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Stability Control of Dynamical Systems
Described by Linear Differential Equations
with Time-Periodic Coefficients

Dinh Cong Dat'>®9 Nguyen Van Khang!, Nguyen Quang Hoang',
and Nguyen Van Quyen!

I Hanoi University of Science and Technology, Hanoi, Vietnam
2 Hanoi University of Mining and Geology, Hanoi, Vietnam

Abstract. The analysis of dynamical stability is an important problem in the
design and control of vibrating structures which are described by a linear differ-
ential equation system with time-periodic coefficients. For this kind of system,
stable criteria according to the Floquet multipliers is given. In case of an unstable
system, a PD controller is added, and its optimal parameters are determined by
the Taguchi method.

Keywords: Linearization - Flexible manipulator - Floquet theory - Taguchi
method - Stability

1 Introduction

Mathematically, the motion of a multibody system with f degrees of freedom can be
described by the following nonlinear differential equation [1-3]

M(q. g +k(q.q.7) =h(q.q.7) ey

where M(q, ¢) is the symmetric f X f inertia matrix, k(q, q, 7) is the f x 1 vector
of the generalized gyroscopic forces, h(q, q, ¢) is the f x 1 vector of the generalized
applied forces, and q, q, ¢ are the vectors of generalized position, velocity, acceleration
variables, respectively [1]. It is very difficult or impossible to find the analytical solution
of Eq. (1). Hence, the numerical methods are the efficient way to solve the problem [1,
2]. The solution of Eq. (1) can be used to simulate the dynamic behavior of multibody
systems that undergo large movements.

Itis well-known that technical systems work mostly in a neighbourhood of its desired
motion which is called the fundamental motion. For instance, the fundamental motion
of a driver system is the motion of working components, so that the driver output rotates
uniformly, and all components are assumed to be rigid. The fundamental motion of a flex-
ible robotic systems usually described through state variables determined by prescribed
motions of the end-effector.

Equation (1) is usually linearized about the fundamental motion to use the linear
analysis tools [3—7] for analysing the behavior of the multibody system in the vicinity
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of the fundamental motion. The result of this linearization process leads to a set of
linear differential equations with time-varying coefficients. For the case of a flexible
manipulator in steady-state motions [5—7], these equations can be written in the matrix
form

ML)y + CL()y + KL(t)y = h. (1), (2)

where My (1), Cp(t), Kp(¢) and hy (¢) are time-periodic with period 7.
Equation (2) can then be expressed in the compact form as

x=P)x+1() 3)

where the state variable x, the matrix P(#) and vector f(z) are defined by:

<[] 0]

0 E 0
P(r) = [_ML_IKL _ML_ICL], £(r) = [ML_IhL]. S

In this study, the optimal design of control parameters for linear differential systems
with time-periodic coefficients is addressed. Firstly, an overview of the numerical algo-
rithm for calculating stable conditions of linear differential systems with time-periodic
coefficients is presented in Sect. 2. In the next sections, a procedure based on Taguchi
method for optimal design of the stable parameters of a system described by Eq. (2) is
proposed with some concluding remarks. The proposed approach is then applied to a
single-link flexible manipulator that perform a simple harmonic motion.

2 Numerical Calculation of Stable Conditions of Linear Differential
Systems with Time-Periodic Coefficients: A Review

Consider a system of homogeneous differential equations as
x =P()x (6)

where P(7) is a continuous 7T-periodic matrix with n x n. According to Floquet theory
[12-16], the characteristic equation of Eq. (6) is independent from the fundamental
solutions. Therefore, the characteristic equation can be formulated by the following
way.

