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Abstract: Estimating the density interface depth is an
important task when interpreting gravity data. A range
of techniques can be applied for this. Here we compare
the effectiveness of the wavenumber and spatial domain
techniques for inverting gravity data with respect to base-
ment reliefs. These techniques were tested with two syn-
thetic gravity models, and then applied to a real case: the
gravity data of the Magura basin (East Slovakian Outer
Carpathian). The findings show that the spatial domain
technique can precisely estimate the structures, but the com-
putation speed is slow, while the wavenumber domain tech-
nique can perform faster computations with less precision.

Keywords: gravity inversion, wavenumber domain tech-
nique, spatial domain technique, Magura basin

1 Introduction

Analysis of gravity anomalies was the first geophysical
method to be applied for hydrocarbon exploration. Despite
being overshadowedby seismicmethods, the gravitymethods
still have a significant role in some exploration areas, for

example when mapping basement interfaces from gravity
data. Several authors used the Euler deconvolution, as an
automated method to detect the depth to gravity source
[1–3]. Some other studies have used spectral analysismethods
to estimate the density interfaces [4–6]. The major disadvan-
tages of these techniques are that they depend on the struc-
tural index or thewindow size [7]. Anothermethod, thewave-
number domain technique, can be used to overcome these
problems. This technique is derived from the relationship
between the Fourier transform of the gravity data and the
Fourier transform of the sum of the depth powers. In recent
years, the applications of the wavenumber domain technique
to gravity anomalies have shown great success [8–11]. Aside
from the wavenumber domain technique, the spatial domain
technique, which utilizes the stacked prismmodel [12], is also
widely and successfully used to map density structures, espe-
cially subsurface structures [13–17].

The concept of gravity inversion is not limited to the
methods given above. Several authors have presenteddifferent
methods to determine the geometry of a density interface
related to the observed gravity anomaly [18–24]. In view of
such an abundance of methods available, it is appropriate to
revisit the applicability of popular gravity inversion methods
for computation of basement depths of sedimentary basins.

The present study focuses on comparing the effective-
ness of the wavenumber and spatial domain techniques
for inverting gravity data. The techniques have been tested
for both their practical application and accuracy on syn-
thetic gravity data from two models and on real data from
the Magura basin (East Slovakian Outer Carpathian).

2 Methods

2.1 The wavenumber domain technique [25]

The wavenumber technique is derived from the relation-
ship between the Fourier transform of the gravity data
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and the Fourier transform of the sum of powers of the
depth to the basement. Based on Parker’s forward for-
mula [26], Gao and Sun [27] derived the expression of
the gravity effect of a density interface with the z-axis
directed downward:
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Here equation (1) can be rewritten as:
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where ( )= −ρ ρ ρΔ above below is the (negative) density con-
trast of the sediments relative to the basement, γ is the
gravitational constant, h is the depth at the reference
depth z0, k is the frequency, and F[ ] and F−1[ ] symbolize
the Fourier and inverse Fourier transforms, respectively.

Based on equation (2), we can derive the gravity
anomaly for the basin structure shown in Figure 1a by
adding the Bouguer slab term πγ z2 Δ 0:
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Here as illustrated in Figure 1, equation (3) can be better
understood as breaking the basin model (Figure 1a) into
two parts: an uneven layer with average depth z0 (Figure 1b)
and a layer confined between two horizontal levels with
thickness z0 (Figure 1c).

A simple rearrangement of equation (3) readily leads
to:
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Then, the basement depth can be estimated from equa-
tion (4) by an iterative inversion procedure. The proce-
dure starts by setting h = 0. Using the inverse Fourier
transform of the first term in equation (4) leads to the
first estimates of the basement depth. This initial approx-
imation is then used to calculate the new depth esti-
mates. Updating for the new depth estimates continues
until the RMS error between two successive depth esti-
mates is smaller than an allowable value. The RMS error
is given by:
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where t is the iteration step, M and N are the point num-
bers in directions due north and east.

Figure 1: Equation (3) understood as breaking a basin model into two parts.
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To ensure the convergence of the procedure, a low-
pass filter B(k) is applied during the calculation. The filter
is given by [25]:
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where WH and SH are frequencies of the filter. This filter
passes frequencies lower than WH, cuts off the values
larger than SH, and partly passes the values between
WH and SH.

