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Abstract. LiDAR technology has been widely adopted as a proper method for land cover classification. 

Recently with the development of technology, LiDAR systems can now capture high-resolution 

multispectral bands images with high-density LiDAR point cloud simultaneously. Therefore, it opens new 

opportunities for more precise automatic land-use classification methods by utilizing LiDAR data. This 

article introduces a combining technique of point cloud classification algorithms. The algorithms include 

ground detection, building detection, and close point classification - the classification is based on point 

clouds’ attributes. The main attributes are heigh, intensity, and NDVI index calculated from 4 bands of 

colors extracted from multispectral images for each point. Data of the Leica City Mapper LiDAR system 

in an area of 80 ha in Quang Xuong town, Thanh Hoa province, Vietnam was used to deploy the 

classification. The data is classified into eight different types of land use consist of asphalt road, other 

ground, low vegetation, medium vegetation, high vegetation, building, water, and other objects. The 

classification workflow was implemented in the TerraSolid suite, with the result of the automation process 

came out with 97% overall accuracy of classification points. The classified point cloud is used in a 

workflow to create a 3D city model LoD2 (Level of Detail) afterward.  
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1. Introduction  

Delivering precise and timely data is always an indispensable factor for the management, planning, and 

landscape pattern analysis of urban land. Recently, alongside satellite images and UAV (Unmanned Aerial 

Vehicle) data, airborne LiDAR (Light Detection and Ranging) has been widely used as an effective data 

collection method that helps to produce fast, large scale and accurate geospatial data., it shows the flexibility 

in flying shooting and data acquisition for small and medium-sized areas. The UAV With UAV technology 

image data can be used to create digital elevation models (DEM) [1], create 3D map models [2, 3], etc. In 

addition, point cloud data is processed from UAV images are also classified to create 3D models for terrain 

objects, especially for open-pit mines [4]. Meanwhile, aviation LiDAR technology shows the ability to fly 

and capture data in a wide range and is widely used in studies of the earth's surface. In the earliest period, 

nDSM (normalized Digital Surface Model) extracted from LiDAR data has been used as a criterion for 

urban land classification [8]. Besides, there were several studies about LiDAR intensity not only for 

depicting the natural surface condition such as surface moisture [9], flow recognition and aging of lava 

[10], wetland hydrology [11], and rock properties [12] but also supporting in municipal area cover 

classification. LiDAR intensity was first utilized by Song, J.H and et al in 2002 [13]; the intensity value of 

asphalt road, grass, house roof, and the tree was inspected to have an adequate difference for land cover 

classification. However, using intensity data as a standalone factor was asserted about its limitation in 

various research [13-18]. Thus, there was plenty of research that integrates LiDAR intensity with height 

value to eliminate that limitation such as Charaniya, A. et al, 2004 [8] use intensity to separate road from 

low vegetation, Brennan in 2006 [15] sort out structures with the same height by the intensity and many 

others [19-22]. Alongside intensity, RGB (Red Green Blue) satellite images and onboard aerial images with 

direct geo-referencing have also been combined with LiDAR height data for land cover classification [8, 

14, 22-28]. Normalized difference vegetation index (NDVI) is another essential factor for land use 

classification; the adoption of NDVI with LiDAR data has been implemented in various studies [21, 22, 

27, 29, 30] that help to raise the efficiency of the classification enormously. Thus, it can be seen that NDVI 

value from images and the Intensity value of LiDAR data are both good elements to be used in 

classification. Currently, the use of NDVI and Intensity combination is utilized in land cover classification 

[31], therefore, if the combination can be used to classify point cloud, it can facilitate the further use of 

point cloud such as for making 3D city model purpose. This study introduces a method of combining both 

intensity value of LiDAR data and NDVI, which extracted from onboard high-resolution images with 
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different LiDAR point cloud classification algorithms in consist of ground detection routine, classification 

by height compared to ground, building detection routine, and classification by close point and afterward, 

the classified point cloud is used as material to build a LoD2 city model. The method will help build an 

automatic classification workflow for LiDAR point cloud into eight different land-use types, including 

asphalt road, other ground, low vegetation, medium vegetation, high vegetation, building, water, and other 

objects. TerraSolid suite was used to perform the automation process. The result came out with 97% overall 

of points were correctly classified. Besides, another workflow to automatically create a 3D city model is 

also introduced in this study to provide a LoD2 city model which can be used for various applications.  

