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 Flash-Flood Propagation Susceptibility Index (FFPSI) was proposed and calculated;
 A number of 255 flash-flood locations were used for modelling;
 A number of 10 flash-flood predictors were used to estimate the susceptibility;
 One stand-alone and four ensembles were used to derive the Flash-Flood Potential;
 Flow Accumulation was used to derive the final FFPSI maps.
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Ms. Ref. No.: TGEI-2021-0559 (218569821)

Title: “Flash-flood propagation susceptibility estimation using weights of evidence and their novel 

ensembles with multicriteria decision making and machine learning”

Journal: Geocarto International

Dear Dr Rundquist
Regional Editor
Geocarto International, 

Thank you very much for giving us a chance to revise the manuscript. We would like to express our 

gratitude towards the Editor and Reviewers for their valuable comments and suggestions that helped to 

improve the original submitted manuscript. 

In this revised version, we carefully considered all the comments from Editor and the three reviewers, point 

by point. The following paragraphs include a point – to – point response to reviewers’ comments and 

suggestions. We hope that the revised manuscript will satisfy the Reviewers and Editor. We kindly request 

you to consider this manuscript for publication in your esteemed journal.

Best regards,

The authors

List of changes in the revised paper:

This document explains the changes made in the revised manuscript while dealing with the 

comments raised by the reviewers. Reviewers’ comments are marked in black; authors’ response 

is shown in blue; in green, we provide the revised text, while the changes in the revised manuscript 

are marked in red.
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Response to Reviewers Reviewer #1

General reviewer comment: “The current research uses some methods for flood susceptibility 

mapping. There are many papers that used more robust machine learning models in previous 

studies. My main criticism is about novelty of paper.”

Authors: We would like to express our sincere gratitude to the reviewer for providing rewarding 

and constructive feedback. We have carefully read and addressed all comments, point by point, 

below. We also mentioned which are the main elements of novelty. We copy the text below:

“The main element of novelty that characterizes this study is represented by the use and 

computation for the first time in the literature of Flash-Flood Propagation Susceptibility Index 

(FFPSI), which is of a real help to create a complete overview regarding the flash-flood 

susceptibility at the level of a river catchment. Another element of novelty is represented by the 

use for the first time in the literature of the following ensemble models in order to determine the 

flash-flood susceptibility: AHP-WOE and RBFNN-WOE.” – line 694

Specific reviewer comments:

Reviewer comment 1: “What is the difference of your study with previous studies such as: 

"Towards a flood vulnerability assessment of watershed using integration of decision-making trial 

and evaluation laboratory, analytical network process, and fuzzy theories."; "Ensemble models of 

GLM, FDA, MARS, and RF for flood and erosion susceptibility mapping: a priority assessment 

of sub-basins.";  "Incorporating multi-criteria decision-making and fuzzy-value functions for flood 

susceptibility assessment."; "Integrated machine learning methods with resampling algorithms for 

flood susceptibility prediction."”

Author response: We thank the reviewer’s comment. We tried to explain which are the main 

differences between our study and the mentioned studies in the Discussion section. We copy the 

text below:

“It should be noted that the previous studies regarding the estimation of flash-flood susceptibility 

by machine learning techniques, carried out so far, did not include the study of the susceptibility 

of the valleys to the propagation of flash-flood waves (Anquetin et al., 2010; Janizadeh et al., 

2019). Moreover, many researchers were focused, in their previous works, only on the evaluation 
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of normal flood susceptibility (Azareh et al., 2019; Dodangeh et al., 2020; Hosseini et al., 2021; 

Mosavi et al., 2020), without taking into account the flash-flood phenomenon particularities. 

Besides of the previous research works which take into account only the local flood susceptibility 

given by the punctual conditions and rainfall, this article proposes a new and complete approach 

regarding the study of slopes susceptibility to runoff and, also, regarding the susceptibility of 

valleys to the propagation of the flash-floods. Therefore, through FFPSI, for each valley across the 

study area are highlighted the characteristics of the upslope catchment that could determine a high 

exposure to flash-flood. This new approach was conducted with the help of bivariate statistics and 

machine learning and also using the Flow Accumulation procedure. In fact, the propagation of the 

flash-flood wave is the element that generates the most significant material damage and loss of 

human life (Mujumdar, 2001).” – line 626

Reviewer comment 2: “The return period of flood locations (y-variable) is not clear.”.

Author response: We thank the reviewer for the comment. We add an explanation within the text. 

Please find the text below:

“It should be noted that the majority of identified flash-floods were determined by the river 

discharge values with a return period of 10 years. Though, it is important to mention that the return 

period couldn’t be established for each flash-flood event because the phenomena occurred on river 

sectors without hydrometric measurements.” – line 150

Reviewer comment 3: “L 207: How did you collect the flood locations?”

Author response: We thank the reviewer for the comment. We copy below the explanation:

“Thus, in the present case, in order to evaluate the susceptibility of the surfaces to the genesis of 

the flash-floods, data regarding the places where these phenomena occurred in the past were 

collected. In this regard, the damage reports provided by the General Inspectorate for Emergency 

Situation (GIES) of Romania and the information from mass-media were used. Totally, a number 

of 255 de flash-flood locations were collected.” – line 145
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Response to Reviewers Reviewer #2 

Reviewer comment 1: “The authors discussed the research gap (novelty) in the Discussion and 

Conclusion sections. However, a research gap statement should be written in the Introduction 

section to succinctly inform your audience what holes in the literature your research is trying to 

fill.”

Author response: We thank reviewer for taking his time to review our manuscript and for the 

valuable suggestions. We added a statement in the Introduction in order to inform the audience 

about the novelty of our study. We copy the text below:

“In this context, the present study wants to propose a methodology for estimating the susceptibility 

to flash-flood propagation, this topic not being addressed so far in the literature.” – line 112

Reviewer comment 2: “Spatial modelling using AHP elicits the experts' opinions in the area 

because the experts' rankings are used to calculate the factors' weights. So, the data used in the 

AHP computations were assumed to be obtained through a questionnaire survey filled in by several 

well-versed experts in the field. However, the author(s) didn't mention how many experts were 

interviewed, their expertise, and their years of experience. Moreover, the authors should give 

justification for using a specific number of experts. See the study below as an example:

Dano, U. L. (2021). An AHP-based assessment of flood triggering factors to enhance resiliency in 

Dammam, Saudi Arabia. GeoJournal, 1-16.

Dano, U. L. (2020). Flash Flood Impact Assessment in Jeddah City: An Analytic Hierarchy 

Process Approach. Hydrology, 7(1), 10.”

Author response: We thank the reviewer for the comment. We added new explanations within 

the text and also we cited the mentioned research papers. We copy the text below:

“It should be mentioned that for the present study, the data necessary for the application of AHP 

method was obtained through an expert-based questionnaire survey administered to a number of 

19 experts from the National Institute of Hydrology and Water Management of Romania, with a 

high expertise in flash-flood risk assessment. The number of interviewed experts is very close to 

the number that was also used in previous works from the literature (Dano, 2021, 2020).”- line 316    
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Reviewer comment 3: “A separate table containing spatial and non-spatial data and their sources 

with dates and scales where applicable should be provided.”

Author response: We thank the reviewer for the valuable suggestion. We added a new table in 

order to meet your requirement.

Table 1 Data used, source, resolution, scale and type

Reviewer comment 4: “The author(s) didn’t compare their findings with prior studies in the field. 

The Discussion section should highlight important discoveries and how they support/corroborate 

or differ from previous studies and likely explanations by citing recent literature.”

Author response: We thank the reviewer for his valuable suggestion. We added new paragraph 

in which we compare our study and discoveries with the previous research works and also we 

explain how our results differ from the previous studies. We copy the text below:

“It should be noted that the previous studies regarding the estimation of flash-flood susceptibility 

by machine learning techniques, carried out so far, did not include the study of the susceptibility 

of the valleys to the propagation of flash-flood waves (Anquetin et al., 2010; Janizadeh et al., 

2019). Moreover, many researchers were focused, in their previous works, only on the evaluation 

of normal flood susceptibility (Azareh et al., 2019; Dodangeh et al., 2020; Hosseini et al., 2021; 

Mosavi et al., 2020), without taking into account the flash-flood phenomenon particularities. 

Besides of the previous research works which take into account only the local flood susceptibility 

Data Source Resolution Scale Type
Digital Elevation 
Model (DEM)

Shuttle Radar 
Topography Mission 
(SRTM)

30 m - Spatial

Flash-Flood points General Inspectorate 
for Emergency 
Situation (GIES) of 
Romania; mass-
media

- - Spatial

Non-Flash-Flood 
points

Aerial imagery; field 
survey

- - Spatial

Rainfall (mm/year) Worldclim v2 - - Spatial
Land use/cover Corine Land Cover, 

2018
1 km - Spatial

Hydrological Soil 
Groups

Digital Soil Map of 
Romania

- 1:200000 Spatial

Lithology Digital Geological 
Map of Romania

- 1:200000 Spatial
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given by the punctual conditions and rainfall, this article proposes a new and complete approach 

regarding the study of slopes susceptibility to runoff and, also, regarding the susceptibility of 

valleys to the propagation of the flash-floods. Therefore, through FFPSI, for each valley across the 

study area are highlighted the characteristics of the upslope catchment that could determine a high 

exposure to flash-flood. This new approach was conducted with the help of bivariate statistics and 

machine learning and also using the Flow Accumulation procedure. In fact, the propagation of the 

flash-flood wave is the element that generates the most significant material damage and loss of 

human life (Mujumdar, 2001).” – line 626

Reviewer comment 5: “Figure 1 source should be provided.”

