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Abstract: The main purpose of this work is to study how loss functions in machine learning influence
the “binary machines”, i.e., probabilistic AI models for predicting binary classification problems. In
particular, we show the following results: (i) Different measures of accuracy such as area under the
curve (AUC) of the ROC curve, the maximal balanced accuracy, and the maximally weighted accuracy
are topologically equivalent, with natural inequalities relating them; (ii) the so-called real probability
machines with respect to given information spaces are the optimal machines, i.e., they have the
highest precision among all possible machines, and moreover, their ROC curves are automatically
convex; (iii) the cross-entropy and the square loss are the most natural loss functions in the sense that
the real probability machine is their minimizer; (iv) an arbitrary strictly convex loss function will also
have as its minimizer an optimal machine, which is related to the real probability machine by just a
reparametrization of sigmoid values; however, if the loss function is not convex, then its minimizer is
not an optimal machine, and strange phenomena may happen.

Keywords: optimization; binary classification; machine learning; ROC curve; accuracy metrics; loss
function; quadratic loss; quartic loss; cross-entropy; convexity; information space; optimal machine;
real probability machine; distorted probabilities

MSC: 68T20; 68V99

1. Introduction

The aim of this paper is to study loss functions that are used in machine learning
for training binary classification machines. We refer to [1–5] for an introduction to ma-
chine learning. Loss functions play an extremely important role in differential machine
learning, and many different loss functions have been created for each problem, based
on some general principles (see, e.g., [4,6–9]). However, most people use some available
loss functions without paying much attention to the question of “how the choice of a loss
function will affect the outcome of a machine learning problem”. Recently, researchers
started paying more attention to the properties of the loss functions, which would help the
stochastic gradient flows in differential machine learning converge to the desired values of
the parameters; see, e.g., [10–19]. Our present work is also a contribution in this direction.

The question that we want to address in this paper is how to design the loss functions
so that the machines that are loss minimizers are also optimal in terms of prediction
accuracy. In order to study this question, we first need to study the ways to measure
and compare the accuracy of different binary machines. This led us to the notions of
information spaces, real probability machines, optimal machines, the convexity of the ROC
curve, and natural inequalities relating different metrics of accuracy. We then discovered
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that the convexity condition is the main condition on the loss function in order to ensure
that its minimizer will be an optimal machine in terms of precision. In general, those loss-
minimizing machines will give distorted probabilities instead of real probabilities. (When
people interpret sigmoid values as probabilities in the artificial intelligence literature, this
is not accurate in general, as those numbers are not real probabilities.) However, this
distortion may be viewed positively, as a feature instead of a bug, and one can go back from
distorted probabilities to real probabilities by performing large-scale testing if one wishes.

The main results presented in this paper are the following:

1. (Section 2, Proposition 1) Different measures of accuracy such as the area under the
curve (AUC) of the ROC curve, the maximal balanced accuracy, and the maximally
weighted accuracy are “topologically equivalent” in the sense that if one of them is
high (i.e., close to 1), then the other ones are also automatically high, with natural
inequalities relating them.

2. (Section 3, Proposition 2) The so-called real probability machines with respect to given
information spaces are the optimal machines, i.e., they have the highest precision
among all possible machines, and moreover, their ROC curves are automatically convex.

3. (Section 4, Proposition 3) The cross-entropy and the square loss are the most natural
loss functions in the sense that the real probability machine is their minimizer.

4. (Sections 5 and 6, Proposition 4) An arbitrary smooth strictly convex loss function will
also have as its minimizer an optimal machine, which is related to the real probability
machine by just a reparametrization of the sigmoid values. However, if the loss
function is not convex, then its minimizer is not an optimal machine, and strange
phenomena may happen.

Propositions 1 and 2 have been announced by us in a recent talk at AICI 2022 [20].

2. Binary Machines, ROC Curves, and Accuracy Metrics

Let us fix some notations for this paper. Denote by Ω an input space together with
some probability measure PΩ, and

Y : Ω→ {0, 1} (1)

a binary classification problem on Ω. For example, Ω is the population, and Y is COVID-
positive (1) or COVID-negative (0). Y is often called the ground truth.