2. Data acquisition and study area 

2.1. Lidar system: City Mapper 

The LiDAR system used is CityMapper of Leica Geosystem (Fig. 1). It consists of a 0.9 nm wavelength 

LiDAR scanner, an 80 mm focal length multispectral camera, and integrated with GNSS and IMU system, 

which provide high accuracy of 5 cm horizontal and 10 cm vertical. The data was captured at 1200 m height 

with an average point density of 5 pts/m2 and 7 cm GSD images. It took 3 flight trips (2 North-South lines 

and 1 crossed line) to cover the study area in sunny weather. The trajectory was processed in Inertial 

Explorer, images, and point clouds were processed in HxMap. 

 

Fig. 1. Leica City Mapper system. 

2.2. Study area 

The chosen study zone is 80 hectares in Quang Xuong town, Thanh Hoa province, Vietnam. It is a plain 

area located in 19o44’04’’ N, 105o46’53’’ E with around 5 meters above sea level height (Fig. 2). We select 

this area because it has enough of 8 land use objects, including asphalt road, other ground, low vegetation, 

medium vegetation, high vegetation, building, water, and other objects (traffic signs, traffic lights, trash 

cans, cars, etc.). 

 

Fig. 2. Area of study. 
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3. Methodology 

3.1. Workflow and classification threshold 

Workflow: The point clouds of the study area were taken by using the Airborne Lidar system. The lidar 

signals and images go through the pre-processing with rectification and GCPs adjustment. We used HxMap 

which is a Leica software to process Leica City Mapper’s data to export the LiDAR point clouds with four 

bands of color, including Red - Green - Blue - Near Infrared. Based on the point cloud characteristics, we 

apply the automatic classification process to have point clouds in different classes. The classified point 

cloud is used in a City 3D modeling workflow to build a LoD2 City Model. The detailed workflow is 

described in the following Figure 3. 

 

Fig. 3. Point clouds classification & City 3D modeling workflow. 

 

Fig. 4. Classification threshold. 

Classification threshold for point clouds: Figure 3 described the overview of the 3D model building 

workflow. Inside this workflow, the first step is the classification of points in the point clouds to 8 classes. 

The classification is based on the thresholding levels described in Figure 4. 

The threshold level developed base on natural characteristics of object classes in point clouds. There are 

four characteristics used to develop the threshold level: Intensity, NDVI, Height, and Geometry. 
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3.1.1. Intensity  

Intensity is the ratio of the strength of reflected light to that of emitted light, and the reflectance of the 

reflecting object has the most impact on its value. Reflectance is different between different material 

attributes as well as the light used. Therefore, intensity can be used to differentiate point clouds (Fig. 5). 

We proceeded to manually collect sample intensity values for Asphalt, Concrete, Tile, Soil Lane, and soil 

to have a table for intensity range below (Tab. 1): 

 

Fig. 5. Point cloud in the display of intensity. 

Tab. 1. Intensity range of CityMapper point clouds for different objects. 

Order Objects Intensity range Order  Objects Intensity range 

1 Asphalt 2100-5400 3 Tile 7300-9700 

2 Concrete 9000-12500 4 Soil lane, soil 7500-13600 

From this table, it can be seen that Asphalt can be filtered out from other ground objects by intensity 

value. Because the flat ground in the area consists of Asphalt, concrete, tile, soil lane, soil. 

3.1.2. NDVI 

 

Fig. 6. The area display in the color infrared image. 

The NDVI of the CityMapper is calculated by the following formula: 

NDVI =
(NIR − Red)

(NIR + RED)
 

By design, the NDVI itself thus varies between -1.0 and +1.0. Most of the collected vegetation points 
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samples have the value of intensity above 0.3 since the capture data date is in summer and all kinds of 

plants here have green leaves. Figure 6 described the point cloud of the study area display in the color 

infrared image. 

3.1.3. The height of points 

The height of points is the different elevation of points compared to the ground surface. It is an essential 

factor to separate different types of objects. For instance, the grass is below 0.3 m in height, while plant 

pots & bushes range from 0.3 m to 0.5 m and trees are above 0.5 m. 

3.1.4. Geometry of points group 

A group of points has its geometry; it may present a planar, a curve, or irregular shapes. Based on the 

shapes, the object can be detected automatically. For example, the rooftop may have planar shapes, and the 

tree may have irregular shapes (Fig .7).  

 

Fig. 7. Rooftop geometry. 