Author response: We added the source of Figure 1.

Response to Reviewers Reviewer #3

General reviewer comment: “The paper " Flash-flood propagation susceptibility estimation using 

weights of evidence and their novel ensembles with multicriteria decision making and machine 

learning” covers an interesting and actual topic. However, the paper can't be accepted for 

publication before some changes. Below are listed specific comments:”

Authors: We would like to express our sincere gratitude to the reviewer for providing rewarding 

and constructive feedback. We have carefully read and addressed all comments, point by point, 

below. 

Specific reviewer comments:

Reviewer comment 1: “According to international procedures, abbreviations should be introduced 

the first time they are mentioned in brackets.”

Author response: We thank the reviewer for valuable suggestions. We introduced the 

abbreviations their first time mention in text. 

Reviewer comment 2: “line 108-109 “Another sample of 255 points were placed in areas where 

the flash-floods did 109 not occur in the past.” / How can we make sure that these 255 points are 
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non-flash-flood locations or in other words on which basis the authors considered them as non-

flash-flood locations maybe through field trips or by processing satellite images, please precise?”

Author response: We thank the reviewer for the comment. We added new explanations within 

the text. We copy the text below:

“It is worth to note that, along the information from the governmental authorities that didn’t 

mention the occurrence of flash-flood events, the non-flash-flood locations were also placed based 

on the analysis satellite images and field surveys.” – line 155

Reviewer comment 3: “line 631-633 “The main element of novelty that characterizes this study 

is represented by the use and computation for the first time in the literature of Flash-Flood 

Propagation Susceptibility Index (FFPSI)” / we can find in the literature many studies which 

introduced various flood Susceptibility Indices”

Author response: We thank the reviewer for the comment. Indeed, there are many studies which 

introduced various flood Susceptibility Indices. Though, this article proposes an approach that 

include both the susceptibility to surface runoff at the slope level, and then, with the help of Flow 

Accumulation procedure, the susceptibility of valleys to the flash-flood propagation was also 

evaluated. We added new explanations in the text:

“Besides of the previous research works which take into account only the local flood susceptibility 

given by the punctual conditions and rainfall, this article proposes a new and complete approach 

regarding the study of slopes susceptibility to runoff and, also, regarding the susceptibility of 

valleys to the propagation of the flash-floods. Therefore, through FFPSI, for each valley across the 

study area are highlighted the characteristics of the upslope catchment that could determine a high 

exposure to flash-flood. This new approach was conducted with the help of bivariate statistics and 

machine learning and also using the Flow Accumulation procedure. In fact, the propagation of the 

flash-flood wave is the element that generates the most significant material damage and loss of 

human life (Mujumdar, 2001).” – line 632

Reviewer comment 4: “The FFPSI introduced in this study using the flow accumulation map 

classified the degree of susceptibility at river level not for the entire basin. What is the interest of 

this index? It seems like a kind of clipping of the maps shown in fig 7 by the Basin Rivers because 

we know that the flow accumulation map shows a very high contrast between the watercourses 
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and the other lands. In fact, upon visual inspection, it is obvious that the values of both indices 

(FFPI and FFPSI) are the same or at least proportional.”

Author response:  We thank the reviewer for the comment. In Fig. 7 there is represented the 

surface runoff potential at the slope level which in many parts of the study area has a high value. 

Nevertheless, the FFPI represented in Fig. 7 didn’t show the same high values on the valleys that 

are near the slopes with a high susceptibility. This is the reason for which the Flow Accumulation 

was applied because the valleys will have the FFPI values that were weighted on the upslope 

catchment area and the new FFPSI (Fig. 12) will better show the potential power of a flash-flood 

event at the river valley level. The Flow Accumulation procedure was applied through an workflow 

developed in ArcGIS software in which the input data was represented by the Flow Accumulation 

derived from Digital Elevation Model and the raster of FFPI. We would like to ensure the reviewer 

that we didn’t simply clip the FFPI Raster along the river valleys. 
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1

1 Flash-flood propagation susceptibility estimation using weights of 

2 evidence and their novel ensembles with multicriteria decision making 

3 and machine learning

4 Abstract: The present study aims to enrich the specialized literature by proposing and 

5 calculating a new flash-flood propagation susceptibility index (FFPSI). Thus, firstly the 

6 Flash-Flood Potential Index (FFPI) using the ensembles of the next models was calculated: 

7 Weights of Evidence (WOE), Analytical Hierarchy Process (AHP), Logistic Regression 

8 (LR), Classification and Regression Trees (CART), and Radial Basis Function Neural 

9 Network-Weights of Evidence (RBFN-WOE). A number of 255 flash-flood locations, split 

10 into training (70%) and validating (30%) samples, along with 10 predictors were used as 

11 input in the five models. The Receiver Operating Characteristics (ROC) Curve and several 

12 statistical metrics were used to evaluate the Flash-Flood Potential Index results. LR-WOE 

13 and AHP-WOE were the most performant models. Nevertheless, all the applied models 

14 performed very well (AUC > 0.85). Further, the FFPSI was determined by integrating the 

15 FFPI results into a Flow Accumulation procedure. Over 55% of the valleys identified are 

16 characterized by high and very high values of FFPSI.

17 Keywords: flash-floods propagation susceptibility; bivariate statistics; multicriteria 

18 decision-making; machine learning; Romania

19

20 1. Introduction

21 The current context marked by the imminent transition from the moderate meteorological 

22 phenomena to the meteorological phenomena characterized by extreme severity, brings into 

23 the discussion the necessity of some urgent adaptation measures to combat the extreme 
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24 weather negative effects. This transformation of meteorological phenomena at the planetary 

25 scale, mainly due to the global climate change (Markolf et al., 2019), entails an exponential 

26 increase in the frequency of risk hydrological phenomena such as flash-floods and floods 

27 generated by them (Antronico et al., 2019). Currently, according to Hofman and Schüttrumpf 

28 (2019) flash-floods are considered among the most devastating natural hazards. Globally, the 

29 total number of victims annually caused by these phenomena between 1996 and 2015 is 

30 estimated at 150061 (Costache et al., 2020c). This is due to the very high speed of appearance 

31 and manifestation, which varies from a few tens of minutes to a maximum of 6 hours (Lee 

32 and Kim, 2019), as well as the violence with which the mechanical action of water affects 

33 the socio-economic and environmental elements during such a phenomenon. Flash-floods are 

34 generally characteristic for river basins with a medium to high relief slope and a small 

35 surface. These 2 elements determine a very short time of water concentration from the slopes 

36 towards the river channels (Costache, 2014a; Prăvălie and Costache, 2013). It is obvious that 

37 where the flash-flood wave along a river valley meets an area with a lower slope will 

38 eventually generates a devastating flood. One of the most effective non-structural measures 

39 taken to mitigate the flash-flood effects is represented by the exact identification of the 

40 surfaces on which the surface runoff on the slopes is manifested. Additionally, it is mandatory 

41 to detect the river valleys along which a high potential for flash-flood propagation exists. 

42 The accelerated development of computerized techniques has created favourable premises 

43 for the application of modern methodologies that can allow the rapid and high accurate 
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44 assessment of the above-mentioned surfaces. In this regard, GIS techniques are widely used 

45 to map the areas susceptible to flash-floods (Costache, 2014b; Zaharia et al., 2017, 2015). 

46 An increasing number of researchers are trying to integrate these GIS techniques with 

47 advanced computational algorithms that are specific to bivariate statistics, artificial 

48 intelligence and multi-criteria decision-making (Al-Abadi, 2018; Ali et al., 2020; Arabameri 

49 et al., 2020; Costache, 2019). Among the most used bivariate statistical techniques found in 

50 studies focused on assessing the susceptibility to natural hazards are: Frequency Ratio (Cao 

51 et al., 2016; Costache and Zaharia, 2017), Weights of Evidence (Chen et al., 2018), Certainty 

52 Factor (Z. Chen et al., 2019), Evidential Belief Function (Omar F Althuwaynee et al., 2014), 

53 Statistical Index (Chen et al., 2015), and Index of Entropy (Al-Abadi and Shahid, 2015). It 

54 should also be mentioned that the application of bivariate statistics in the field of 

55 susceptibility to natural hazards requires as input data the points or areas where the analyzed 

56 phenomena were recorded in the past (Arabameri et al., 2019). In fact, these input data are 

57 mandatory to be used also in the case of machine learning or artificial intelligence algorithms. 