Firstly, we specify a set of n initial conditions x;(0) fori = 1, ..., n with the following
elements

) _ 1, §s=1 7
*s { 0,5#i "
and [x1(0), x2(0), ..., x,(0)] = I, where I denote n x nidentity matrix. Taking numeri-
cal integration of Eq. (6) within interval [0, 7] for n given initial conditions respectively,
we obtain n vectors x;(7), i = 1, ..., n. Matrix ®(z) defined by

O(T) = [x1(T),x2(T), ..., x,(T)] ®)
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is called the monodromy matrix [15] of Eq. (6). The characteristic equation of Eq. (6)
can then be written in the form

y—p Sy o P
|®(T) — pl| = xiz)(T) X§2)(T) —p ... xr(zZ)(T) —0 ©)
xi")”(T) xgﬂ"m x,({‘)(}) —p
The Eq. (9) yields a n order polynomial equation
Ot ap) tap" 4. Hanip+a,=0 (10)

Roots p;j,i = 1,...,n of Eq. (10) are called Floquet multipliers of (6). Based on
these Floquet multipliers stability criteria of (6) are given as following:

e If the moduli of all the Floguet multipliers of the characteristic Eq. (10) are less than
the unity, then the periodic system (6) is asymptotically stable at the origin.

e If even one of Floguet multipliers of the characteristic equation has a modulus larger
than unity then the periodic system (6) is asymptotically unstable at the origin.

e If there is no Floquet multiplier of the characteristic Eq. (10) with a modulus greater
than unity, but there is a Floquet multiplier with a modulus equal to the unity, then the
solution of the system of differential Eqs. (6) may be stable, and may also be unstable,
depends on the nonlinear terms.

The problem of the stability control of linear differential equation systems with time-
periodic coefficients is as follows. In the general case, the solution to the characteristic
Eq. (10) is a function of m parameters uy, uz, ..., u,. Based on the stability criteria
according to the Floquet multipliers [12, 13], we derive the definition of the parameter
vector as follows.

Definition: The parameter vector
_ T
u= [ul I/tz P um] (11)

of the differential equation system (6) is called asymptotic stable parameter vector if all
the Floquet multipliers pg (u1, ua, ..., u,) of the characteristic Eq. (10) have modulus
less than unity. Conversely, if at least one Floquet multiplier of the characteristic Eq. (10).
In case the parameter vector u is not stable, we add a simple PD controller to the
system to force it stable. The m freely selectable parameters u;, ua, ..., u,, of the coeffi-
cients of the linear differential equation system (6) determine an m-dimensional solution
space. It is limited in engineering so that these parameters can only be changed in a

certain specified domain. Thus, there are obtained the following constraints:
Uimin < U < Uimax (( = 1, ..., m) (12)
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3 Dynamic Model of a Single-Link Flexible Manipulator

Considering a single-link flexible manipulator as shown in Fig. 1, link OE of length /
with a payload at the free end rotates about vertical axis O. The tip mass mg is attached
at E. The link is considered as a homogeneous beam with parameters are shown in
Table 1.

Fig. 1. Single-link flexible manipulator

Table 1. Parameters of the manipulator

Parameters of the model Variable and unit | Value

Length of link [ (m) 0.9

Sectional area of beam A (mz) 4x1074
Density of beam 0 (kg/m3) 2700

Area moment of inertia I (m*)=bh%12 | 1.3333x 1078
Modulus E (N/m?) 7.11 x 1010
Mass moment of inertia of link 1 (including the hub) | J{ (kg.mz) 5.86 x 1073
Tip mass mg (kg) 0.1

Damping coefficient o (N.m.s/rad) 0.01

The fundamental motion of the manipulator corresponding to applied torque 7% ()
is described by qf(#), in which the beam is considered as a rigid link. The generalized
coordinate of a manipulator is

) =180 F0 1" =148 01". (13)
and the torque t&(¢) is

() = [F 1T = [k 0] (14)
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In Egs. (13) and (14), qf (r) denotes the elastic generalized coordinate and reR (t) the
elastic torque of the virtual rigid link. The differential equations of a single-link flexible
manipulator can be expressed in the following matrix form [16]

M(q)q + C(q, Q)q + g(q) = (1) (15)

where q, q and q are vectors of generalized coordinate, velocity and acceleration,
respectively

q =94, g1, () = [ta(t), ©()] = [7a(0), 07 (16)

Let Agq, and Ag, be the difference between the real motion ((#) and the fundamental
motion qf(z), it follows that

qa® = q¥ ) + Aqu(t) = ¥ (1) +y1(0) (17)

qe(t) = g5 (1) + Age(t) = y2(1) (18)
where y; and y; are called the perturbed motions. Similarly, we have
(1) = [z (1), O] =[wn®), 01" (19)

