðtÞ � f ð0ÞÞ;

122122where CðsÞ ¼
R

1

0

e�tts�1dt; s[ 0; t 2 ½0; T � is the Gamma

123function.

124The function

Ea;bðzÞ ¼
X

1

n¼0

zn

Cðnaþ bÞ
; z 2 C; a[ 0; b[ 0

126126denotes Mittag–Leffler function. The Laplace transform of

127the integrable function g(.) is defined by

128
L½gðtÞ�ðsÞ ¼

R

1

0

e�stgðtÞdt:

129Lemma 1 [7] Assume that f1ð:Þ; f2ð:Þ are exponentially

130bounded integrable functions on R
þ; and 0\a\1; b[ 0:

131Then

132(1) L½Da
Cf1ðtÞ�ðsÞ ¼ saL½f1ðtÞ�ðsÞ � sa�1f1ð0Þ;

133
(2) L½ta�1Ea;aðbt

aÞ�ðsÞ ¼
1

sa � b
;

134
L½Eaðbt

aÞ�ðsÞ ¼
sa�1

sa � b
;

135(3) L½f1 � f2ðtÞ�ðsÞ ¼ L½f1ðtÞ�ðsÞ � L½f2ðtÞ�ðsÞ;

136
where f1ðtÞ � f2ðtÞ :¼

R

t

0

f1ðt � sÞf2ðsÞds:

137Consider a FONNs with time-varying delay:
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Da
CxiðtÞ¼�mixiðtÞþ

P

n

j¼1

aijfjðxiðtÞÞþ
P

n

j¼1

bijgjðxjðt�dðtÞÞÞ;

xiðhÞ¼/iðhÞ;h2½�d2;0�; i¼1;n;

8

>

<

>

:

ð1Þ

139139 or in the matrix form:

Da
CxðtÞ ¼ �MxðtÞ þ Ff ðxðtÞÞ þ Ggðxðt � dðtÞÞÞ; ð2Þ

141141 where xðtÞ ¼ ðxiðtÞ; :::; xnðtÞÞ
>

is the state; the delay d(t)

142 satisfies 0\d1 � dðtÞ� d2; 8t� 0; /ðtÞ ¼

143 ð/iðtÞ; :::;/nðtÞÞ
>
is the initial condition with the norm

k/k ¼ sup
h2½�d2;0�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

n

i¼1

j/iðhÞj
2

s

;

145145 the variation functions

f ðxÞ¼ðf1ðx1ÞÞ; . . .;fnðxnÞÞ
>; gðxÞ¼ðg1ðx1ÞÞ; . . .;gnðxnÞÞ

>;

147147 satisfy f ð0Þ¼0; gð0Þ¼0; and for all n;g2R; i¼1;n :

9li[ 0 :jfiðnÞ � fiðgÞj � lijn� gj;

9ki[ 0 :jgiðnÞ � giðgÞj � kijn� gj;
ð3Þ

149149 M ¼ diagðm1;m2; . . .;mnÞ; F ¼ ðaijÞn�n; G ¼ ðbijÞn�n are

150 the connections of the jth neuron to the ith neuron at time t.

151 Definition 2 Let c1; c2; T be given positive numbers.

152 System (1) is FTS with respect to ðc1; c2; TÞ if

k/k2 � c1 ) kxðtÞk2 � c2; t 2 ½0; T�:

154154

155 Lemma 2 If / 2 Cð½�d2; 0�;R
nÞ and the condition (3)

156 holds, then system (1) has a unique solution

157 x 2 Cð½�d2; TÞ;R
nÞ:

158 Proof From Volterra integral form of system (2) we have

xðtÞ ¼ xð0Þ þ Ia½�MxðtÞ þ Ff ðxðtÞÞ þ Ggðxðt � dðtÞÞÞ�;

160160 and consider the function

HðyÞðtÞ ¼
/ð0Þ þ Ia½vyðtÞ� if t� 0;

/ðtÞ if t 2 ½�d2; 0Þ;