58 The most well-known machine learning models applied in the study of natural hazards are: 

59 Multilayer Perceptron (Ngo et al., 2018), Support Vector Machine (Choubin et al., 2019), 

60 Decision Trees (Omar F. Althuwaynee et al., 2014), k-Nearest Neighbor (Avand et al., 2019), 

61 Logistic Regression (Bui et al., 2011), Naïve Bayes (Hosseini et al., 2020), Bagging (W. 

62 Chen et al., 2019), Dagging (Yariyan et al., 2020), Decorate (Zhang et al., 2012), Adaptive 

63 Neuro-Fuzzy Inference System (Ahmadlou et al., 2019). It is also a common practice to 

64 generate ensembles between machine learning and bivariate statistics (Costache and Bui, 
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65 2019), or between several machine learning models taken together (Pham et al., 2018). Also, 

66 noteworthy is the application of optimization algorithms such as: Particle Swarm 

67 Optimization (Bui et al., 2017), Harris Hawk Optimization (Bui et al., 2019a) and 

68 Biogeography based-Optimization (Wang et al., 2019). Widely used in determining the 

69 susceptibility to natural hazards are also the specific multicriteria decision-making methods 

70 as well: Analytical Hierarchy Process (Dahri and Abida, 2017, Sajedi‐Hosseini et al., 2018), 

71 DEMATEL (Kanani-Sadat et al., 2019) and VIKOR (Ameri et al., 2018). 

72 In this context, the present study wants to propose a methodology for estimating the 

73 susceptibility to flash-flood propagation, this topic not being addressed so far in the literature. 

74 The flash-flood propagation susceptibility will be computed by completing two major stages. 

75 The first stage will consist in determining the flash-flood susceptibility by applying the 

76 bivariate Weights of Evidence (WOE) method, as well as their novel ensembles with 

77 Analytical Hierarchy Process (AHP), Logistic Regression (LR), Classification and 

78 Regression Trees (CART) and Radial Basis Function Neural Network (RBFNN). The 

79 evaluation of the accuracy of flash-flood susceptibility results, provided by the 5 models, will 

80 be done through ROC Curve method and several statistical metrics. The second stage will 

81 consist in the actual calculation of the flash-flood propagation susceptibility by using the 

82 results of the first stage and the Flow Accumulation method.  

83 2. Study area 

84 The present study is focused on the Zăbala river basin, located in the mountainous area of the 

85 central-south-eastern part of Romania. The study area represents a small to medium-sized 
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86 basin with a total surface of 600 km2. The altitude of the study area varies from 312 m to 

87 1786 m (Fig. 1). This high amplitude of elevation across a relatively small area, creates the 

88 premises for the genesis and propagation of flash-floods from the upper to the lower part of 

89 the river basin. In fact, the river basin is characterized by a relatively high average slope of 

90 12.7°, this being another indicator of the high potential for the flash-flood genesis. According 

91 to the existing information, the afforestation degree of the river basin is around 60%. The 

92 genesis of flash-floods is also favoured by the hard rocks in the substrate of the study area, 

93 as well as by the presence of pasture vegetation on relatively compact surfaces. Important 

94 damages to the socio-human elements were generated by flash-floods during the years: 2010, 

95 2016, 2017 and 2019.   

96  

97 3.2. Data

98 3.1. Flash-flood inventory

99 Any natural phenomenon has a higher occurrence probability over the areas where it has 

100 already occurred and where the environmental elements favour its genesis (Dottori et al., 

101 2018). 

102 Therefore, in the natural hazards susceptibility studies, it is very important to identify the 

103 locations that have already been affected by that phenomenon, and then to establish the 

104 spatial relationship between the presence/absence of the hazard and the characteristics of 

105 geographical factors (Yariyan et al., 2020). Thus, in the present case, in order to evaluate the 

106 susceptibility of the surfaces to the genesis of the flash-floods, data regarding the places 

107 where these phenomena occurred in the past were collected. In this regard, the damage reports 
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108 provided by the General Inspectorate for Emergency Situation (GIES) of Romania and the 

109 information from mass-media were used. Totally, a number of 255 de flash-flood locations 

110 were collected. It should be noted that the majority of identified flash-floods were determined 

111 by the river discharge values with a return period of 10 years. Though, it is important to 

112 mention that the return period couldn’t be established for each flash-flood event because the 

113 phenomena occurred on river sectors without hydrometric measurements. Another sample of 

114 255 points were placed in areas where the flash-floods did not occur in the past. These points 

115 were considered as non-flash-flood locations. It is worth to note that, along the information 

116 from the governmental authorities that didn’t mention the occurrence of flash-flood events, 

117 the non-flash-flood locations were also placed based on the analysis satellite images and field 

118 surveys. Both of the samples were split in training (70%) and validating (30%) datasets. The 

119 training datasets will be used exclusively for running the models, while the validating dataset 

120 will be used to validate the flash-flood susceptibility results.

121 3.2. Flash-Flood Predictors

122 According to the above section, the characteristics of geographical factors are those that 

123 influence the genesis and manifestation of flash-floods. Thus, in order to identify as 

124 accurately as possible, the surfaces favourable to the flash-floods genesis, a number of 10 

125 conditioning factors were taken into account. Six morphometrical predictors were derived 

126 from the Digital Elevation Model (DEM). The DEM at a spatial resolution of 30 meters, was 

127 extracted from SRTM, 30 databases. Another 3 flash-flood predictors were extracted or 

128 derived from vector databases as follows: land use/cover was extracted from Corine Land 
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129 Cover, 2018 database; hydrological soil groups din Digital Soil Map of Romania, 1:200,000; 

130 lithology din Digital Geological Map of Romania, 1:200,000. Another predictor, represented 

131 by Modified Fournier Index (MFI), was achieved by the processing of Worldclim v2 database 

132 in raster format. Below, each factor was described from the perspective of their influence on 

133 flash-flood phenomena. 

134 Slope is the essential factor that creates favourable conditions for both flash-flood genesis 

135 and propagation (Antonetti et al., 2019). Thus, areas with steep slopes will favour the 

136 occurrence of rapid surface runoff and the formation of flash-floods (Fontanine and Costache, 

137 2013; Hapciuc et al., 2016). In the case of the study area, the slope of the relief was derived 

138 from the DEM at a cell size of 30 meters. As can be seen in Fig. 2a, the slope of the relief 

139 has values between 0 ° and 48 °. This interval was divided into 5 classes, taking into account 

140 the literature (Costache, 2014c).  

141 Land use / cover is another important geographic element with a major contribution in the 

142 genesis of flash-floods (Zhao et al., 2019). The lands where the pastures predominate or 

143 which are totally devoid of vegetation will determine the appearance of runoff on the slopes, 

144 while the forested regions protect the surface of the land against torrential phenomena 

145 (Hosseini et al., 2020). In total, a number of 5 use classes were identified, over 60% of the 

146 total river basin being covered by forest (Fig. 2b). 

147 Lithology is an essential parameter in defining the degree of impermeability of a surface. 

148 This degree of impermeability contributes decisively to the potential for rapid runoff 
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149 manifestation on the slopes (Talukdar et al., 2020). The conglomerates, breccias, sandy flysch 

150 and marls shale are predominant in the study area (Fig. 2c). 

151 Hydrological Soil Groups, influence in an indirect manner the flash-floods genesis. Thus, 

152 runoff will be favoured above soils with a high clay content, such as those in hydrological 

153 group D, while more active infiltration in soils with a high sand content will cause a decrease 

154 in flash-flood potential (Gessesse et al., 2015). Within the study area the largest surfaces are 

155 occupied by the hydrological soil group B (Fig. 2d).

156 Plan curvature is described by the line generated at the intersection of terrain surface and a 

157 horizontal plane. This morphometric indicator highlights the difference between the 

158 convergent and divergent runoff manifested at the ground surface. The following three 

159 classes were defined for plan curvature (Fig. 2e): -2.36 - -0.1; -0.09 – 0.1; 0.1 – 2.19.   

160 Profile curvature is another morphometric factor obtained from DEM. In terms of flash-flood 

161 susceptibility, the importance of this factor is given by the fact that its negative values 

162 indicate the areas where surface runoff is accelerated, while its positive values show the areas 

163 where surface runoff is diminished (Ali et al., 2020). According to the scientific literature, 

164 the profile curvature values were grouped into the following 3 classes: -3.08 - -0.05; -0.04 – 

165 0.05; 0.05 – 3.65 (Fig. 2f).

166 Convergence Index (CI) is a morphometric factor derived from DEM at the same spatial 

167 resolution as the slope of the relief. The values of this index show the degree of concentration 

168 of all fluvial and torrential organisms in a given region. A high hydrographic convergence is 
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169 highlighted by negative CI values, close to -100, while the interfluvial surfaces have 

170 associated positive values. In the study area, the CI values are between -78 and 95 (Fig. 3a). 

171 The range of value was divided into 5 classes according to the literature (Prăvălie and 

172 Costache, 2014). 

173 The Modified Fournier Index (MFI) highlights the spatial distribution of the rainfall intensity 

174 (Costache et al., 2020a). For this reason, the consideration of this indicator for estimating the 

175 flash-flood potential has a higher degree of representativeness than the consideration of 

176 multiannual average precipitation values. MFI is determined through the following 

177 mathematical relation: 

178    (1)𝑀𝐹𝐼 = ∑12

𝑖 = 1

𝑃2
𝑖

𝑃

179 where: MFI – Modified Fournier Index, Pi - being the monthly precipitation at month i, Pt - 

180 the annual precipitation. For the Zăbala river basin, MFI was determined by processing the 

181 precipitation data from Worldclim v2 database. In the case of the study area, the following 4 

182 MFI classes were delineated: <60, 60 – 90, 90 – 120, >120 (Fig. 3b). 

183 Aspect predictor derived from DEM, is a real help for the evaluation of susceptibility to flash-

184 floods because the differentiation of the surfaces on the 9 orientation groups can indicate in 

185 a clear way which is the potential of humidity that exists at the level of each group (Chapi et 

186 al., 2017). In the case of the present research area, the largest areas are covered by the North-

187 East exposed surfaces (Fig. 3c). 

188 Topographic Wetness Index (TWI) was obtained in SAGA GIS 2.0.2 software by DEM 

189 processing. TWI values are calculated by dividing the upslope catchment area to the slope 
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190 angle (Hong et al., 2018). The values of this indicator, within the study area, range from     -

191 7.35 to 24.66. Following the recommendation from the previous scientific works (Lei et al., 

192 2020), the entire range of TWI values was divided into five classes using the Natural Breaks 

193 method (Fig. 3d).  