3.2. Classification processing 

3.2.1 Classify low, isolated point/water 

The low-point routine which is used to denoise the point cloud classifies single points or groups of lower 

points than other points in the surrounding. There might be possible error points that are clearly below the 

ground. The elevation value of each point or point group with any other point within a given 2D radius will 

be collated. The routine will classify the point or point group to a low point group if it is lower than any 

other point. 

 

Fig. 8. Water area. 
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Next, isolated noise points in the air or on the ground will be filtered out by an isolated routine. The loop 

detects points with fewer neighbor points within a 3D search radius than defined in the routine’s settings.  

After the low point and isolate routine, an automatic drawing polygon routine will be used to draw 

boundaries for no data areas for marking as water land use (Fig. 8). The remaining points are ready for the 

following ground routine. 

3.2.2. Classify ground 

The classify ground routine automatically searches ground LiDAR points by making a triangulated 

surface model iteratively. The loop begins by selecting the lowest point with a potential ground surface 

nearby. Afterward, it makes a surface model (TIN) from the starting point. The model becomes more closely 

to the proper ground surface by each added point. 

(a) 

(b) 

Fig. 9. The ground routine and Ground point. 

The chosen algorithm uses parameters of iteration angle and iteration distance (Fig. 9a). Iteration angle 

is the maximum angle between the line of the ground surface made by two ground points at a far distance 

and the line which connects the ground point to the search point. Iteration distance ranges from the search 

point projected in the nadir direction to the ground surface. It helps to prevent detecting points that are too 

high from the ground. 

After this ground routine, a group of ground points was detected (Fig. 9b), then, with the NDVI routine 

for each point NDVI value >0.3, mixed in vegetation points will be filtered out. Finally, with the intensity 

routine, asphalt road points will be classified with an intensity value lower than 6000, and the rest will go 

to other ground points. 

3.2.3. Classify vegetation 

Before the vegetation routine, we use a macro to calculate the distance of all remaining points to the 

ground class. Then, a height algorithm is utilized to classify three types of vegetation. 

All points with a height value below 0.3 m go to low vegetation. 

Points with a height value below 0.5 m go-to medium vegetation. 

Points with a height value above 0.5 m go to high vegetation. 

Finally, an NDVI routine will be used to filter out other objects from vegetation that have an NDVI 

value < 0.3 
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3.2.4. Building routine 

The building routine detects points on houses’ roofs with a flat distribution from other objects’ classes. 

Holes above the ground class will begin to search for points on planar surfaces first. Minimum acreage and 

roof thickness of houses need to be set as parameters used for the routine. 

Afterward, a close point routine will be applied to bring roof structure from other objects class to 

building class. The loop looks for nearby points with a set 3D distance compared to the current building 

class. 

3.3. 3D city model 

3.3.1. True Orthophoto generation. 

The True Orthophoto is created from the Aerial Images (Fig. 10). After a triangulation process, the 

external orientation of each image is refined to have better accuracy. The Lidar point cloud is used to 

generate the DSM of the study area. All of the images will be projected to the DSM to form a True 

Orthophoto of the area. 

 

Fig. 10. Orthophoto of the study area. 

3.3.2. DTM generation & textured ground model 

DTM is generated as a TIN (Triangulated Irregular Network) model with the input from the ground 

point layer (Fig. 11). After that, the TIN model will be texturized using the True Orthophoto from the base 

ground model for the 3D city model. 

 

Fig. 11. TIN model. 
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3.3.3. Building model 

The building point cloud layer is the input for this process. An algorithm is used to vectorize buildings 

automatically. After the automation, every shape of the buildings is checked with manual work. The 

building models are in the form of LoD2 (Fig. 12) and are texturized by cutting images from the True 

Orthophoto.  

 

Fig. 12. Buildings models. 

3.3.4. The road network 

The road network is automatically vectorized by an algorithm with the input of the point cloud from the 

asphalt class. The road digitation is also checked with a manual process until acceptance. 

3.3.5. The tree models 

This process requires making a library of trees based on the shape and size of each type of tree (Fig. 13). 

Three vegetation layers are used as the input, each type of tree is viewed in a vertical section to draw the 

standard shape and define the parameters of size. A tree model is used correspondingly to each kind. 

  

Fig. 13. Trees model. 