We want to build a binary machine:

M : Ω→ [0, 1] (2)

(a test, whose values are in the interval [0,1]) that predicts the value of Y. Given a threshold
σ ∈]0, 1[, for each element x ∈ Ω, we put

Yσ(x) = 1 if M(x) ≥ σ and Yσ(x) = 0 if M(x) < σ (3)

The performance (i.e., precision) of the predictor Yσ with respect to the ground truth Y
can be measured by two basic performance indicators, called the sensitivity (=true positive
rate) TP(σ) and specificity (=true negative rate) TN(σ), defined by the following formulas:

TP(σ) = P(Yσ = 1|Y = 1) =
PΩ(M(x) ≥ σ , Y(x) = 1)

PΩ(Y(x) = 1)
, (4)

TN(σ) = P(Yσ = 0|Y = 0) =
PΩ(M(x) < σ , Y(x) = 0)

PΩ(Y(x) = 0)
. (5)

The curve ROC : [0, 1]→ [0, 1]× [0, 1] given by the formula

ROC(σ) = (1− TN(σ), TP(σ)) (6)
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is called the receiver operating characteristic (ROC) curve of the machine M in the literature
and is very widely used in many fields; see, e.g., [21–26] and the references therein. The
number FP(σ) = 1− TN(σ) is called the false positive rate at the threshold σ.

The ROC curves goes “backward” from the point ROC(0) = (1, 1) to the point
ROC(1) = (0, 0) in the unit square, and the higher the curve, the more accurate the
machine is. The so-called AUC is the area of the region under the ROC curve in the
unit square and is a popular measure for the accuracy of the machine. See Figure 1 for
an illustration.

Another popular measure of accuracy is the maximally weighted accuracy, denoted
here by MWA (see, e.g., [23]): given a weight w ∈ [0, 1] (determined by the ratio between
the cost of a false negative and the cost of a false positive), we put

WA(σ) = w · TP(σ) + (1− w) · TN(σ) = w · TP(σ)− (1− w) · FP(σ) + (1− w), (7)

MWA = max
σ∈[0,1]

WA(σ). (8)

In particular, when w = 0.5, then one obtains the so-called maximal balanced accu-
racy:

MBA = max
σ∈[0,1]

BA(σ), where BA(σ) =
TP(σ) + TN(σ)

2
(9)

We remark that 0 ≤ AUC, MWA, MBA ≤ 1 for any machine, and if any of these
numbers is equal to 1, then it means that the machine is perfect, 100% accurate. To borrow
a notion from topology and functional analysis, we can say that the AUC, MWA, and MBA
are different metrics of accuracy, but they are topologically equivalent, in the sense that if
one of these numbers is close to 1, then the other two numbers must also be automatically
close to 1, i.e., if the machine is highly precise with respect to one of these metrics, then it is
also highly precise with respect to the other metrics. More precisely, we have the following
simple inequalities relating these metrics of accuracy:

Proposition 1. With the above notations:
(i) For any binary machine M, we have

1− 2(1−MBA)2 ≥ AUC ≥ 2MBA− 1. (10)

If, moreover, the ROC curve of the machine M is convex, then we have

AUC ≥ MBA. (11)

(ii) For any given weight w ∈]0, 1[ and any given binary machine M, we have

1− (1−MWA)2

2w(1− w)
≥ AUC. (12)

If, moreover, the ROC curve of the machine M is convex, then we have

AUC ≥ 1− (1−MWA)

2 min(w, 1− w)
. (13)

Proof. (See Figure 1). W remark that a number σ ∈ [0, 1] is a threshold where the machine
M attains the highest weighted accuracy if and only if the straight line through the point
ROC(σ), consisting of the points (FP(σ) + wt, TP(σ) + (1− w)t), t ∈ R, lies above the
ROC curve. Indeed, the lines {(FP(σ) + wt, TP(σ) + (1− w)t), t ∈ R} of slope (w, 1− w)
are simply “lines of constant weighted accuracy”. If the point B = (FP(σ), TP(σ)) of the
ROC curve gives the maximally weighted accuracy, then no point of the ROC curve can
lie above its corresponding line of slope (w, 1− w), because lying above means higher
weighted accuracy.
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Figure 1. The ROC curve and the tangent line at a maximally weighted average point.

The line ` = {(FP(σ) + wt, TP(σ) + (1− w)t), t ∈ R}, where σ gives the maximally
weighted accuracy for the machine M, cuts the boundary of the unit square at two points

A = (0, 1− 1−MWA
w

) and C = (
1−MWA

1− w
, 1). The triangle4ACF, where F = (0, 1), is

disjoint from the region under the ROC curve, which implies that AUC + area(4ACF) ≤ 1.

Since area(4ACF) =
FA · FC

2
=

(1−MWA)2

2w(1− w)
, we obtain the inequality

AUC ≤ 1− (1−MWA)2

2w(1− w)
.