194 A succinct presentation of the data used in the present research is included also in Table 1.
195
196
197 4. Methods

198 The workflow applied in the present research is synthetically presented in the Figure 4. The 

199 methods, the software used and their training procedure are described in the following rows. 

200
201 4.1. Multicollinearity assessment and feature selection

202 Variance Inflation (VIF) and Tolerance (TOL) are 2 of the most popular indices used to 

203 evaluate the multicollinearity among the variables that are used as input in a mathematical 

204 model (Miles, 2014). In fact, the assessment of multicollinearity among flash-flood 

205 predictors is mandatory to reduce redundant information and bias within models (Wheeler 

206 and Tiefelsdorf, 2005). Thus, in this paper VIF and TOL will be estimated through the SPSS 

207 21 software. It should be noted that TOL values less than 0.2 and VIF higher than 4, may 

208 indicate the presence of multicollinearity (Dou et al., 2018). 

209 The ReliefF method will ensure the initial evaluation of the predictive ability of variable used 

210 to estimate the flash-flood potential. Thus, feature selection process can: i) help to reduce the 

211 time of models training; ii) made the models less complex and also easier to analyse, iii) help 

212 to select the best variables in order to increase the models accuracy; iv) can decrease the 

213 overfitting. ReliefF Attribute is able to deal with multiclass problems (Urbanowicz et al., 
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214 2018), and therefore, was also selected to be used in the present research. Also, it is worth to 

215 admit that the ReliefF algorithm is able to operate with continuous and discrete data. This 

216 method consider the given attribute value associated to the closest instance of different or the 

217 same class (Urbanowicz et al., 2018). In the present study, the ReliefF will be run using Weka 

218 3.9 software.    

219 4.2. Weights of Evidence (WoE)

220 WoE is a bivariate statistical method which is based on Bayes theory. This algorithm is very 

221 popular in research works focused on natural risk susceptibility evaluation (Khosravi et al., 

222 2016). In the present research WoE was applied as stand-alone model for flash-flood 

223 susceptibility assessment and at the same time the WoE coefficients were also used as input 

224 in the following models in order to create a number of four ensemble: Analytical Hierarchy 

225 Process, Logistic Regression, Classification and Regression Trees, and Radial Basis Function 

226 Neural Network. The estimation of WoE coefficients was based on the spatial overlapping of 

227 flash-flood pixels with factor classes/categories. The mathematical relations used in this 

228 regard are written below (Costache and Bui, 2019): 

229                                                            (2)𝑊 + = 𝑙𝑛
𝑃(𝐵|𝑆)
𝑃(𝐵|𝑆)

230                                                            (3)         𝑊 ― = 𝑙𝑛
𝑃(𝐵|𝑆)
𝑃(𝐵|𝑆)

231 where: W+ - positive weight, W- - negative weight, P – the probability, B – the presence of 

232 flash-flood predictor, B  - the absence of flash-flood predictor, S – the presence of flash-

233 flood phenomena, S - the absence of flash-flood phenomena.

234 In order to be implemented in GIS environment, the above relations can be transformed into 

235 (Mohammady et al., 2019):
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236  

𝑊 + = ln ([ 𝑁𝑝𝑖𝑥1

𝑁𝑝𝑖𝑥1 + 𝑁𝑝𝑖𝑥2]/[
𝑁𝑝𝑖𝑥3

𝑁𝑝𝑖𝑥3 + 𝑁𝑝𝑖𝑥4
]) (4),

𝑊 ― = ln ([ 𝑁𝑝𝑖𝑥2

𝑁𝑝𝑖𝑥1 + 𝑁𝑝𝑖𝑥2]/[
𝑁𝑝𝑖𝑥4

𝑁𝑝𝑖𝑥3 + 𝑁𝑝𝑖𝑥4
]) (5),

237

238   where: Npix
1
 - number of flash-flood pixels within a  predictor class; Npix

2 
number of 

239 flash-flood pixels outside of the predictor class;
 
Npix

3 
–

 
number of pixels without flash-flood 

240 phenomena in the predictor class; Npix
4
 - number of flash-flood pixels without flash-flood 

241 phenomena outside of the predictor class; W+ - positive weight, W- - negative weight.

242 The final value of a WoE coefficient was achieved using the following formula (Costache 

243 and Bui, 2019):

244                                       (6),𝑊𝑓 = 𝑊𝑝𝑙𝑢𝑠 + 𝑊𝑚𝑖𝑛 𝑡𝑜𝑡𝑎𝑙 ― 𝑊𝑚𝑖𝑛

245 where: Wplus – is the positive weight of a class factor, Wmin – is the negative weight of a 

246 class factor, Wmintotal – is the total of all negative weights in a multiclass map.

247 4.3. Analytical Hierarchy Process (AHP)

248 AHP is a multicriteria decision-making model which is frequently involved in the research 

249 works whose main purpose is the identification of regions susceptible to natural risks (Akıncı 

250 et al., 2013; Ghosh and Kar, 2018; Pourghasemi et al., 2016). An important aspect which 

251 should be exposed is that the AHP represents a semi-quantitative method in which a very 

252 important weight is allocated to the expert judgment. Thus, by applying this model a problem 

253 could be solved by an active involvement of the experts in the research workflow. Proposed 

254 by Saaty (1980), AHP algorithm applied in the present study will consists of six major steps 
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255 through which the problem can be break down into several components. The steps are briefly 

256 described below:

257 i) Establish the objectives and split the problem into many components;

258 ii) Defining the criteria and the alternatives;

259 iii) Generating the AHP pair-wise comparison matrix using the expert judgement. More 

260 details regarding the construction of pair-wise comparison matrix can be found in (Costache, 

261 R. and Tien Bui, D., 2020); 

262 iv) Using the eigenvalue method to calculate the relative importance of each flash-flood 

263 predictor; 

264 v) Assessing the quality of pair-wise comparison using the Consistency Ratio (CR). CR is 

265 estimated as follows: 

   𝐶𝐼 =
𝜆𝑚𝑎𝑥 ― 𝑛

n ― 1 (7)

266 where CI represents the value of consistency index; λ is the eigenvalue with the highest value 

267 within the entire matrix, which can be computed using the eq. 8; n is number of flash-flood 

268 predictors.

                          𝐶𝑅 =
𝐶𝐼
𝑅𝐼 (8)

269 where RI represents the value of random consistency index which can be found in literature 

270 (Agarwal et al., 2013).

271 A consistent pair-wise comparison is highlighted by a CR under 0.1 (Sun, 2010). 

272 vi) Calculate the flash-flood potential index (FFPI) by integrating the AHP weights with WoE 

273 coefficients in GIS environment as follows:
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  𝐹𝐹𝑃𝐼𝐴𝐻𝑃 ― 𝑊𝑂𝐸 =  
𝑛

∑
𝑗 = 1

𝐴𝐻𝑃𝑗𝑊𝑓𝑖𝑗 (9)

274 where AHPj is the importance of a flash-flood predictor j, Wfij is the weights of evidence 

275 coefficient associated to a class i of predictor j, and n is the number of predictors.

276 It should be mentioned that for the present study, the data necessary for the application of 

277 AHP method was obtained through an expert-based questionnaire survey administered to a 

278 number of 19 experts from the National Institute of Hydrology and Water Management of 

279 Romania, with a high expertise in flash-flood risk assessment. The number of interviewed 

280 experts is very close to the number that was also used in previous works from the literature 

281 (Dano, 2021, 2020).    

282 4.4. Logistic Regression

283 Logistic Regression (LR) model aims to identify the best relation between a set of predictors 

284 and a binary variable (Kavzoglu et al., 2014; Pradhan, 2010). Therefore, it can be admitted 

285 that the logistic regression method is especially used to predict the absence and the presence 

286 of a specific process, based on the characteristics of the spatial relationship between certain 

287 predictors and dependent variable. Logistic Regression model is able to work with both 

288 continuous and discrete variables or with a combination of both. In the present research, the 

289 dependent variable is represented by the flash-flood and non-flash-flood locations, while the 

290 explanatory/independent variables are represented by the flash-flood predictors. It is worth 

291 to note that the flash-flood points were encoded with 1, while non-flash-flood points were 

292 encoded with 0.
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293 By adapting to the present research the next equation represent the mathematical expression 

294 of the logistic regression linear model (Bui et al., 2011):

295                                                             (10) 𝑝 =
1

1 + 𝑒 ―𝑍

296 where p is the probability of a flash-flood event, Z is a value from −∞ to +∞, calculated with 

297 the next relation:

298                                         (11)𝑍 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 +… + 𝛽𝑛𝑥𝑛

299 where b0 is the model intercept value, the βi (i=0, 1, 2, ..., n) are the values of the logistic 

300 regression slope coefficients, and the xi (i=0, 1, 2, ..., n) represent the flash-flood predictors 

301 having assigned the WOE coefficients.