2.2 The spatial domain technique [12]

The spatial technique is based on dividing the sedimen-
tary basin into rectangular prisms [12]. The initial depth
approximations of the basin are computed assuming that
the gravity data at each observed point is caused by an
infinite horizontal slab, i.e.,
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The theoretical gravity data at any observation is then
computed from the initial approximations from equation
(7), as:
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where  gΔ Prism is the gravity effect of a prism, which can be
calculated using the formula as [28]:
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where ( ) ( )= − + − +r u x v y z2 2 2 , Z1 and Z2 are the top
and bottom depths, and T and W are the half thickness
and half width of the prism, respectively.

Thus, the gravity effect of a prism can be written
as [28,29]:
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Using the differences between the observed and com-
puted anomalies, the depth estimates can be improved
by the Gauss–Newton method as [12,15]:
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where t is the iteration number
Updating for the new depth estimates continues until

the RMS error between the observed and computed anoma-
lies is smaller than an allowable value.

3 Models

The effectiveness of the wavenumber and spatial domain
techniques was tested with two models. The first was
a smooth basin model having a density contrast of
−0.2 g/cm3. Figure 2a and b shows the 3D and plan views
of the interface topography of the model. Figure 2c shows
the theoretical gravity data of the model calculated on a
64 × 64mesh grid with 1 km intervals. Note that the gravity
computed by the wavenumber and spatial domain techni-
ques are the same. For the wavenumber domain tech-
nique, the choice of a proper SH/WH can be obtained
by power spectrum analysis of gravity anomaly data.
A plot of the logarithm of the power spectrum versus wave-
number usually shows several linear segments that decrease
in slope with increase in wavenumber. Generally, low radial
wavenumbers mostly correspond to deep sources, and inter-
mediate radial wavenumbers mainly relate to shallower
ones, while high radial wavenumbers are dominated by
noise [30,31]. On the other hand, Pustisek [32] showed that
a low pass filter with a theoretical cutoff frequency SH ≤ 1/L
(where L is maximum of the topographic relief function h)
can be used to ensure the convergence of the iterative pro-
cedure [32]. In fact, the mean depth of the density interface
can also be estimated directly from the slope of the logarithm
of the power spectrum or other geophysical/geological
information. Caratori Tontini et al. [33] showed that a good
compromise can be chosen as WH = 0.5SH [33]. In the syn-
thetic model, we used a known average depth of 1.6 km, and
the frequency parameters were determined in a way similar
to those determined by Pustisek [32] and Caratori Tontini
et al. [33] (i.e., SH = 0.3 km−1 and WH = 0.15 km−1) [32,33].
Figure 3a and b displays the depths obtained from the
wavenumber and spatial domain techniques, respectively.
Here the wavenumber domain algorithm converged after
five iterations. It stopped when the RMS error between two
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successive approximations dropped below a pre-assigned
error of 10−3 km. Using a threshold value of the convergence
criteria of 0.04mGal, the inversion scheme of the spatial
domain technique required 4 iterations for the convergence
of the computed anomalies to the observed anomalies.
Figure 3c displays the differences between themodel depths
and the inverted depths as calculated by the wavenumber
technique. These differences ranged from −0.1559 to
0.1596 km, with an RMS error of 0.0572 km. Figure 3d dis-
plays the differences between the model depths and the
inverted depths as calculated by the spatial domain techni-
ques, which ranged from− 0.0358 to 0.0150 km,with an RMS
error of 0.0064 km. Clearly, both techniques are effective in
estimating the depth to the basement. Comparing Figure 3c
and d, however, it can be seen that the spatial domain tech-
nique delivers a more precise result. On the other hand,
the wavenumber technique took only 0.1543 s to invert the
gravity data in a personal computer with Core(TM) i7 at
2.7 GHz CPU, while the spatial domain technique took
48.0705 s. Figure 3e and f shows the gravity anomalies
calculated from inferred structures in Figure 3a and b by
the forward formulas of the wavenumber domain tech-
nique (equation [3]) and spatial domain technique (equa-
tion [10]), respectively. Figure 3g displays the differences
between the anomalies calculated by the wavenumber