On the other hand, the region under the ROC curve contains the rectangle whose
vertices are (FP(σ), 0), (FP(σ), TP(σ), (1, TP(σ)), (1, 0). The surface area of this rectangle is
TP(σ) · (1− FP(σ)) = TP(σ) · TN(σ) = TP(σ) + TN(σ)− 1+ (1− TP(σ))(1− TP(σ)) ≥
TP(σ) + TN(σ)− 1 = 2BA(σ)− 1 (for every σ). Hence, we obtain the inequality

AUC ≥ 2MBA− 1.

If the ROC curve is convex, then the region below it contains the quadrilateral OBDE,
where O = (0, 0), B = (FP(σ), TP(σ)), D = (1, 1), E = (1, 0) (for any σ). The surface area
of this quadrilateral is exactly equal to BA(σ), i.e., to MBA; hence, we obtain the inequality
AUC ≥ BA(σ) for any σ, i.e., we have AUC ≥ MBA.

Finally, the inequality AUC ≥ 1− (1−MWA)

2 min(w, 1− w)
in the case when the ROC curve is

convex and the weight w is arbitrary is a direct consequence of the inequalities

AUC ≥ area(OBDE) ≥ min(area(OADE), area(OCDE))

and the equalities area(OCDE) = 1− (1−MWA)

2(1− w)
, area(OADE) = 1− (1−MWA)

2w
.

Remark 1. For some inequalities in Proposition 1, we assume the ROC curve to be convex.
The (near-)convexity of ROC curves has been observed empirically in many monographs and articles
for long time; see e.g., [21–26] and the references therein; it has been shown in [22] (Theorem 3)
that the convexity of the ROC curve is equivalent to some other natural reasonable “rationality”
conditions on the machine (namely, the higher the “sigmoid value” is, the higher the probability of
the event being true is).

In Section 3, we show that the so-called real probability machine, which is in a sense the most
natural machine, is also the most precise machine, and its ROC is automatically convex. Our result
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helps explain why most ROC curves met in practice are nearly convex (because the machines must
be nearly optimal in some sense if the machine learning processes for creating them are efficient).

Remark 2. If we reparametrize a sigmoid function Σ by composing it with an arbitrary increasing
bijection f : [0, 1] → [0, 1], then we obtain a new sigmoid function Σ′ = f ◦ Σ whose ROC
curve is the same as the ROC curve of Σ, up to a reparametrization by f . Namely, ROCΣ(σ) =
ROCΣ′( f (σ)) for all σ ∈ [0, 1]. In particular, a reparametrization allows us to change the sigmoid
values without changing the performance metrics AUC, MBA, and MWA of a system.

Remark 3. Some authors (see., e.g., [27]) also use the geometric mean GM =
√

TP.TN of
sensitivity (TP) and specificity (TN) as a measure of accuracy for binary prediction problems.
The obvious arithmetical inequalities (a + b)2/4 ≥ ab ≥ (a + b)2/2 − 1 (for any positive
numbers a, b ≤ 1) relate (in two ways) the geometric mean accuracy with the balanced accuracy
BA = (TP + TN)/2. In particular, it means that the (maximal) geometric mean accuracy is
also as good a measure of accuracy as MBA and the AUC, in the sense that they are topologically
equivalent.

Remark 4. Given an original probability distribution P = PΩ on the data space Ω, which is
imbalanced in the sense that P(Y = 0) 6= P(Y = 1) (imbalance between negative and positive
cases), we may change it to a new, balanced, probability distribution P̂, defined by the following
formula:

P̂(A) =
1
2

[
P(A ∩ {Y = 0})

P(Y = 0)
+

P(A ∩ {Y = 1})
P(Y = 1)

]
.

It is easy to verify that the parametrized ROC curve (for a given machine M = Σ ◦ φ : Ω →
[0, 1]) with respect to P̂ coincides exactly with the ROC curve with respect to P. Indeed, for any

σ ∈ [0, 1], the true positive level at σ is TP(σ) =
P(Σ > σ, Y = 1)

P(Y = 1)
= 2P̂(Σ > σ, Y = 1) =

P̂(Σ > σ, Y = 1)
P̂(Y = 1)

= T̂P(σ), and similarly for TN(σ). Thus, in the study of accuracy, without loss

of generality, one may suppose that the probability distribution is balanced with respect to Y in the
sense that P(Y = 0) = P(Y = 1) = 0.5.