�

162162 where

vyðtÞ ¼ �MyðtÞ þ Ff ðyðtÞÞ þ Ggðyðt � dðtÞÞÞ:

164164 Note that the function vyðtÞ is continuous on [0, T] if y 2

165 Cð½�d2; T �;R
nÞ: So we can see that function Hð�Þ maps

166 Cð½�d2; T �;R
nÞ into Cð½�d2; T �;R

nÞ: In fact from the

167 uniform continuity of vyðtÞ on [0, T], there is a d[ 0 such

168 that for all t1; t2 2 ½0; T�; t2 � t1; and

jt1 � t2j � d ) jvyðt1Þ � vyðt2Þj � e;

170170hence

jHðyÞðt1Þ � HðyÞðt2Þj �
e

CðaÞ

�

�

�

Z

t2

0

sa�1ds

�

�

�þ
1

CðaÞ
sup

s2½0;T �

jvyðsÞj
�

�

�

Z

t1

t2

sa�1ds

�

�

�

�
e

CðaÞ

Ta

a
þ

1

CðaÞ
sup

s2½0;T �

jvðsÞj
�

�

�

ta2
a
�
ta1
a

�

�

�;

172172which also shows the continuity of H(y)(t) on ½�d2; T �:

173Next, for t 2 ½0;T �; y; z 2 Cð½�d2;T �;R
nÞ :

jvyðtÞ � vzðtÞj � jMjjyðtÞ � zðtÞj þ jFjjf ðyðtÞÞ � f ðzðtÞÞj

þ jGjjgðyðt � dðtÞÞÞ � gðzðt � dðtÞÞÞj

� ðjMj þ jFjmax
i

li þ jGjmax
i

kiÞ

sup
s2½�d2;T�

jyðsÞ � zðsÞj;

175175which leads to

jHðyÞðtÞ � HðzÞðtÞj�
c1t

a

CðaÞa
sup

s2½�d2;T �

jyðsÞ � zðsÞj;

177177
where c1 ¼ jMj þ jFjmax

i
li þ jGjmax

i
ki: Similarly, by

178induction, we have for m ¼ 1; 2:::

jHmðyÞðtÞ � HmðzÞðtÞj � c1
tma

Cðmaþ 1Þ
sup

s2½�d2;T �

jyðsÞ � zðsÞj;

sup
s2½�d2;T �

jHmðyÞðsÞ � HmðzÞðsÞj

�
c1T

ma

Cðmaþ 1Þ
sup

s2½�d2;T �

jyðsÞ � zðsÞj:

180180

Besides, the space Cð½�d2; T�;R
nÞ with the norm kyk ¼

181

sup
s2½�d2;T �

jyðsÞj is a Banach space. Hence,

Hmð�Þ : Cð½�d2; T �;R
nÞ ! Cð½�d2; T �;R

nÞ

183183is a contraction map with this sup norm as m enough large.

184Applying the fixed-point theorem, we derive the existence

185of a unique solution x 2 Cð½�d2; T �;R
nÞ: h

186Lemma 3 [34] For d[ 0 and N[ 0; if function S :

187½�d;N� ! R
þ is non-decreasing and satisfies

SðtÞ� aSð0Þ þ bSðt � dÞ; a[ 1; b� 0; t� 0;

189189then

SðtÞ� Sð0Þa
X

½N=d�þ1

j¼0

bj; 8t 2 ½0;N�:

191191
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192 3 Main result

193 This section provides new conditions for FTS of system (1)

194 in term of a tractable LMI and Mittag–Leffler condition.