Afterward, an automatic process is run to sift through the vegetation layer to detect trees. Correspond to 

each tree, a 3D tree cell from the library is placed on the model. Each tree cell will be present with a tree 

model from the library, respectively. 
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4. Result and discussion 

4.1. Result 

4.1.1. Point cloud classification 

  
(a)                                                                         (b) 

Fig. 14. LiDAR point clouds of Quang Xuong town after the automatic classification process. (a) Point 

clouds view by class; (b) Point clouds view by color. 

After processing through the workflow, the LiDAR point clouds of the study area were automatically 

classified into seven different classes (Fig. 14): asphalt road, other ground, low vegetation, medium 

vegetation, high vegetation, building, and other objects (water areas were vectorized as polygons). A 

manual checking process was performed afterward with the help of referenced orthophoto to collect 

incorrect classified points. 

The result came out with a very promising overall accuracy of 97.18 % as an average value of 

classification precision of 7 classes totaled up in Table 2. 

Tab. 2. Classification accuracy of 7 classes. 

 Asphalt Other 

ground 

Low 

vegetation 

Medium 

vegetation 

High 

vegetation 

Building Other 

Objects 

Incorrect 

classified points 

s 9637 12519 7398 42361 26521 19841 

Total points 169647 745522 600895 234237 1091304 1048832 400823 

Accuracy (%) 98.18 98.71 97.92 96.84 96.11 97.47 95.05 

The highest accuracy belongs to other ground and asphalt classes (98.71% and 98.18%). It shows that 

the ground routine worked practically effectively. The intensity value helped filter out asphalt quite 

thoroughly, thanks to the assistant of NDVI, because most of the low vegetation points were classified as 

ground points after the ground routine. It has an intensity range quite similar to asphalt. Other objects class 

has the lowest accuracy due to the complexness of the roof structure of houses in town. NDVI value helps 

filter vegetation, but the accuracy peaked at 97.92% for low vegetation. 

4.1.2. 3D city model 

The 3D city model of the study area  (Fig. 15) is the combination of 4 layers: 

- The 3D textured ground model as the base ground layer 

- The road networks drawing layer 

- The tree models 

- 3D LoD 2 building model 
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Fig. 15. 3D City model. 

4.2. Discussion 

The data is captured with the CityMapper with only one nadir camera (the full CityMapper has 4 more 

oblique cameras), thus, we do not have the oblique images to texture the facades. Therefore the building 

wall is not used in this research. It is classified into the point class of other objects. 

The best setup for a city 3D model is capturing data at around 700-800 m AGL (above ground level) to 

have the best surface point cloud of the roof building. However, it is very difficult to ask for permission to 

fly below 1000 m above ground level in Vietnam, yet, the classification still can archive a high accuracy 

result and be able to create a LoD2 city model. 

The outstanding feature of this method is the ability to classify high-density 3D point clouds with many 

points of different objects in a vertical direction, unlike other [14] that are required to convert LiDAR point 

clouds to a DTM or DSM surface. The automation process used in the study provides a high accuracy result 

(above 95% for all classes). With intensity and NDVI value, this method can filter out asphalt and 

vegetation together to classify up to 8 different classes. However, the data used in this study comes from 

the Airborne LiDAR system with an average point density of 5 pts/m2 and unideal height condition, thus 

the detail of the point cloud for other objects is not enough to have further classification. Many different 

objects have to stay in one class - other objects. One suggestion could be the use of the combination data 

of airborne LiDAR with Mobile Mapping or other ground LiDAR stations to have a more detailed dataset 

to be able to develop a further classification for other objects. The asphalt and NDVI threshold in this 

project is localized, other researchers need to choose different values for different areas depending on the 

type of LiDAR sensors, materials, and trees. 

5. Conclusion 

This study introduces a method for automatic land use classification by combining many different point 

cloud routines with their innate value of intensity and NDVI from the onboard multispectral images. The 

conclusions are as follows. 

First, it can be seen that the new airborne LiDAR system is capable of not only collecting data at high 

speed but also providing abundant and precise data for land use classification.  

Second, the method helps eliminate the need for labor-intensive by building an automatic process that 

can exploit various characteristics of the point cloud to classify it with high accuracy (above 95% for all 

classes). With the help of onboard high-resolution multispectral images, we can wrap up the workflow by 

doing correctness by manually classifying the rest of the point cloud to deliver a complete classification. 

Last but not least, the point cloud of the area after the classification process can be used to generate a 

3D city model. The 3D model introduced in the study is the LoD2 model, which can be used for various 

purposes like city inventory for buildings, trees, etc.; city management and planning; handling emergencies; 

tourism, etc. 
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