3. Information Projection, Sigmoid Functions, and Optimal Machines

Conceptually, we can describe a binary machine M as a composition of two steps:

M = Σ ◦ φ, (14)

where
φ : Ω→ Φ (15)

may be called the information projection map from the original data space Ω to a certain
“distilled features space” or information space Φ, and

Σ : Φ→ [0, 1] (16)

is a function from the information space Φ to the interval [0, 1], which we will call a (gen-
eralized) sigmoid function, in analogy with the classical sigmoid function sigmoid(z) =
exp(z)/(exp(z) + exp(−z)) often used in the last layer of a neural network in deep learn-
ing, even though our Σ is a function of many variables in general.

The idea is that, in most cases, we cannot know everything about an element x ∈ Ω;
we can know only some information about x, and that information is given by the projection
map φ. Based on the available information φ(x) about x, we have to decide, via the value
M(x) = Σ(φ(x)), whether x is “negative” or “positive”. Even when we know everything
about x (e.g., when x is a digital image), the information contained in x may be too big
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(millions of bits for an image), so we have first to “distill” that information into something
smaller, which we call φ(x) and which we can control more easily.

In this paper, we assume that the information space Φ and the projection map φ :
Ω→ Φ are fixed, and what we want to choose is just the sigmoid function Σ : Φ→ [0, 1].
The probability measure PΦ on Φ is the push-forward of the probability measure PΩ on Ω
via the projection map φ.

In the artificial intelligence (AI) literature, the number M(x) = Σ(φ(x)) is often called
the probability (of x being positive given the information φ(x)), even though it is not true
in general, because Σ can be chosen rather arbitrarily, and as we will see in the following
sections of this paper, even optimal machines obtained by machine learning methods
usually give what we call distorted probabilities instead of real probabilities.

Nevertheless, among all the possible machines M (all the possible sigmoid functions
Σ : Φ → [0, 1]), there is one that is more natural than the others, which we call the
real probability machine (the probability sigmoid function). The probability sigmoid
function is simply the following conditional probability function:

Σproba(ϕ) = P(Y(x) = 1|φ(x) = ϕ) (17)

for each ϕ ∈ Φ.
We remark that, if we change the sigmoid function Σ by composing it with another

function, Σ′ = θ ◦ Σ, where θ : [0, 1]→ [0, 1] is a strictly increasing bijective function, then
Σ and Σ′ give the same ROC curve up to a reparametrization by θ. In other words, we can
change a sigmoid value to any other value by composing it with a function, without chang-
ing the accuracy of the system, and this is one more reason why the sigmoid values should
not be called “probabilities” in general.

Proposition 2. With the above notations:
(i) If Σ : Φ → [0, 1] is an arbitrary sigmoid function, then the real probability machine

Mproba = Σproba ◦ φ is more precise than (or at least as precise as) the machine M = Σ ◦ φ, in the
sense that the ROC curve of Mproba lies above the ROC curve of M. In other words, for any false
positive level α ∈]0, 1[, if σ and σproba are the corresponding thresholds such that

FPMproba(σproba) = FPM(σ) = α, (18)

then
TPMproba(σproba) ≥ TPM(σ). (19)

(ii) The ROC curve of the real probability machine Mproba is convex.

Proof. Fix an arbitrary false positive level α ∈]0, 1[ and σproba, σ ∈]0, 1[ the two correspond-
ing threshold values as in the statement of the proposition. Then, we have the following
formula for α:

α =

∫
{ϕ∈Φ|Σproba(ϕ)≥σproba}

(1− Σproba(ϕ))dϕ∫
Φ(1− Σproba(ϕ))dϕ

=

∫
{ϕ∈Φ|Σ(ϕ)≥σ}(1− Σproba(ϕ))dϕ∫

Φ(1− Σproba(ϕ))dϕ
, (20)

(where
∫

Φ(1− Σproba(ϕ))dϕ = PΩ(Y = 0) is the probability measure of the negative set
{x ∈ Ω | Y(x) = 0}), which implies that∫

{ϕ∈Φ|Σproba(ϕ)≥σproba}
(1− Σproba(ϕ))dϕ =

∫
{ϕ∈Φ|Σ(ϕ)≥σ}

(1− Σproba(ϕ))dϕ. (21)

To simplify the notations, put

A = {ϕ ∈ Φ|Σproba(ϕ) ≥ σproba} and B = {ϕ ∈ Φ|Σ(ϕ) ≥ σ}. (22)
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Then, we have
∫