195 Before proving the theorem, let us denote [d] by the integer

196 part of d and

c ¼
d2

2max
i

k2i
; In ¼ diagf1; . . .; 1g 2 R

n�n;

E11 ¼� 2PM � d2Pþ bmax
i

l2i In;E12 ¼ PF; E21

¼ ½PF�>; E13 ¼ PG;

E31 ¼½PG�>; E22 ¼ �bIn; E33 ¼ �cP; E44 ¼ In � P;

E55 ¼P� 2In; all the others Eij ¼ 0:

198198 Theorem 1 Let c1; c2; T be given positive numbers. System

199 (1) is FTS with respect to ðc1; c2; TÞ if there exist a number

200 b[ 0 and a symmetric matrix P[ 0 such that

E11 E12 : : E15

� E22 : : E25

: : : : :

� � : : E55

0

B

B

B

@

1

C

C

C

A

\0 ð4Þ

202202 kmaxðPÞ

kminðPÞ
Eaðd2T

aÞ
X

½T=d1�þ1

j¼0

ðEaðd2T
aÞ � 1Þj\

c2

c1
: ð5Þ

204204

205 Proof Let us consider the following non-negative quad-

206 ratic functional VðxðtÞÞ ¼ xðtÞ>PxðtÞ: Since the solution

207 x(t) may not be non-differentiable, we propose the fol-

208 lowing result on estimating Caputo derivative of V(x(t)). h

209 Lemma 4 For the solution xðtÞ 2 Cð½�d2; T�;R
nÞ; the

210 Caputo derivative Da
CðVðxðtÞÞÞ 2 Cð½0; T �;RnÞ exists and

211 Da
C½VðxðtÞÞ� � 2xðtÞ>PDa

CxðtÞ; t� 0:

212 To prove the lemma, we note that xðtÞ 2 Cð½�d2; T �;R
nÞ

213 (by Lemma 2), the function

uðtÞ ¼ �MxðtÞ þ Ff ðxðtÞÞ þ Ggðxðt � dðtÞÞÞ;

215215 is continuous on [0, T]. Hence, we get

�

�

�

xðtÞ�xð0Þ

ta
�

uð0Þ

Cðaþ1Þ

�

�

�¼
�

�

�

R

t

0

ðt�sÞa�1ðuðsÞ�uð0ÞÞds

taCðaÞ

�

�

�

� sup
s2½0;t�

�

�

�uðsÞ�uð0Þ
�

�

�

�

�

�

R

t

0

ðt�sÞa�1
ds

taCðaÞ

�

�

�

¼
1

Cðaþ1Þ
sup
s2½0;t�

�

�

�uðsÞ�uð0Þ
�

�

�!0;

217217 as t!0: In the other words,

c0 :¼ lim
t!0

xðtÞ � xð0Þ

ta
¼

uð0Þ

Cðaþ 1Þ
: ð6Þ

219219Consequently,

lim
t!0

VðxðtÞÞ � Vðxð0ÞÞ

ta
¼ 2

�

xð0Þ;
Puð0Þ

Cðaþ 1Þ

�

: ð7Þ

221221It is easy to calculate the following integral

Z t

nt

VðxðtÞÞ � VðxðsÞÞ

ðt � sÞaþ1
ds ¼

Z t

nt

ðxðtÞ � xðsÞ; 2PxðtÞÞ

ðt � sÞaþ1
ds

�

Z t

nt

ðxðtÞ � xðsÞ;P½xðtÞ � xðsÞ�Þ

ðt � sÞaþ1
ds

¼ I1ðt; nÞ � I2ðt; nÞ:

ð8Þ

223223From Theorem 2.2 of [36] it follows that Da
Cx ¼ u 2

224Cð½0; T �;RnÞ; and when n ! 1�; we have

jI1ðt; nÞj ¼
�

�

�

�

Z

t

nt

xðtÞ � xðsÞ

ðt � sÞaþ1
ds; 2PxðtÞ

��

�

�

� sup
0\t� T

�

�

�

Z

t

nt

xðtÞ � xðsÞ

ðt � sÞaþ1
ds
�

�

�2 sup
t2½0;T �

jPxðtÞj ! 0;

ð9Þ

226226when n ! 1�; and

x ¼ xð0Þ þ c0t
a þ x0; x0 2 Ha

0 ½0; T �; t 2 ð0; T �:

228228Hence, for 0� nt� s\t� T ; n 2 ð0; 1�; we obtain that

�

�

�

xðtÞ � xðsÞ

ðt � sÞa

�

�

��
�

�

�c0
ta � sa

ðt � sÞa

�

�

�þ
�

�

�

x0ðtÞ � x0ðsÞ

ðt � sÞa

�

�

�

¼c0
ðt � sÞaca�1

ðt � sÞa
þ
�

�

�

x0ðtÞ � x0ðsÞ

ðt � sÞa

�

�

�;

� kðnÞ :¼ c0a½1=n� 1�1�a

þ sup
0� s\t� T ;jt�sj �Tð1�nÞ

�

�

�

x0ðtÞ � x0ðsÞ

ðt � sÞa

�

�

�;

230230where c 2 ðs; tÞ: Thus, as n ! 1�; we get

jI2ðt; nÞj ¼

Z

t

nt

ðxðtÞ � xðsÞ;P½xðtÞ � xðsÞ�Þ

ðt � sÞaþ1
ds

�
Tað1� nÞa

a
kPkkðnÞ2 ! 0;

ð10Þ

232232because kðnÞ is independent on s; t; and x0 2 Ha
0 ½0; T �:

233From (8), (9), (10), as n ! 1�;
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sup
0\t�T

�

�

�

Z

t

nt

ðt � sÞ�a�1ðVðxðtÞÞ � VðxðsÞÞÞds
�

�

� ! 0: ð11Þ

235235 Using Theorem 2.2 of [36] and (7), (11) gives

236 9Da
CVðxðtÞÞ 2 C½0; T� and

Da
CðVðxðtÞÞÞð0Þ ¼ 2

�

xð0Þ;Pvð0Þ
�

;

Da
CðVðxðtÞÞÞ ¼

VðxðtÞÞ � Vðxð0ÞÞ

taCð1� aÞ

þ
a

Cð1� aÞ

Z

t

0

VðxðtÞÞ � VðxðsÞÞ

ðt � sÞaþ1
ds; t 2 ð0; T �:

ð12Þ

238238 Besides we have Da
Cx 2 C½0; T� and

ðDa
CxÞð0Þ ¼Cðaþ 1Þ

uð0Þ

Cðaþ 1Þ
¼ uð0Þ;

ðDa
CxÞðtÞ ¼

1

Cð1� aÞ

� xðtÞ � xð0Þ

ta
þ

a

Cð1� aÞ

Z

t

0

xðtÞ � xðsÞ

ðt � sÞ1þa
ds
�

:

ð13Þ

240240 The identities (12) and (13) lead to Da
CðVðxðtÞÞÞ �

241 2ðxðtÞ;PDa
CxðtÞÞ ¼ 0; t ¼ 0 and for t 2 ð0; T � to

Da
CðVðxðtÞÞÞ � 2ðxðtÞ;PDa

CxðtÞÞ

¼ �
VðxðtÞ � xð0ÞÞ

taCð1� aÞ
�

a

Cð1� aÞ

Z

t

0

VðxðtÞ � xðsÞÞ

ðt � sÞaþ1
ds

� 0;

243243 which completes the proof of Lemma 4.

244 To finish the theorem’s proof, denoting

nðtÞ ¼ ½xðtÞ; f ð�Þ; gð�Þ�>; f ð�Þ ¼ f ðxðtÞÞ; gð�Þ ¼ gðxðt � dðtÞÞÞ;

246246 we obtain, by using Lemma 4, that

Da
CVðxðtÞÞ�2xðtÞ>PDa

CxðtÞ

¼2xðtÞ>P
�

�MxðtÞþFf ðxðtÞÞþGgð�Þ
�

�2xðtÞ>P
�

�MxðtÞþFf ðxðtÞÞþGgð�Þ
�

�bf ð�Þ>f ð�Þ�cgð�Þ>Pgð�Þþbmax
i

l2i xðtÞ
>
xðtÞ

�d2xðtÞ
>
PxðtÞþd2VðxðtÞÞþcgð�Þ>Pgð�Þ

¼nðtÞ>½Eij�3�3nðtÞþd2VðxðtÞÞþcgð�Þ>Pgð�Þ

�d2VðxðtÞÞþcgð�Þ>Pgð�Þ;