302 Within Logistic Regression model, the multicollinearity, which will be assessed according to 

303 4.1. section, can induce some inaccuracies which could affect also the model hypothesis 

304 (Midi et al., 2010). The application of Logistic Regression model was possible through SPSS 

305 software in which the data were imported in tabular format. The accuracy of the classification 

306 done in LR depends the selection of optimal cut-off classification. In this regard, a trial 

307 process was carried out with the next cut-off classification values indicated in the literature 

308 (Soureshjani and Kimiagari, 2013): 0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and 0.99. 

309 Finally, the classification associated with the cut-off value that provides the highest accuracy, 

310 will be selected. Following the training procedure, the LR coefficients (βi) will be computed. 

311 In fact, these coefficients will be equal to the weight of each flash-flood predictor. Thus, the 

312 eq. 10 will be implemented in GIS environment to determine the flash-flood potential. 

313 4.5. Classification and Regression Tree

Page 25 of 73

URL: http:/mc.manuscriptcentral.com/tgei  Email: TGEI-peerreview@journals.tandf.co.uk

Geocarto International

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review Only

16

314 Classification and Regression Tree (CART) is a popular machine learning model used in 

315 research works focused on natural hazards susceptibility computation (Costache and Bui, 

316 2019; Hong et al., 2015; Yeon et al., 2010; Youssef et al., 2016). CART algorithm could be 

317 run using the following type of variables: categorical, binary and number. This characteristic 

318 represents an advantage of this model. Within the CART model, the selection of predictors 

319 is carried out so that the data error to be diminished. The entropy in CART model, represents 

320 the measure to which a predictor is preferred against to another. It should be noted that if a 

321 predictor has a missing value, it will not be involved in the construction of the tree optimal 

322 ramification. In this case the missing values are substituted by surrogates (Breiman et al., 

323 1984). A terminal node within the CART structure is equal to the average response in that 

324 specific node (Breiman et al., 1984). The best sampling rule in CART model training 

325 procedure consists of the direct association between the target attribute in two child nodes 

326 and is described by the next relation (Costache et al., 2020b):

327                            (12)𝐼(𝑆𝑝𝑙𝑖𝑡) = [0.25(𝑞(1 ― 𝑞))𝑢∑
𝑘|𝑃𝐿(𝑘) ― 𝑃𝑅(𝑘)|]2

328 where: k is the index of the target classes, PL(k) and PR(k) represent the probability 

329 distributions of the target in the left and right child nodes, respectively, and the power term 

330 u embeds a user-trollable penalty on splits that create child nodes with unequal sizes (Wu et 

331 al., 2008).

332 In the present study, CART-WOE ensemble was applied by using SPSS software. The 

333 optimization of CART-WOE model was made by adjusting their parameters in order to 
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334 achieved the highest accuracy. Finally, the pruned decision tree will keep only the most 

335 important information.

336 4.6. Radial Basis Function Neural Network (RBFNN)

337 RBFNN is a type of neural network that consists of the following three layers: i) input layer; 

338 ii) hidden layer; iii) output layer (Zare et al., 2013). From the present research perspective, 

339 the input layer will contain as input data the flash-flood predictors with WOE coefficients 

340 assigned, the hidden layer will help to process and translate the information from the input 

341 to the output layer and backward, while the output layer will consist of two neurons 

342 represented by the flash-flood and non-flash-flood points. According to the literature (Pham 

343 et al., 2020), through the hidden layer, the RBF non-linear activation function will be applied 

344 to train the neural network. More specifically, the RBFNN consists of the computation of 

345 Euclidean Distance from the evaluated points towards the neurons centre. Further, the RBF 

346 will be applied to the distance in order to quantify the influence of the neurons. Usually, in 

347 this regard, the Gaussian function is used to express the mathematical form of RBF(Pham et 

348 al., 2020):

349                                                    (13)𝜙𝑗 = 𝑒𝑥𝑝( ―
(𝑋 ― 𝑐𝑗)2

2𝜎2
𝑗

)
350 where  is the RBF of the jth RBF neuron, X = (x1, x2,…, xn)T is the input vector with d input 𝜙𝑗

351 variables, cj = (c1j, c2j,…, cdj)T is the center vector, and  is the spread.𝜎2
𝑗

352 In terms of RBFNN output, for each class will be calculated the probability and the class with 

353 the highest probability will receive the input data. The RBFNN output can be derived with 

354 the following a weighted sum (Qasem and Shamsuddin, 2011):
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355                                                           (14)𝑌 = ∑𝑝
𝑗 = 1𝑤𝑗𝜙𝑗

356 Where Y represents the RBFNN output, p represents the sum of neurons, wj is the weight 

357 assigned from the jth RBF neuron to the output layer.

358 In the present research, the RBFNN-WOE ensemble was applied using SPSS software. One 

359 of the crucial steps of the training procedure was the establishment of the optimal hidden 

360 neurons number. Thus, the optimal number of neurons in the hidden layer was established 

361 according to the highest accuracy achieved by the model and which was measured with the 

362 help of confusion matrix.                                               

363 4.7. Flash-Flood Potential results validation methods

364 4.7.1. ROC Curve

365 The receiver operating characteristic (ROC) curve is the most popular method involved in 

366 the validation of the results of studies related to the susceptibility to floods and flash-floods 

367 (Arabameri et al., 2020; Bui et al., 2019b; Ngo et al., 2018). The graphic of ROC Curve is 

368 associated to the representation of the sensitivity on Y axis against the 1-Specificity on X 

369 axis (Aguilar et al., 2013). From the present research point of view, this method indicates the 

370 capacity of a model to correctly estimate the occurrence of flash-flood hazard. Within ROC 

371 Curve model, the most valuable quantitative information is provided by the Area Under 

372 Curve (AUC) which range from 0 to 1. The values near to 1 highlight a high performance of 

373 the applied models (Vakhshoori and Zare, 2018). The following relation is used to calculate 

374 the AUC:

375                                                        (15)AUC =
(∑𝑇𝑃 +  ∑𝑇𝑁)

(P + N)
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376 where P is equal to the sum of flash-flood locations, N is equal to the sum of non-flash-flood 

377 locations, TP (true positive), TN (true negative) are the sums of flash-flood and non-flash-

378 flood correctly classified locations.

379
380 4.7.2. Statistical metrics

381 Along with ROC Curve method, the following 7 statistical indices were involved in the 

382 results validation procedure: Kappa Index, Sensitivity, Specificity, F1 score, Accuracy, 

383 Precision. The significance of the statistical indices is represented by the agreement between 

384 the observed flash-flood and non-flash-flood locations and the predicted flash-flood 

385 susceptibility values (Costache, 2019). The aforementioned metrics can be computed with 

386 the next equations (Canbek et al., 2017; Costache et al., 2020c):

387                                                      (16)Sensitivity =
TP

TP + FN

388                                                      (17)Specificity =
TN

FP + TN

389                                                        (18)Precision =
TP

TP + FP

390                                                  Accuracy =
TP + TN

TP + FP + TN + FN

391 (19)

392                                              (20)F1 score = 2 ×
Precision × Recall
Precision + Recall

393                                                               (21)k =
po ― pe

1 ― pe

394 where P is the number of flash-flood pixels, N is the number of non-flash-flood pixels, FP 

395 (false positive) and FN (false negative) are the sums of flash-flood and non-flash-flood 

396 erroneously classified locations, k is kappa coefficient, po is the observed flash-flood 

397 locations, and pe is the estimated flash-flood susceptibility pixels.”

398 4.8. Flash-Flood Propagation Susceptibility Index
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399 The Flash-Flood Propagation Susceptibility Index (FFPSI) is a novel concept and indicator 

400 proposed and defined for the first time in the literature in the present paper. FFPSI can be 

401 defined as the potential of the river valleys across a specific area to propagate the flash-floods 

402 from the upper part of a catchment toward its lower zone. In order to estimate the FFPSI 

403 within the present research territory, the Flash-Flood Potential Index values, calculated 

404 through the above-described models, were integrated in a Flow Accumulation procedure. The 

405 Flow Accumulation generates, in GIS environment, a raster in which each cell value is equal 

406 to the weighted sum of all cells in the raster that drain to that cell (O’Callaghan and Mark, 

407 1984). Therefore, in order to calculate the FFPS the Flow Accumulation will be used to 

408 weight the FFPI values on the hydrographic network within the study area. ArcGIS 10.3 

409 software was used to implement the workflow intended to compute the FFPS value. Thus, in 

410 a first stage, the Flow Direction across the study area was computed. Then, the Simple Flow 

411 Accumulation (SFA) and the FFPI Weighted Flow Accumulation (FFPIWFA) rasters were 

412 derived. Finally, the FFPS values were achieved by dividing the FFPIWFA to SFA as 

413 suggested in the next equation: 

414                                                        (22).𝐹𝐹𝑃𝑆𝐼 =
𝐹𝐹𝑃𝐼𝑊𝐹𝐴

𝑆𝐹𝐴

415 5. Results

416 5.1. Multicollinearity assessment and feature selection

417 In the present study, TOL values, one of the multicollinearity indicators, range from 0.411 

418 for lithology to 0.976 for Aspect. The minimum VIF value was 1.025, and corresponds to  

419 the Aspect factor, while the maximum one was 2.432 and corresponds to the Lithology (Table 
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420 2). Given the fact that TOL has values higher than 0.2 and VIF has values below 4, we can 

421 admit that among the 10 flash-flood predictors there is no serious multicollinearity.