domain technique and the theoretical anomalies, with the
differences ranging from −1.1453 to 0.8862mGal, with an RMS
error of 0.3945mGal. Figure 3h displays the differences
between the anomalies calculated by the spatial domain
technique and the theoretical anomalies, which ranged
from−0.0652 to 0.1455mGal, with an RMS error of 0.0295mGal.
Clearly, the anomalies obtained from inferred structures
by the spatial domain technique (Figure 3f) are closer in
shape to the theoretical anomalies than the anomalies in
Figure 3e.

The second model is a basin with more abrupt topo-
graphy. The 3D and ground views of the interface topo-
graphy of the model are displayed in Figure 4a and b,
respectively. Figure 4c shows the theoretical gravity anoma-
lies of the model, with a density contrast of −0.2 g/cm3

calculated on a 64 × 64 mesh grid with 1 km intervals. In
this case, to invert the anomalies by means of the wave-
number domain technique, we used an average depth of
3.3 km, and the frequency parameters of the filter were
selected as SH = 0.12 km−1 and WH = 0.06 km−1 [32,33].
Figure 5a and b displays the results determined by the
wavenumber and spatial domain techniques, respectively.
Figure 5c displays the differences between themodel depths
and the inverted depths as calculated by the wavenumber
technique, which range from −1.0020 to 0.5047 km with an

Figure 2: (a) Perspective view of the first basin, (b) 2D view of the basin, and (c) gravity anomaly of the basin.
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Figure 3: (a) The computed depths by wavenumber domain technique, (b) the estimated depths by spatial domain technique, (c) the
difference between the computed depths in (a) and model depths, (d) the difference between the computed depths in (b) and model depths,
(e) the gravity data calculated from inferred structures in (a), (f) the gravity data calculated from inferred structures in (b), (g) the difference
between the computed anomalies in (a) and theoretical gravity data, (h) the difference between the computed anomalies in (b) and
theoretical anomalies.
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RMS error of 0.2501 km. Figure 5d displays the differences
between the model depths and the inverted depths as cal-
culated by the spatial domain technique, which range from
−0.2117 to 0.2453 km with an RMS error of 0.0522 km.
Although both methods are effective in determining the
depth to the basement, the spatial domain method gener-
ates more accurate result. In this case, the wavenumber
domain method is about 593 times faster than the spatial
domain method. Figure 5e and f shows the anomalies cal-
culated from detected structures in Figure 5a and b by the
forward formulas of the wavenumber and spatial domain
technique, respectively. Figure 5g displays the differences
between the anomalies calculated by the wavenumber
domain technique and the theoretical anomalies, which
ranged from −0.9611 to 4.5691mGal, with an RMS error
of 1.5250mGal. Clearly, there is a significant difference
between these gravity data. Figure 5h displays the differ-
ences between the anomalies calculated by the spatial
domain technique and the theoretical anomalies, which
were in the range of −0.2308 to 0.3598 km with an RMS
error of 0.0764 km. Note that the gravity data calculated
through the spatial domain technique is not significantly
different from the theoretical results.

To estimate the effects of the density contrast ρΔ , level
z0 and low pass filter (WH, SH) on the gravity inversion

using the wavenumber domain technique, the gravity
anomaly of the second model has been inverted for dif-
ferent assumed values of ρΔ , z0 and parameters WH and
SH of the low pass filter. The RMS errors between the
model and inverted depths are shown in Table 1. We can
see that, the wavenumber domain technique is less sensi-
tive to the values of the average depth, but more sensitive
to the values of the density contrast. Although all inver-
sions converged with the different filters, the difference
between the model and inverted depths is significant
when using the small values of WH and SH. The reason
is that the use of the low pass filter leads to a significant
loss of high frequency information, so the inverted base-
ment interface does not match with that of the model
depth. Since the spatial domain technique does not require
average depth and low pass filter, we only estimate the
effects of the density contrast ρΔ on the gravity inversion.
The RMS errors between the model depth and the depths
determined from using different assumed values of ρΔ are
also shown in Table 1. It is numerically verified that as the
density contrast increases or decreases, the difference
between the model and inverted depths increases rapidly.
These results suggest that the spatial domain technique is
more sensitive to the values of the density contrast than
the wavenumber domain technique. Recently, Florio [21]