Substituting Egs. (17), (18) into Eq. (15) and using Taylor series expansion around
the fundamental motion, then neglecting nonlinear terms, we obtain a system of linear
differential equations with time-varying coefficients for the manipulator as follows [16]

M, ()Y + CL()y + Kp(t)y = h. (D). (20)

Matrices My (), Cr(t), K (¢) and vector hy(¢) in Eq. (20) have the following form
[16]

M, (1) = Ji + mpl® + %mmsl2 PAD1 + mglXi (1) @1
mglXi + pADy  mgX2(l) + pAmy,
a0
C (1= 22
(D) |:0 O] (22)
ki1 klz]
K (1) = 23
(1) [km P (23)

where
moggl sin gR (1)
2 9
kia = ka1 = —mggX1 (1) singR(t) — pg sing®(0)Cy,
koo = —mg[GR(O1PXE (1) — pAlGR(OPm11 + EIk},.

ki = —IsingX(mpg —
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and

0
h; (1) = . .
L(t) [—mEgX1 (1) cos R (1) — 11g c0s gR(1)C) — melX 1 GR (1) — pAD1GR (r)]
(24)

where fundamental motion is choosen as qg (t) =0.57 4+ 0.5 sin(2¢) and Cy, Dy, X,
my1, k| are constants. It should be noted that matrices My (¢), C.(t), K.(¢) and vector
h; () in this example are time-periodic with period 7.

In order to investigate the dynamic stability of an elastic single-link robot, we
consider the homogeneous differential equation corresponding to Eq. (20)

ML (1)y + CL()y + KL(D)y = 0. (25)

For numerical simulation, the calculating parameters of the considered manipulator
are listed in Table 1.
It follows from the parameters in Table 1 that

C; = —0.704632, D; = —0.460710,
my; = 0.899850, kj; = 16.955151, X; = —1,9987

Some calculation results of the maximum value of the Floquet multiplier are listed
in Table 2.

Table 2. Modulus of Floquet multiplier for four cases

Case 1: Q = 27 lp1] = 13.7797, |p2] = 0.0706, |p3] = 0.5651, |ps] = 0.5651.
Case 2: Q@ = 4n lp1] = 3.7506, |pa| = 0.2628, |p3| = 0.7517, |pa| = 0.7517.
Case 3: Q = 67 lp1] = 2.4175, |pa| = 0.4097, |p3| = 0.8268, |p4] = 0.8268.
Case 4: Q = 87 lp1] = 1.9396, |pa] = 0.5119, |p3| = 0.8674, |p4| = 0.8674.

With the initial condition
r=0:x0)=[000.2570]" (26)

we calculate transient vibration of the flexible manipulator with the parameters
given in Table 2. Some calculation results of the transient vibration are shown in
Figs. 2, 3,4 and 5.

From Table 2 and Figs. 2, 3, 4 and 5 we can see that in the investigated cases the
maximum values of the Floquet multiplier are greater than 1 and the transition oscilla-
tions tend to increase gradually. Therefore, the study of dynamic stability conditions is
necessary in controlling the flexible manipulator.
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Fig. 2. Transient vibration of the flexible manipulator with Q = 27
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Fig. 3. Transient vibration of the flexible manipulator with Q2 = 47
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Fig. 5. Transient vibration of the flexible manipulator with Q = 87
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4 Dynamic Stability Control of a Flexible Manipulator Using
the Taguchi Method

In the harmonic fundamental motion of a flexible manipulator, the matrices and vector
of the linear differential Eq. (20) are time-periodic with period 7. In this section, we
propose an algorithm to control the dynamic stability of a flexible manipulator.