A
(1− Σproba(ϕ))dϕ =

∫
B
(1− Σproba(ϕ))dϕ, which implies that

∫
A\B

(1− Σproba(ϕ))dϕ =
∫

B\A
(1− Σproba(ϕ))dϕ. (23)

Since (1− Σproba(ϕ)) ≤ 1− σproba on A \ B while (1− Σproba(ϕ)) > 1− σproba on B \ A, we
must have that P(A \ B) ≥ P(B \ A), which implies that∫

A\B
Σproba(ϕ)dϕ ≥ σprobaP(A \ B) ≥ σprobaP(B \ A) ≥

∫
B\A

Σproba(ϕ)dϕ, (24)

which implies that ∫
A

Σproba(ϕ)dϕ ≥
∫

B
Σproba(ϕ)dϕ. (25)

This last inequality means exactly that the true positive level of Σproba at the false
positive level α is greater than or equal to the true positive level of Σ at the same false
positive level. In other words, the ROC curve of the probability sigmoid function Σproba
lies above the ROC curve of Σ everywhere, i.e., Σproba is the optimal sigmoid function.

The two ROC curves coincide if and only if, in the above formulas, B coincides with
A (up to a set of measure zero) for every false positive level α, and it basically means that
Σ is obtained from Σproba by composing it with a monotonous function. In other words,
up to a reparametrization of the sigmoid values, the probability sigmoid function is the
only optimal sigmoid function.

The convexity of the ROC curve of the probability sigmoid function Σproba follows
directly from its construction, which ensures that the conditional event probability is
nondecreasing (the higher the sigmoid value σ, the higher the conditional probability value
is, which is obvious because this value is equal to σ in our construction). See Theorem 3
of [22]. Indeed, denote by

α(σ) =

∫
{ϕ∈Φ|p(ϕ)≥σ}(1− Σproba(ϕ))dϕ∫

Φ(1− Σproba(ϕ))dϕ
and β(σ) =

∫
{ϕ∈Φ|Σproba(ϕ)≥σ} p(ϕ)dϕ∫

Φ Σproba(ϕ)dϕ
(26)

the false negative and false positive levels at threshold σ for the probability sigmoid
function Σproba, then we have

dβ

dα
=

∫
Φ(1− Σproba(ϕ))dϕ∫

Φ Σproba(ϕ)dϕ
· σ

1− σ
, (27)

which is an increasing function in σ, but a decreasing function in α, because α itself is a
decreasing function in σ. Hence, β is a concave function in α, which means that the ROC
curve is convex.

4. Differential Machine Learning and Loss Functions

The main idea of machine learning is that we have not just one, but a large family
of machines Mθ : Ω → [0, 1] that depend on some vector parameter θ ∈ Θ, where Θ is a
multi-dimensional space, and the learning process consists of changing θ step by step, e.g.,

θ = θ0 7→ θ1 7→ θ2 7→ . . . 7→ θn 7→ . . . (28)

in order to improve the performance or the precision of Mθ . In differential learning, one
constructs a loss function:

L : Θ→ R (29)

which acts as a proxy for the precision of the machines (the lower the loss L(θ), the higher
the precision of the machine Mθ in some sense) and uses the stochastic gradient descent
method to find a minimal point θ (or a near-minimal point) for the loss function L. That
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(near-)minimal point θ would logically correspond to a (near-)optimal machine Mθ . Theoret-
ically, L is equal to the integral over the whole data space Ω of a pointwise loss function `:

L(θ) =
∫

x∈Ω
`(Mθ(x), Y(x))dPΩ (30)

A priori, one can choose the loss function ` as one pleases, the only natural restriction
being that the further m = Mθ(x) is away from the ground truth y = Y(x), the higher the
loss `(m, y) should be, and if m = y, then there is no loss, i.e., `(y, y) = 0. The two most
popular loss functions are the quadratic loss:

`quadratic(m, y) = (m− y)2 (31)

and the so-called binary cross-entropy, which corresponds to the function

`crossentropy(m, y) = − ln(1− |m− y|) (32)

However, one can choose many other loss functions. For example, the following
quartic loss function will work very well in many problems:

`quartic(m, y) = (m− y)2 + (m− y)4 (33)

One can even try to use non-smooth, non-convex loss functions, for example

`broken(m, y) = min(|m− y|, 0.5)2 + max(|m− y| − 0.25, 0) (34)

Below, we give a theoretical explanation of the following facts:

(i) The quadratic loss and the cross-entropy are the two most natural loss functions;
(ii) Convex loss functions such as `quartic are good loss functions in the sense that their

minimizers are optimal machines in terms of accuracy);
(iii) Nonconvex loss functions such as `broken may lead to very erratic results (stochastic

traps) in machine learning.