ð14Þ

248248
because of kf ð�Þk2�max

i
l2i kxðtÞk

2; and ½Eij�3�3\0 (by the

249 condition (4)). Let

UðtÞ ¼ Da
CVðxðtÞÞ � d2VðxðtÞÞ; t� 0: ð15Þ

251251Using the Laplace transform (by Lemma 1-(i)) to the both

252sides of (15) gives

L½UðtÞ�ðsÞ ¼ saL½VðxðtÞÞ�ðsÞ � sa�1Vðxð0ÞÞ

�d2L½VðxðtÞÞ�ðsÞ;

254254equivalently

L½VðxðtÞÞ�ðsÞ ¼ ðsa � d2Þ
�1
sa�1Vðxð0ÞÞ

þðsa � d2Þ
�1L½UðtÞ�ðsÞ:

256256Applying Lemma 1 -(ii), (iii), we obtain that

L
h

Vðxð0ÞÞEaðd2t
aÞ�ðsÞ ¼ðsa � d2Þ

�1
sa�1Vðxð0ÞÞ

L
h

ta�1Ea;aðd2t
aÞ � UðtÞ�ðsÞ ¼ðsa � d2Þ

�1L½UðtÞ�ðsÞ;

258258hence

L½VðxðtÞÞ�ðsÞ

¼ L
h

Vðxð0ÞÞEaðd2t
aÞ þ ta�1Ea;aðd2t

aÞ � UðtÞ
i

ðsÞ:

260260Taking the inverse Laplace transform to the derived

261equation gives

VðxðtÞÞ ¼ Vðxð0ÞÞEaðd2t
aÞ

þ

Z

t

0

UðsÞ

ðt � sÞ1�a
Ea;aðd2ðt � sÞaÞds:

ð16Þ

263263Using (14) and the inequality In �P� 2In; we have

UðtÞ� cgð�Þ>Pgð�Þ � 2cgð�Þ>gð�Þ

� 2cmax
i
½ki�

2
X

n

i¼1

jxiðt � dðtÞÞj2

� d2xðt � dðtÞÞ>Pxðt � dðtÞÞ ¼ d2Vðxðt � dðtÞÞÞ;

265265then

sup
s2½0;t�

UðsÞ� h2 sup
h2½�d2;t�d1�

VðxðhÞÞ: ð17Þ

267267From (16) and (17) it gives

VðxðtÞÞ�Vðxð0ÞÞEaðd2t
aÞ þ sup

s2½0;t�

UðsÞ

Z

t

0

Ea;aðd2ðt � sÞaÞ

ðt � sÞ1�a
ds

�Vðxð0ÞÞEaðd2t
aÞ þ ðEaðd2t

aÞ � 1Þ

sup
h2½�d2;t�d1�

VðxðhÞÞ;

269269Moreover, we have
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sup
h2½�d2;t�

VðxðhÞÞ�Eaðd2T
aÞVðxð0ÞÞ

þ½Eaðd2T
aÞ � 1� sup

h2½�d2;t�d1�

VðxðhÞÞ:
ð18Þ

271271

Applying Lemma 3 with SðtÞ ¼ sup
h2½�d2;t�

VðxðhÞÞ; a ¼

272 Eaðd2T
aÞ; b ¼ Eaðd2T

aÞ � 1; and from (18) it follows that

sup
h2½�d2;t�

VðxðhÞÞ� q sup
h2½�d2;0�

VðxðhÞÞ� qkmaxðPÞk/k
2;

ð19Þ

274274
, where q ¼ Eaðd2T

aÞ
P

½T=d1�þ1

j¼0

ðEaðd2T
aÞ � 1Þj: For t 2

275 ½0; T�; the conditions (5) and (19) show that

kxðtÞk2 �
xðtÞ>PxðtÞ

kminðPÞ
�

sup
h2½�d2;t�

VðxðhÞÞ

kminðPÞ

� q
kmaxðPÞ

kminðPÞ
k/k2 � q

kmaxðPÞ

kminðPÞ
c1 � c2;

277277which shows that system (1) is FTS with respect to

278ðc1; c2; TÞ:

279Remark 1 Note that the numbers c1; c2; do not involve in

280the LMI (4), we find the solutions P; b by solving LMI (4)

281and the condition (5) can be easily verified.