4.1 The PD Controller

It should be noted that for the stability control of a flexible manipulator, we can design
a PD controller as follows

Aty = —ka1(Ga — G3) = kp1(Ga — 4g) = —ka1¥1 — kp1y1 27
The linearized equation according to Eq. (20) now takes the expression
M. (0)y + CL()y + Kr()y = h, (1) — Kpy — Kpy, (28)

where Kp and Kp are diagonal matrices with positive elements as

kg, O k, O
Kp = YL Kp=| P 29
D [00] P [00] (29)

It follows from Egs. (28) that
ML)y + [CL(t) + Kply + [KL(?) + Kply = h (1) (30)
Equation (30) can then be written in the form
IOV E GIOVES SIOVES V) (31)
where

M (1) = ML(0), KV (1) = Ki.(1) + Kp, CV (1) = CL(1) + Kp, h{V (1) = h. (1)
(32)

It should be noted that, the Eq. (31) can then be expressed in the compact form as Eq. (2).
To study the dynamic stability conditions of the manipulators, the homogeneous linear
differential system corresponding to Eq. (31) can be written in the following form

x = P()x, (33)

where P(7) is a matrix of periodic elements with period 7.
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4.2 Determination of Gain Values According to Floquet Multipliers
by the Taguchi Method

Using the Taguchi method [8, 9], Khang et al. proposed an algorithm to determine the
optimal parameters of the TMDs to reduce the vibrations of the mechanical systems
described by the system of linear differential equations with constant coefficients [10,
11]. The main problem in the papers [10, 11] is to calculate the eigenvalues of the constant
matrix. In this paper, we use the Taguchi method to determine the gain values of the
PD controller for the system the system of linear differential equations with periodic
coefficients (31). The main task of the problem of determining the control parameters of
the periodic system of linear differential equations is to determine the Floquet multipliers
of the periodic matrix. The problem of determining the control parameters of the periodic
system of linear differential equations is a new problem. The problem of determining
the Floquet multipliers of a periodic matrix is much more difficult than the problem of
determining the eigenvalues of a constant matrix.
The target function needs to minimized is defined by:

£ () = max|p;(w)| — pg — min, with u = [k, ks11". (34)
1

In which max|p;(w)| is the biggest modulus of Floquet multipliers in the i experiment,
l

and py is the target Floquet multiplier. The desired value of the target Floquet multiplier
is usually chosen empirically. Some calculation results of the maximum value of the
Floquet multipliers are presented in Table 3.

Table 3. Control parameters and Floquet multipliers

Q od kpi k41 lol

21 0.3 37.1617 29.2410 lp1] = 0.3, |p2] =0, |31 =0, |pg] =0

4 0.3 28.7617 11.7501 lp1] =0.3, |p2] =0, |31 =0, |p4] =0

(4 0.3 22.2666 6.7208 o1l = 0.3, |p2] =0.0042, |p3] =0, |pg] =0
8w 04 23.0147 6.8628 o1l = 0.4, |p2] =0.0148, |p3] =0, |p4| =0

4.3 Simulation Results

Using the initial condition
t=0:x(0)=1[000257 01" (35)

we can calculate transient vibration of the flexible manipulator with the parameters given
in Table 3. Some calculation results of the transient vibration are shown in Figs. 6, 7, 8
and 9.

From Figs. 6, 7, 8 and 9, we can see that with the selected control parameter, the
transient vibration of the flexible manipulator decreases rapidly to zero. In other words,
the dynamic stability of the flexible manipulator is guaranteed by a simple PD controller.
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Fig. 6. Transient vibration of the flexible manipulator with control torque case Q2 = 2x
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Fig. 7. Transient vibration of the flexible manipulator with control torque case Q2 = 4x
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Fig. 8. Transient vibration of the flexible manipulator with control torque case Q2 = 67
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Fig. 9. Transient vibration of the flexible manipulator with control torque case 2 = 87
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Conclusions

The selection of the stable parameters for the linear differential equation system is an
important part of the dynamic problem for flexible manipulators. This paper presented
a procedure for the optimal design of control parameters of the homogeneous linear
differential equations with time-periodic coefficients. The new findings made in this
study are summarized as follows:

1)

2)

3)

Using the Taguchi method, a procedure to optimally design the stability control
parameters of a system of homogeneous linear differential equations with periodic
coefficients over time has been proposed.

Numerical calculation of the dynamic stability properties of a single-link flexible
manipulator according to the Taguchi method has been implemented.

The method proposed in this paper can be used to calculate control parameters for
multi-link flexible robots.
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Foundation for Science and Technology Development (NAFOSTED) under grant number 107.04-
2020.28.
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