Figure 4: (a) Perspective view of the second basin, (b) 2D view of the basin, and (c) gravity anomaly of the basin.
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Figure 5: (a) The computed depths by wavenumber domain technique, (b) the estimated depths by spatial domain technique, (c) the
difference between the computed depths in (a) and model depths, (d) the difference between the computed depths in (b) and model depths,
(e) the gravity data calculated from inferred structures in (a), (f) the gravity data calculated from inferred structures in (b), (g) the difference
between the computed anomalies in (a) and theoretical gravity data, (h) the difference between the computed anomalies in (b) and
theoretical anomalies.
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has developed a method for inverting gravity data, which
does not require a value of density contrast [21]. The appli-
cation of this method to the gravity data has shown great
success in determining the basement relief of the Yucca
Flat basin, but it requires several depth constraints at some
locations in the study area, which can be basement depth
data from well data or interpreted seismic sections.

To further test the effectiveness of the wavenumber and
spatial domain methods in the presence of errors, we added
Gaussian noisewith different noise levels to synthetic gravity
anomaly of the secondmodel. Figure 6a shows the synthetic
data corrupted by Gaussian noise with standard deviation
of 0.1mGal. Figure 6c and e shows the computed depths by
the wavenumber domain technique and spatial domain
techniques, respectively. Figure 6b shows the synthetic
data corrupted by Gaussian noise with standard deviation
of 0.2mGal. Figure 6d and f shows the computed depths by
the wavenumber domain technique and spatial domain
techniques, respectively. We can see that the wavenumber
domain technique is less sensitive to noise than the spatial
domain technique. The wavenumber domain technique pro-
duces similar results for different noise levels, and these
results closely match up with the result for the noise-free
synthetic data (Figure 5a). The reason is that wavenumber
domain technique require the use of a low pass filter to
obtain convergence of the iterative process, such a filter
can remove part of the high frequency content associated
with noise in the data.

4 Magura basin (East Slovakian
Outer Carpathian)

The applicability of the wavenumber and spatial domain
techniques was also tested by interpreting real data from

the Magura basin (East Slovakian Outer Carpathian).
According to Svancara [13], the Magura sedimentary
basin formed by slightly deformed porous Lower Oligo-
cene Malcov beds lie on strongly deformed flysch rocks in
Eocene and Paleocene of the Magura Nappe. Figure 7a
shows the residual gravity data of the Magura basin,
digitized from Svancara [13] on a 26 × 28 grid along the
east and north directions. Figure 7a also shows the cross
section SS′ of the basin where the gravity data were
interpreted by Svancara [13] using a density contrast
of −0.2 g/cm3. Svancara [13] reported a maximum thick-
ness of 0.48 km. To invert the anomalies using the wave-
number domain technique, we used an average depth of
0.2 km and selected the frequencies as SH = 1.8 km−1 and
WH = 0.9 km−1. In this case, the iterative process of the
wavenumber domain algorithm performed 24 iterations to
fall below a pre-assigned error of 10−3 km between 2 suc-
cessive interface approximations. Using threshold value of
the convergence criteria 0.015mGal, the inversion scheme
of the spatial domain technique required 4 iterations
for the convergence of the computed anomalies to the
observed anomalies. Figure 7b shows the basement depths
determined by the wavenumber domain technique, with a
maximum depth of 0.4264 km. Figure 7c displays the base-
ment depths determined by the spatial domain technique,
with a maximum depth of 0.4754 km. According to our
depth configurations (Figure 7b and c), the basement
depth gets deepest approximation related to a nearly
E–W trending in the central region and gets shallower at
surrounding regions. Although the basement structures
determined from the two methods were quite similar, the
wavenumber domain technique results in a smoother relief
that may not represent the real relief (as shown in the
second model). Here the wavenumber domain technique
is about 16 times faster than the spatial domain technique.
Figure 7d and e shows the gravity data calculated from the