422 In terms of ReliefF attribute, used to evaluate the predictive ability of flash-flood 

423 conditioning factors, the highest values was achieved by Slope (0.215), followed by Plan 

424 curvature (0.039), MFI (0.036), Convergence Index (0.026), TWI (0.019), Profile curvature 

425 (0.016), Land use (0.015), HSG (0.014), Aspect (0.006) and Lithology (0.003). Given the 

426 fact that all the ReliefF scores were higher than 0, we can consider that all the flash-flood 

427 predictors contribute in a specific measure to the genesis of this phenomenon. Therefore, all 

428 the predictors will be used in the analysis. 

429
430 5.2. Results of Weights of Evidence (WOE)

431 The application of Weights of Evidence method revealed that WOE coefficients range from 

432 -4.01 for slopes lower than 3° to 3.09 for hydrological soil group B. The lowest value 

433 achieved by slopes lower than 3° is explained by the impossibility of flash-flood genesis on 

434 surfaces which are almost flats. The areas covered by flysch, marls shale, sandstones, clays 

435 and schists are also characterized by very low WOE values (-2.5) (Table 3). Instead, the 

436 hydrological soil group C (2.09), negative profile curvature (0.56), pastures (0.36) and north-

437 eastern slopes (0.3) have high WOE coefficients. 

438 Using the WOE coefficients inserted in eq. 6, the FFPIWOE was calculated (Fig. 7a). The 

439 FFPIWOE values were standardized between 0 and 1 and after that were classified into 5 

440 classes using Natural Breaks method. According to GIS modelling, the very low values, 

441 between 0 and 0.38, cover 6.54% of Zăbala river catchment (Fig. 10). Another 20.31% of the 
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442 research area represents low FFPIWOE values and are limited between 0.39 and 0.51. It can 

443 be observed that the very and low flash-flood potential are mainly presented in the eastern 

444 region, at lowers altitudes. The medium values, ranging from 0.52 and 0.62, are spread on 

445 28.14%, while high and very high values are encountered on approximately 45.01% of the 

446 entire territory. 

447 5.3. Results of Analytical Hierarchy Process - Weights of Evidence (AHP-WOE)

448 The first step in the computation of FFPIAHP-WOE was the construction of the pair-wise 

449 comparison matrix with the help of Microsoft Excel 2016 software. Thus, through the 

450 assignment of a relative dominant value, each of the 10 flash-flood predictors was rated 

451 against every other (Table 4). Following the steps written at 4.3, the normalized weight of 

452 each flash-flood predictor was determined and the quality of comparisons was evaluated. The 

453 highest weight was assigned to the slope (0.26), followed by land use (0.179), lithology 

454 (0.111), profile curvature (0.11), plan curvature (0.085), MFI (0.07), convergence index 

455 (0.05), TWI (0.05), hydrological soil group (0.045) and aspect (0.04). The good quality of 

456 the comparisons is attested by the Consistency Ratio (CR) value equal to 0.03. Finally, by 

457 implementing the equation 9 in ArcGIS software the FFPIAHP-WOE values were derived (Fig. 

458 7b). The values were standardized between 0 and 1, and were classified into five classes using 

459 Natural Breaks method. The very low values of flash-flood potential index, ranging from 0 

460 to 0.27 appear on around 2.38% of the study area and are mainly present in the extreme 

461 eastern part of the study area. The low FFPIAHP-WOE values, between 0.28 and 0.44, occupy 

462 28.49% of Zăbala river catchment and are distributed especially in the median part of the 

463 research area. Medium values of the same index account 26.81% of the total territory, and 
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464 are mainly spread in the eastern half of the research perimeter. The high slopes and altitudes 

465 from the southern and northern parts of Zăbala river catchment are covered by high and very 

466 high flash-flood potential which span on 42.32% of the research area.

467 5.4. Results of Logistic Regression - Weights of Evidence (LR-WOE)

468 Following the trial process, the highest accuracy of the model was obtained by the application 

469 of a cut-off value of 0.5. Thus, according to Fig. 5 and Table 5, it can be observed that the 

470 best accuracy of 86.87% was associated to a Sensitivity of 83.8% and a Specificity of 

471 89.94%. The good performance of the classification performed through LR-WOE model is 

472 also indicated by the classification plot (Fig. 6) in which the observed and predicted 

473 probabilities are distributed according to their frequencies. More specifically, this plot 

474 displays the frequency in which the model would predict a flash-flood outcome, encoded 

475 with ‘1’, using the computed predicted probability in the case in which the outcome was 

476 ‘non-flash-flood’. Therefore, the distribution of observation cases, predominantly in the 

477 extreme left and right of the plot, indicate the very good performance of the model. This 

478 situation is associated with the absence of the cases in the middle region of the plot.

479 One of the most important output of the LR-WOE training process is represented by the 

480 logistic regression coefficients values (β). Thus, it can be noted that the land use achieved the 

481 highest coefficient (1.603), followed by slope (1.274), aspect (1.253), MFI (0.835), TWI 

482 (0.431), plan curvature (0.377), convergence index (0.102), lithology (0.099), hydrological 

483 soil groups (0.098) and profile curvature (-0.215) (Table 6). Further, by using these 

484 coefficients in equation 11 implemented in Map Algebra of ArcGIS 10.3 software, the flash-
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485 flood potential was calculated. The FFPILR-WOE values were standardized between 0 and 1 

486 and their values were reclassified into 5 classes using Natural Breaks method (Fig. 7c). 

487 The very low values, between 0 and 0.47, are spread on 7.95% of the study area and are 

488 mainly present in the eastern half of Zăbala catchment. The low FFPILR-WOE, between 0.48 – 

489 0.57, can be found especially in the western half of the research zone and occupy 25.45% of 

490 the territory. The medium FFPILR-WOE, ranging from 0.58 to 0.69, cover 25.2% of the research 

491 zone and are randomly distributed over the Zăbala river catchment. The high and very high 

492 flash-flood potential, with FFPILR-WOE higher than 0.7, span on around 41.4% of the entire 

493 study area and can be found mainly in the northern and southern halfs.   

494 5.4. Results of Classification and Regression Trees - Weights of Evidence (CART-WOE)

495 The training process of CART-WOE was done by optimizing the number of parent and 

496 terminal nodes of the best pruned tree. The optimization was done according to the accuracy 

497 value presented in Table 5. Thus, the highest accuracy (86.31%) was achieved with a tree 

498 characterized by a number 4 terminal nodes (Fig. 8a).

499 According to the training process, the highest importance was assigned to Slope (0.559), 

500 followed by Convergence Index (0.081), MFI (0.059), TWI (0.037), plan curvature (0.034), 

501 hydrological soil groups (0.029), lithology (0.015), aspect (0.003), profile curvature (0.002) 

502 and land use (0.001). The computation of FFPICART-WOE, assumed the use of flash-flood 

503 predictors relative weights, in GIS map algebra. 

504 The normalized values of FFPICART-WOE were reclassified into 5 groups using the Natural 

505 Breaks method (Fig. 7d). The very low class of flash-flood potential, between 0 and 0.1, 
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506 covers a small area equal to 2.36% of the Zăbala river catchments, and is spread only in the 

507 eastern part. The low values span on 7.39% and range between 0.11 and 0.4. The medium 

508 class of FFPICART-WOE accounts approximately 47.3% of the study area and is randomly and 

509 covers large areas in the eastern half of Zăbala river catchment. The high and very high values 

510 have 42.4% of the perimeter of Zăbala river catchment and are characterized by FFPICART-

511 WOE values higher than 0.5. These critical areas are mainly located in the western side of the 

512 research territory. 

513 5.5. Results of Radial Basis Function Nueral Network - Weights of Evidence (RBFNN-

514 WOE)

515 The optimal RBFNN-WOE architecture was established in concordance with the highest 

516 performances achieved during the model training. A first indicator of the performance is the 

517 confusion matrix (Table 5), that revealed a highest accuracy of 84.91% associated to an 

518 architecture with a number of 14 hidden neurons within the hidden layer (Fig. 8b). The very 

519 good performance of RBFNN-WOE classification is revealed also by the AUC (0.906) ROC 

520 Curve constructed for both flash-flood and non-flash-flood sample (Fig. 9a). At the same 

521 time the pseudoprobability plot (Fig. 9b), in which the values above 0.5 of y-axis highlight 

522 represent the correct classification, attest that the flash-flood and non-flash-flood locations 

523 are correctly classified. Moreover, the high performance of RBFNN-WOE ensemble 

524 classification is indicated also by Lift (Fig. 9c) and Gain (Fig. 9d) charts.