One can rewrite the loss L(M) =
∫

x∈Ω `(Σ(φ(x)), Y(x))dPΩ of a binary machine
M = Σ ◦ φ as an integral on the information space Φ and then call it the loss of the sigmoid
function Σ, as follows:

L(Σ) =
∫

Φ

[
(1− Σproba(ϕ)) · `(Σ(ϕ), 0) + Σproba(ϕ) · `(Σ(ϕ), 1)

]
dϕ. (35)

(For each given ϕ, the value of `(Σ(φ(x)), Y(x)) under the condition φ(x) = ϕ will be
equal to `(Σ(ϕ), 0) with probability (1−Σproba(ϕ)) and equal to `(Σ(ϕ), 1) with probability
Σproba(ϕ). The integrand (1− Σproba(ϕ)) · `(Σ(ϕ), 0) + Σproba(ϕ) · `(Σ(ϕ), 1) in the above
formula is nothing but the integral of `(Σ(φ(x)), Y(x)) over the space {x ∈ Ω, φ(x) = ϕ})
with respect to the conditional probability measure on that space; that is why we have the
above formula).

For example, in the case of the cross-entropy loss, we have the integral formula, whose
integrand is really a cross-entropy:

Lcrossentropy(Σ) =
∫

Φ
−
[
(1− Σproba(ϕ)) · ln(1− Σ(ϕ)) + Σproba(ϕ) · ln(Σ(ϕ))

]
dϕ. (36)

The above examples of loss functions are symmetric, in the sense that they treat the
losses in negative cases (Y = 0) and the losses in positive cases (Y = 1) on an equal footing.
However, due to huge data imbalance in some problems (for example, when the number
of positive cases is just 1/1000 the number of negative cases), in practice, it is sometimes
better to use asymmetric loss functions instead of symmetric loss functions. Given a function:

f : [0, 1]→ R (37)



Mathematics 2022, 10, 1410 9 of 13

which is increasing and such that f (0) = 0, we can create a family of asymmetric loss
functions `c depending on an asymmetry coefficient c > 0 by the following formula:

`c(m, y) = (1− y) f (m) + cy f (1−m). (38)

Since our ground truth admits only two values y = 0 and y = 1, the above formula simply
means that the loss is equal to f (m) if y = 0 and is equal to c f (1− m) if y = 1, so the
negative cases and the positive cases are treated differently in the total loss. For example,
when c = 100, then it is like every positive case is counted one hundred times while every
negative case is counted only once. As such, the asymmetry coefficient can be used to offset
data imbalances.

The two Formulas (35) and (38) give us the following formula for the loss of a machine
M = Σ ◦ φ with respect to a given generating function f and asymmetry coefficient c:

L(Σ) =
∫

Φ

[
(1− Σproba(ϕ)) · f (Σ(ϕ)) + cΣproba(ϕ) · f (1− Σ(ϕ))

]
dϕ. (39)

For each given ϕ ∈ Φ, the integrand (1− Σproba(ϕ)) · f (Σ(ϕ)) + cΣproba(ϕ) · f (1− Σ(ϕ))
in the above integral formula can be written as a function of one variable σ = Σ(ϕ) and
one parameter p = Σproba(ϕ) (we cannot change p, but can choose our sigmoid function Σ,
i.e., choose σ, in order to minimize the loss):

g(σ) := (1− p) f (σ) + cp f (1− σ). (40)

Minimizing the loss L(Σ) means minimizing g(σ) for each ϕ. In other words, a sigmoid
function Σ is a minimizer of the loss function L(Σ) given by Formula (39) if and only if (up
to a set of measure zero) for each p ∈ [0, 1] and each ϕ ∈ Ω such that Σproba(ϕ) = p, we
have

Σ(ϕ) = argmin
σ

[(1− p) f (σ) + cp f (1− σ)] (41)

This last equation leads us to the following very interesting result about the naturality
of the classical quadratic loss function (the case with f (σ) = σ2 and c = 1) and the binary
cross-entropy (the case with f (σ) = − ln(1− σ) and c = 1):

Proposition 3. With the above notations, we have:
(i) The real probability machine is the only loss minimizer for the quadratic loss function.
(ii) The real probability machine is also the only loss minimizer for the binary cross entropy function.