Table 1: RMS errors between the model and the inverted depths

Z0 (km) 2.7 3 3.3 3.6 3.9

RMS from the wavenumber domain method (km) 0.2605 0.2536 0.2501 0.2507 0.2566
RMS obtained from the spatial domain (km) — — — — —

Density (g/cm3) 0.16 0.18 0.20 0.22 0.24

RMS from the wavenumber domain method (km) 0.7545 0.3310 0.2501 0.4741 0.7011
RMS obtained from the spatial domain (km) 0.9740 0.4237 0.0522 0.3239 0.5823

WH and SH (km−1) 0.02; 0.04 0.04; 0.08 0.06; 0.12 0.08; 0.16 0.10; 0.20

RMS from the wavenumber domain method (km) 0.4943 0.2911 0.2501 0.2514 0.2739
RMS obtained from the spatial domain (km) — — — — —
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detected structures in Figure 7d and c by the forward for-
mulas of the wavenumber and spatial domain techniques,
respectively. Figure 7f shows the differences between the
anomalies calculated by the wavenumber domain tech-
nique and the residual data, which ranged from −0.1050
to 0.1789mGal with the RMS error being 0.0505mGal.
Figure 7h shows the differences between the anomalies cal-
culated by the spatial domain technique and the residual
data. These differences were less than 0.1423mGal, with an

RMS error of only 0.0150mGal. The fit between the calcu-
lated and residual gravity data indicates the validity of the
model estimated by the spatial domain technique. On the
other hand, the wavenumber domain technique required
much less time.

For comparison, Figure 8b displays the structures
inverted by the wavenumber and spatial domain techni-
ques and the basin model inferred by Svancara [13] along
the SS′ cross section. It can be observed from Figure 8a

Figure 6: (a) The synthetic data corrupted by Gaussian noise with standard deviation of 0.1 mGal, (b) the synthetic data corrupted by
Gaussian noise with standard deviation of 0.2 mGal, (c) the result obtained from applying the frequency domain technique to gravity data in
(a), (d) the result obtained from applying the frequency domain technique to gravity data in (b), (e) the result obtained from applying the
spatial domain technique to gravity data in (a), and (f) the result obtained from applying the spatial domain technique to gravity data in (b).
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Figure 7: (a) The gravity anomalies of the Magura basin, (b) the estimated depths by wavenumber domain technique, (c) the estimated
depths by spatial domain technique, (d) the gravity anomalies calculated from inferred structures in (b), (e) the gravity anomalies
calculated from inferred structures in (c), (f) the difference between the computed anomalies in (d) and residual anomalies, (g) the
difference between the computed anomalies in (e) and residual anomalies.
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that the modeled gravity data closely coincide with the
real gravity data. The maximum depth of the basin on the
profile determined by the wavenumber domain technique
was 0.4160 km, whereas the spatial domain technique
showed a maximum depth of 0.4612 km, which compares
well with the figure of 0.4759 km reported by Svancara
[13]. Although, by and large, the estimated structures
coincide well with those reported by Svancara [13], those
determined by the spatial domain technique (Figure 7c)
were closer to the shape of Svancara’s basin model than
those determined by the wavenumber domain technique.

5 Conclusion

We have presented a comparative study of the effective-
ness of the wavenumber and spatial domain techniques
for inverting gravity data of basement reliefs. The effec-
tiveness of these techniques is tested on both synthetic
and real gravity anomalies. The obtained results showed
that the spatial domain technique is more sensitive to
density contrast and noise than the wavenumber domain
technique. These results also showed that the wave-
number domain technique is less sensitive to the values
of the average depth, but it is sensitive to the low pass filter
when the SH and WH parameters are small. Both tech-
niques successfully recovered the basement structures of
the synthetic model when using the reasonable inputs.
Similarly, when tested against a real case belonging to the
Magura basin, the obtained structures coincide well with
available structures. By comparing the results estimated
by both techniques, it was found that the wavenumber

domain technique required much less time but was less
accurate, while the spatial domain technique has a slower
computation speed, but is able to determine the basement
depth precisely.
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