525 After the training procedure, the importance of flash-flood predictors was derived. Thus, the 

526 highest importance was achieved by slope (0.251), followed by land use (0.122), MFI 
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527 (0.102), TWI (0.091), lithology (0.078), plan curvature (0.078), convergence index (0.074), 

528 aspect (0.073), profile curvature (0.069) and hydrological soil groups (0.062). Using these 

529 values, the FFPIRBFNN-WOE was calculated. Further the standardized range of FFPIRBFNN-WOE 

530 was grouped into 5 classes using Natural Break method. The first class, between 0 and 0.3, 

531 cover 2.59% of the study area and belongs to the surfaces characterized by a very low flash-

532 flood potential (Fig. 7e). Approximately 17.74% of Zăbala river catchment has a low 

533 FFPIRBFNN-WOE with values between 0.31 and 0.45 which are located mainly in the eastern 

534 half of the research zone. Around 37.38% of the river basin has a medium flash-flood 

535 potential which can be found especially in the western part of the research area. Together, 

536 the high and very high values of FFPIRBFNN-WOE account 41.29% of the entire territory.

537
538 5.6. Validation of FFPI results

539 The first step in FFPI the results validation is the application of ROC Curve with their 2 plots 

540 represented by Success Rate, constructed with the training sample, and Prediction Rate, 

541 constructed with the validating sample. Thus, the Fig. 11a indicates that, in terms of Success 

542 Rate, the highest performance was achieved by FFPILR-WOE with an AUC of 0.923, being 

543 followed by FFPIRBFNN-WOE (AUC = 0.911), FFPIAHP-WOE (AUC = 0.903), FFPICART-WOE 

544 (AUC = 0.901) and FFPIWOE (AUC = 0.865). Instead, the highest performance in terms of 

545 Prediction Rate was achieved by FFPIAHP-WOE (AUC = 0.894), followed by FFPICART-WOE 

546 (AUC = 0.891), FFPIRBFNN-WOE (AUC = 0.88), FFPILR-WOE (AUC = 0.875) and FFPIWOE 

547 (AUC = 0.854). 
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548 The second stage of results validation consisted in the computation of several statistical 

549 metrics. As can be observed in Table 7, the use of training sample, highlights as most accurate 

550 results the FFPILR-WOE (Accuracy = 0.877), followed by FFPIRBFNN-WOE (Accuracy = 0.866), 

551 FFPIAHP-WOE (Accuracy = 0.86), FFPICART-WOE (Accuracy = 0.846) and FFPIWOE (Accuracy 

552 = 0.793). It can be observed that the hierarchy of the values of the other statistical metrics 

553 followed the same pattern as accuracy indicator in terms of training dataset. Instead, in terms 

554 of validating dataset, the most accurate results is FFPIAHP-WOE (Accuracy = 0.882), followed 

555 by FFPILR-WOE (Accuracy = 0.868), FFPIRBFNN-WOE (Accuracy = 0.862), FFPICART-WOE 

556 (Accuracy = 0.855) and FFPIWOE (Accuracy = 0.803).

557
558 5.7 Flash-Flood Propagation Susceptibility Index (FFPSI)

559 The novel FFPSI was calculated for each model according to the methodology described at 

560 sub-section 4.8. It should be noted that FFPSI values were classified using Natural Break 

561 algorithm. Thus, in terms of WOE method (Fig. 12a), the spatiall modelling of FFPSI 

562 revealed that a percentage of 5.59% of identified valleys have a very low flash-flood 

563 propagation susceptibility. There valleys are located especially in the eastern part of Zăbala 

564 river catchment. Another percentage of 15.68% is represented by the valleys with a low flash-

565 flood propagation susceptibility which are situated on the median part of study area. The 

566 medium FFPSIWOE represents 25.19%, while the high and very high potential characterize 

567 53.55% of the identified river valleys (Fig. 13). 

568 Fig. 12b indicates that only 0.66% of the identified river valleys are characterized by a very 

569 low flash-flood propagation susceptibility according to the AHP-WOE ensemble. The very 
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570 low flash-flood propagation susceptibility is encountered on around of 19.55% of the river 

571 valleys, while medium FFPSIAHP-WOE characterizes 22.31% (Fig. 12b). The high and very 

572 high potential for flash-flood propagation is characteristic for 57.48% of the analyzed river 

573 valleys. In terms of LR-WOE ensemble the classes of flash-flood propagation susceptibility 

574 have the following spatial distribution: very low – 7.92%, low – 18.92%, medium – 22.66%, 

575 high – 30.25% and very high – 20.25% (Fig. 12c). 

576 Following the application of CART-WOE ensemble, the very low flash-flood propagation 

577 susceptibility appears on 0.73% of the river valleys, the low susceptibility is present on 

578 20.78%, medium susceptibility on 22.68%, while the high and very high susceptibility has 

579 55.81% of the total analyzed valleys (Fig. 12d). In terms of RBFNN-WOE, the highest 

580 percentage is represented by the valleys with a high flash-flood propagation susceptibility 

581 (28.81%), followed by the very high propagation susceptibility (26.69%), medium 

582 propagation susceptibility (20.62%), low propagation susceptibility (18.58%) and very low 

583 flash-flood propagation susceptibility (5.3%) (Fig. 12d).

584 6. Discussions

585 This study is conducted in the undeniable context of the global climate change and its effects 

586 on the inevitable multiplication of hydrological risk phenomena such as flash-floods (Fowler 

587 and Wilby, 2010). It should be noted that the previous studies regarding the estimation of 

588 flash-flood susceptibility by machine learning techniques, carried out so far, did not include 

589 the study of the susceptibility of the valleys to the propagation of flash-flood waves (Anquetin 

590 et al., 2010; Janizadeh et al., 2019). Moreover, many researchers were focused, in their 

591 previous works, only on the evaluation of normal flood susceptibility (Azareh et al., 2019; 
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592 Dodangeh et al., 2020; Hosseini et al., 2021; Mosavi et al., 2020), without taking into account 

593 the flash-flood phenomenon particularities. Besides of the previous research works which 

594 take into account only the local flood susceptibility given by the punctual conditions and 

595 rainfall, this article proposes a new and complete approach regarding the study of slopes 

596 susceptibility to runoff and, also, regarding the susceptibility of valleys to the propagation of 

597 the flash-floods. Therefore, through FFPSI, for each valley across the study area are 

598 highlighted the characteristics of the upslope catchment that could determine a high exposure 

599 to flash-flood. This new approach was conducted with the help of bivariate statistics and 

600 machine learning and also using the Flow Accumulation procedure. In fact, the propagation 

601 of the flash-flood wave is the element that generates the most significant material damage 

602 and loss of human life (Mujumdar, 2001). Therefore, the integrated study of the surface 

603 runoff potential on the slopes and the susceptibility of the valleys to flash-flood waves 

604 propagation provides the clearest overview of the areas along the rivers that are at risk of 

605 being affected. Usually, the flash-flood waves propagation is simualted with the help of 1D 

606 (Leandro et al., 2011) or 2D (Abderrezzak et al., 2009) models, these approaches having the 

607 disadvantage of the fact that, unlike the workflow proposed in the present study, the 

608 realization of such a modeling at the level of a hydrographic basin of over 500 km2 is time 

609 consuming and requires a very large volume of data which are often very expensive (Dewals 

610 et al., 2008).

611 This research paper includes a first part in which the Flash-Flood Potential Index was 

612 calculated and spatialized through 5 models, and the second part in which the Flash-Flood 

Page 39 of 73

URL: http:/mc.manuscriptcentral.com/tgei  Email: TGEI-peerreview@journals.tandf.co.uk

Geocarto International

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review Only

30

613 Propagation Susceptibility Index was proposed, calculated and spatialized for the first time 

614 in the literature, taking into account the results of the first part and applying the Flow 

615 Accumulation method. The results regarding FFPI reveal a high performance of the applied 

616 models, these being characterized by AUC-ROC Curve values higher than 0.854. 

617 It is also observed that the ensemble models obtained significantly better results compared to 

618 the stand-alone WOE model. Thus, in the case of training sample, WOE obtained an AUC 

619 equal to 0.865, this being clearly smaller than the weakest ensemble model, CART-WOE, 

620 which had an AUC equal to 0.901. The same aspect is true for the validating sample, where 

621 the WOE model obtained an AUC of 0.854, significantly lower than the AUC of 0.875 which 

622 was achieved by the LR-WOE ensemble. The higher performance of the ensemble models 

623 compared to the stand-alone ones, within the evaluation of flash-flood susceptibility, was 

624 also highlighted in the previous studies. Thus, according to Arabameri et al. (2020), the 

625 hybrid models are used to enhance the prediction ability of the algorithms used to map the 

626 spatial distribution of natural phenomena likelihood. Moreover, Pham et al. (2016) indicate 

627 that the ensemble models are superior to the stand-alone ones. Additionally, Costache et al. 

628 (2020c) highlight the superiority of k-Nearest Neighbor and K-Star ensembles with 

629 Analytical Hierarchy Process comparing to the stand-alone models, in terms of flash-flood 

630 susceptibility assessment. 

631 The second part of the study, in which the FFPSI is spatialized, shows that the most exposed 

632 valleys to the propagation of flash-floods are those in the immediate vicinity of the slopes 

633 located in the central-southern and central-northern areas of the Zabala river basin. Also, it 
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634 can be observed the predominance in the study area, in percentages higher than 50%, of the 

635 valleys having a high and very high potential for the flash-flood propagation. This fact is 

636 another indication of the existence of a high exposure of socio-economic elements in the 

637 study area to flash-floods.