Proof. (i) The quadratic loss case. As discussed above, a sigmoid function Σ : Φ→ [0, 1] is
a minimizer of the quadratic loss function if and only if

Σ(ϕ) = argmin
σ

(
(1− p)σ2 + p(1− σ)2

)
. (42)

for each p ∈ [0,1] and each ϕ ∈ Ω such that Σproba(ϕ) = p.
The quadratic function g(σ) := (1 − p)σ2 + p(1 − σ)2 has its derivative equal to

g′(σ) = 2(1 − p)σ + 2p(σ − 1) = 2(σ − p), and the equation g′(σ) = 0 has a unique
solution σ = p. This point σ = p = Σproba(ϕ) is the unique minimal point for the function
g(σ). It follows that the loss L(Σ) achieves its minimal at (and only at) the function
Σ(ϕ) = Σproba(ϕ), i.e., when the machine is the real probability machine.

(ii) The cross-entropy case. In this case, the minimizer of the loss function satisfies
the equation

Σ(ϕ) = argmin
σ

(−(1− p) ln(1− σ)− p ln(σ)). (43)

for each p ∈ [0, 1] and each ϕ ∈ Ω such that Σproba(ϕ) = p.
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The logarithmic function h(σ) = −(1 − p) ln(1 − σ) − p ln(σ) tends to infinity at
both ends (when σ tends to 0 and when σ tends to 1) and has its derivative equal to

h′(σ) =
1− p
1− σ

− p
σ

=
σ− p

σ(1− σ)
, and the equation h′(σ) = 0 has a unique solution σ =

p = Σproba(ϕ). This value of σ is the unique minimal point of h(σ), so similar to the
previous case, the probability function Σ(ϕ) = Σproba(ϕ) is also the unique minimizer of
the cross-entropy loss function.

5. Convex Loss Functions and Distorted Probabilities

The following proposition shows that, not only the cross-entropy and the quadratic
loss function can lead to the real probability machine (which is the most natural and most
precise machine according to Proposition 2), but all the other convex loss functions can also
lead to this optimal machine, up to a reparametrization (distortion of the probabilities).

Proposition 4. Let f : [0, 1[→ R+ be an arbitrary strictly convex increasing continuously
differentiable function such that either f ′(0) = 0 or limσ→1 f ′(σ) = +∞, c > 0 be an arbitrary
positive number (the asymmetry efficient), and

L(M) =
∫

x∈Ω
[(1−Y(x)) · f (M(x)) + cY(x) · f (1−M(x))]dx (44)

be the loss of a machine M for a given binary classification problem Y, measured by f and c.
Then, the minimizer M = Σ ◦ φ for the loss function L(M) is just a reparametrization of the

real probability machine. In other words, there is an increasing bijection g : [0, 1]→ [0, 1] such that
the machine with the sigmoid function:

Σ(ϕ) := g(Σproba(ϕ)) (45)

has the minimal loss with respect to L.

Proof. Recall from (35) that the loss L(M) for a machine M can be written as a loss for its
sigmoid function Σ as follows:

L(M) = L(Σ) =
∫

Φ

[(
1− Σproba(ϕ)

)
f (Σ(ϕ)) + cΣproba(ϕ) f (1− Σ(ϕ))

]
dµφ (46)

In order to minimize the loss L(Σ) over all functions Σ : Φ → [0, 1], we have to
minimize (1− p) f (σ) + cp f (1− σ) for each given p = Σproba(ϕ) over all σ and put

Σ(ϕ) = argmin
σ

[(1− p) f (σ) + cp f (1− σ)] (47)

to obtain the optimal sigmoid function with respect to the loss function L.
Under our assumptions about the function f , the minimal value of the function

(1− p) f (σ) + cp f (1− σ) (for a given p) is attained at the point σ where its derivative
vanishes, i.e., (1− p) f ′(σ)− cp f ′(1− σ) = 0, or

f ′(σ)
f ′(1− σ)

=
cp

1− p
. (48)

Notice that h(σ) :=
f ′(σ)

f ′(1− σ)
is a strictly increasing continuous function, with h(0) =

0 and lim
σ→1

h(σ) = +∞; hence, for each p (p ∈ [0, 1]), there is a unique σ such that h(σ) =
cp

1− p
, and moreover, this value of σ increases when p increases. In other words, there is an

increasing bijection
g : [0, 1]→ [0, 1] (49)
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such that σ = g(p) will satisfy the above equation, i.e., h(g(p)) =
cp

1− p
. This implies

that Σ(ϕ) := g(p) = g(Σproba(ϕ)) is the sigmoid function whose corresponding machine
M = Σ ◦ φ has the minimal loss with respect to the loss function L.