282Remark 2 Theorem 1 proposed delay-dependent sufficient

283conditions for finite-time stability of FONNs with interval

284time-varying delay, which is a non-differentiable function,

285extends some existing results obtained in [23, 30–33],

286where the time delay is assumed to be differentiable.
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Fig. 1 Time history of kxðtÞk2

of the system with a ¼ 0:5
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Fig. 2 Time history of kxðtÞk2

of the system with a ¼ 0:6
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287 Moreover, for the case fractional derivative order a ¼ 1;

288 system (1) is reduced to normal fractional-order neural

289 networks with time-varying delay and some existing results

290 on FTS of such systems obtained in [4, 34, 37–39] can be

291 derived from Theorem 1.

292 Remark 3 It should be pointed out that the advantage of

293 our paper was proposing an approach based on the Laplace

294 transform combining with the inf–sup method to study

295 stability of FONNs with interval time-varying delay with-

296 out using the fractional Lyapunov stability theorem.

297 Example 1 Consider FONNs (1) with the following system

298 parameters

a ¼0:5; dðtÞ ¼ 0:1þ 0:05j sin2ðtÞj;

M ¼
1 0

0 1

� �

; A ¼
1 � 1

0 1

� �

; B ¼
1 0

1 1

� �

;

300300 the neuron activation functions f ; g : R
2 ! R

2 defined by

f ðxÞ ¼ðf1ðx1Þ; f2ðx2ÞÞ
>; gðxÞ ¼ ðg1ðx1Þ; g2ðx2ÞÞ

>;

f1ðtÞ ¼f2ðtÞ ¼ g1ðtÞ ¼ g2ðtÞ ¼ 0:08
t

1þ t2
;

302302 for all t 2 R; ðx1; x2Þ 2 R
2:

303 It can be shown that 0\d1 ¼ 0:1� dðtÞ� d2 ¼ 0:15;

304 f ð0Þ ¼ gð0Þ ¼ 0; and the neuron activation functions

305 satisfying the Lipschitz conditions (3) with l1 ¼ l2 ¼ k1 ¼

306 k2 ¼ 0:1: Since the delay function d(t) is non-differen-

307 tiable, the method used in [20, 30–33] cannot be applied.

308 We use the LMI algorithm in MATLAB [40] to find

309 solutions of (4) as

P ¼
1:7413 0:1105

0:1105 1:7544

� �

; b ¼ 5:8115:

311311 In this case, it can be computed that

c ¼ 7:5; kmaxðPÞ ¼ 1:8586; kminðPÞ ¼ 1:6371:

313313 For c1 ¼ 1; c2 ¼ 4; T ¼ 10; we can check the condition

314 (5) as

Eaðd2T
aÞ

X

½T=d1�þ1

j¼0

ðEaðd2T
aÞ � 1Þj

kmaxðPÞ

kminðPÞ
c1 ¼ 3:9939\4

316316 Hence, by Theorem 1, the system (1) is FTS with respect to

317 (1, 4, 10). Figure 1 and Figure 2 demonstrate the time

318 history kxðtÞk2 of the system with initial condition /ðtÞ ¼

319 ½0:65; 0:65�; t 2 ½�0:15; 0� and a ¼ 0:5; and a ¼ 0:6;,

320 respectively.

3214 Conclusions

322In this paper, the finite-time stability problem for a class of

323FONNs with interval time-varying delay has been addres-

324sed. Based on a novel analytical approach, delay-dependent

325sufficient conditions for FTS are proposed. The conditions

326are presented in the form of a tractable LMI and Mittag–

327Leffler functions. Finite-time stability analysis of FONNs

328with unbounded time-varying delay may be interesting

329topics to study in the future, and an extension of this study

330to non-autonomous FONNs with delays is an open

331problem.
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