Of course, this machine is just a reparametrization of the real probability machine by
the reparametrization function g.

Remark 5. If the loss function is not convex (i.e., the function f in the formula of the loss function
is not convex), then Equation (48) may have zero solution or many solutions instead of a unique
solution in the interval [0, 1]. If there is no solution, then it means that the minimal value of
(1 − p) f (σ) + cp f (1 − σ) falls at σ = 0 or σ = 1, and the optimizer for L will be an kind
of extreme machine whose values will be mostly just 0 or 1 instead of some kind of probability
numbers; such a machine will not be very useful. When there are many solutions, then a minimizer
Σ for the loss function will not be a reparametrization of the probability sigmoid function either,
i.e., the machine that minimizes the loss function will not be an optimal machine.

Remark 6. In practice, hyper-convex loss functions such as the quartic loss are often preferable
to the square loss and the cross-entropy, even though they manifestly lead to machines that give
distorted probabilities. One of the reasons is their focality (see, e.g., [10,16]), which allows the
machine learning process to concentrate more of its learning on the difficult cases instead of “revising”
too much the easy cases.

Remark 7. Every probability is in fact a conditional probability and can be distorted one way or
another. For example, we do not know what the real probability distribution on the dataset Ω is,
especially when Ω is very large, and the samples that we have just a small subset of Ω. Therefore,
even if we use the cross-entropy or the square loss and a very good machine learning method, there is
no guarantee that the obtained machine will give real probabilities, and it is better to assume that all
the obtained sigmoid values will be just distorted probabilities. To go back from distorted probabilities
to real probabilities, i.e., to find the reparametrization function g such that Σ(ϕ) = g(Σproba(ϕ)),
one may make large-scale post-training tests of the machine (similar to clinical studies for medical
products). This problem of going from distorted probabilities to true probabilities is a well-known
problem of the calibration of probabilities in machine learning; see, e.g., [28,29].

Remark 8. Distorted probabilities may actually be a good thing. For example, if we have a cancer
detection machine that gives the sigmoid value 0.1 for a patient, how should this number be
interpreted? Since this number is very small, one may want to dismiss it as “very low cancer risk”.
However, if it is a real probability number, i.e., the chance of having cancer is 10%, then that number
is already high enough to be taken very seriously. It would be better if the sigmoid value 0.1 would
correspond to the cancer probability of just 0.001 for example (and to the probability of having a
late-stage cancer much smaller than that).

6. Non-Convex Loss Functions and Stochastic Traps

We performed many experiments of deep learning with both “good” (hyper-convex
loss functions, such as the quartic loss function in Formula (33)) and “bad” loss functions
(non-convex functions, such as the broken loss function in Formula (34) and other functions,
which the reader can probably invent easily by herself/himself). We used only well-known
neural networks such as VGG16 [30] and standard data augmentation methods, absolutely
nothing fancy. The purpose was not to achieve the best-performing AI models, but to study
phenomena created by different loss functions.

For example, we performed hundreds of experiments with the binary classification
problems such as “cat versus not-cat”, “dog versus not-dog” on the well-known public
dataset called CIFAR-10 collected by Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton
(see [31,32]). This dataset consists of 60 thousand 32× 32 color images divided into 10 equal
classes: cat, dog, ship, plane, etc. The experiments confirmed our theoretical reasoning
that hyper-convex loss functions lead to good results in general, while non-convex loss
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functions very often (more than half of the time in our experiments) lead to stochastic traps
in the parameter space: the stochastic descent of the machine learning process falls into
those places of low accuracy, gets trapped there, and cannot get out.

Due to the stochastic nature of machine learning, sometimes, the machine does break
out of the stochastic trap after being stuck there for many epochs (learning steps). Some-
times, the trap is so big or so strong that the machine breaks out of it only to fall back into
it again after some machine learning epochs. An illustration of a stochastic trap that we
observed is shown in Figure 2.

Figure 2. Getting in the trap and then getting out after machine learning epochs. “Cat vs. not-cat”
problem on CIFAR-10, trained with VGG16 and the “broken loss” function (34). While in the trap,
the machine takes every image for a cat (sensitivity = 1, specificity = 0 at threshold σ = 0.5).

The problem of describing precisely the mechanisms for stochastic traps in machine
learning is a very large and interesting problem, but it is outside of the scope of this paper.
Here, we just wanted to show our observation that ill-designed non-convex loss functions
may be responsible for such traps.
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