638 7. Conclusions

639 In the present study a complex methodological workflow was developed to estimate the 

640 susceptibility to flash-flood propagation in the Zabala river basin. In this regard, a number of 

641 10 flash-flood predictors and 255 flash-flood and 255 non-flash-flood locations were used as 

642 input data in the following models: WOE, AHP-WOE, LR-WOE, CART-WOE and RBFNN-

643 WOE. These models were used in order to estimate the flash-flood potential index across the 

644 study area. The training process and, after that, the validation of the results achieved, required 

645 the split of flash-flood and flood datasets into training and validating samples. In order to 

646 map the FFPI, the Natural Break classification method was used for the results of all applied 

647 models. According to the results provided, a surface between 41% and 55% of the study area 

648 is covered by a high and very high flash-flood potential. The results validation, which is 

649 mandatory in this type of studies, revealed that LR-WOE, in terms of training sample (AUC 

650 = 0.923), and AHP-WOE, in terms of validating sample (0.894), were the most perfomant 

651 models. In order to estimate the flash-flood propagation susceptibility index (FFPSI), the 

652 results provided by the 5 models were integrated in the Flow Accumualtion procedure. Thus, 

653 it reavealed that around 56% of the river valleys identified within the study area are 

654 characterized by a high and very high FFPSI values.
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655 The main element of novelty that characterizes this study is represented by the use and 

656 computation for the first time in the literature of Flash-Flood Propagation Susceptibility 

657 Index (FFPSI), which is of a real help to create a complete overview regarding the flash-flood 

658 susceptibility at the level of a river catchment. Another element of novelty is represented by 

659 the use for the first time in the literature of the following ensemble models in order to 

660 determine the flash-flood susceptibility: AHP-WOE and RBFNN-WOE. 

661 The accurate results, atested by the results validation procedure, make from this study a 

662 benchmark for future studies related to the assessment of susceptibility to flash-floods in 

663 other study areas. Also, given the accuracy of the results, this study can be used by 

664 government authorities to mitigate the negative effects of flash-flood phenomena.

665
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Fig. 1 Study area location within Romania

(Source: SRTM, 30 m and field survey database processing)
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Fig. 2 Flash-Flood and Flood Predictors (a. Slope; b. Land use; c. Lithology; d. Hydrological 

Soil Group; e. Plan curvature; f. Profile curvature)

Page 52 of 73

URL: http:/mc.manuscriptcentral.com/tgei  Email: TGEI-peerreview@journals.tandf.co.uk

Geocarto International

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review Only

Fig. 3 Flash-Flood and Flood Predictors (a. Convergence Index; b. Modified Fournier Index; c. 

Aspect; d. TWI)
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Fig. 4 Scheme of the workflow applied in the present research
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Fig. 5 Sensitivity and Specificity values according to classification cutoff

Fig. 6 Classification plot of the observed groups and predicted probabilities
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Fig. 7. Flash-Flood Potential Index (a. WOE; b. AHP-WOE; c. LR-WOE; d. CART-WOE; e. 

RBFNN-WOE)

Page 56 of 73

URL: http:/mc.manuscriptcentral.com/tgei  Email: TGEI-peerreview@journals.tandf.co.uk

Geocarto International

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review Only

Fig. 8 Optimal models architectures (a. CART-WOE; b. RBFNN-WOE)
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Fig. 9 Performance indicator of RBFNN-WOE ensemble (a. ROC Curve; b. Pseudo-probability 

plot; c. Lift chart; d. Gain chart)
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Fig. 10 Weights of FFPI classes
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Fig. 11 ROC Curve (a. Success Rate; b. Prediction Rate)
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Fig. 12 Flash-Flood Propagation Susceptibility Index (a. WOE; b. AHP-WOE; c. LR-WOE; d. 

CART-WOE; e. RBFNN-WOE)
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Fig. 13 Weights of FFPSI classes
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Table 1 Data used, source, resolution, scale and type

Table 2 Multicollinearity assessment and feature selection
Flash-Flood 
Predictor

TOL VIF ReliefF Attribute

HSG 0.486 2.059 0.014
Profile curvature 0.917 1.091 0.016
Slope 0.785 1.273 0.215
Plan curvature 0.874 1.144 0.039
Lithology 0.411 2.432 0.003
MFI 0.417 2.398 0.036
Aspect 0.976 1.025 0.006
Convergence 
Index 0.672 1.488 0.026

Land use 0.943 1.061 0.015
TWI 0.795 1.258 0.019

Table 3 Weights of Evidence values
Factor Class Class pixels Flash-Flood pixels WOE coefficients
Slope < 3° 14392 0 -4.01

Data Source Resolution Scale Type

Digital Elevation 

Model (DEM)

Shuttle Radar 

Topography Mission 

(SRTM)

30 m - Spatial

Flash-Flood points General Inspectorate 

for Emergency 

Situation (GIES) of 

Romania; mass-

media

- - Spatial

Non-Flash-Flood 

points

Aerial imagery; field 

survey

- - Spatial

Rainfall (mm/year) Worldclim v2 - - Spatial

Land use/cover Corine Land Cover, 

2018

1 km - Spatial

Hydrological Soil 

Groups

Digital Soil Map of 

Romania

- 1:200000 Spatial

Lithology Digital Geological 

Map of Romania

- 1:200000 Spatial
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3 – 7° 48164 2 -2.28
7 – 15° 288025 30 -1.50
15 – 25° 213187 123 -1.50
> 25° 43974 24 -1.50
Forest 476027 145 0.06
Pastures 17399 8 0.36
Agriculture areas 38914 13 -1.50
Shrubs 64551 7 -1.50

Land use

Built-up areas 10845 6 -1.50
Gravels, sands, clay 22179 11 0.63
Flysch, marls shale, sandstone 393103 102 -2.50
Clay, marls, schists 146757 60 -2.50Lithology

Tuffs, phyllite, breccias 45692 6 -0.77
A 383646 25 -2.16
B 20939 70 3.09
C 48205 65 2.09HSG

D 154946 19 -2.50
-2.36 – -0.1 144551 56 0.40
-0.09 – 0.1 329253 91 -0.12Plan curvature
0.11 – 2.19 133938 32 -0.24
-3.08 – -0.05 72259 33 0.56
-0.04 – 0.05 240659 75 0.14Profile 

curvature 0.04 – 3.65 294824 71 -0.32
-78 - -3 312086 107 0.25
-2.9 - -2 65245 24 0.16
-1.9 - -1 55305 19 0.08
-0.9 – 0 42598 6 -0.87

Convergence 
index

0.1 - 95 132508 23 -0.73
< 60 70506 44 0.89
60 – 90 178411 71 0.44
90 – 120 216598 49 -0.40MFI

> 120 142227 15 -2.50
Flat surfaces 1994 0 -1.85
North 81189 28 0.11
North-East 98234 39 0.30
East 88164 31 0.14
South-East 86794 17 -0.54
 South 66559 17 -0.23
South-West 57424 16 -0.13
West 59678 13 -0.40

Aspect

North-East 67706 18 -0.19
-7.35 - 4.7 69875 17 -0.26
4.71 – 8.59 143756 42 -0.06
8.6 – 11.98 79221 22 -0.12
11.99 – 15.12 261587 89 0.22

TWI

15.13 – 24.66 53278 9 -0.65

Table 4 Pair-wise comparison matrix and normalized weights for each factor 
Factor and 
classes/categories Pair-wise comparison matrix Normalized

weights
Factors [1] [2] [3] [4] [5] [6] [7] [8] [9] [10]

Page 64 of 73

URL: http:/mc.manuscriptcentral.com/tgei  Email: TGEI-peerreview@journals.tandf.co.uk

Geocarto International

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review Only

[1] Slope angle 1 0.260
[2] Land use 1/2 1 0.179
[3] Lithology 1/3 1/2 1 0.111
[4] HSG 1/5 1/4 1/2 1 0.045
[5] Plan curvature 1/3 1/2 1 3 1 0.085
[6] Profile curvature 1/4 1/3 1/2 2 2 1 0.110
[7] Convergence index 1/4 1/3 1/2 2 1 1/2 1 0.050
[8] MFI 1/4 1/3 1/2 2 1 1/4 2 1 0.070
[9] Aspect 1/7 1/6 1/5 1/3 1/4 1/4 4 1/3 1 0.040
[10] TWI 1/5 1/4 1/3 1 1/2 1/3 2 1/2 3 1 0.050

Table 5 Confusion matrices computed for training phase of LR-WOE, CART-WOE and RBFNN-
WOE models

Predicted Percent CorrectObserved
0 1

0 161 18 89.94%
1 29 150 83.79%

LR-WOE

Overall Percentage 51.76% 48.24% 86.87%
CART-WOE 0 161 18 89.94%

1 31 148 82.68%
Overall Percentage 53.63% 46.37% 86.31%

RBFNN-WOE 0 156 23 87.15%
1 31 148 82.68%
Overall Percentage 51.32% 48.68% 84.91%

Table 6 Importance of flash-flood predictors to FFPI models
Predictors LR-WOE (βi) CART-WOE RBFNN-WOE
Aspect 1.253 0.003 0.073
Convergence Index 0.102 0.081 0.074
HGS 0.098 0.029 0.062
Land use 1.603 0.001 0.122
Lithology 0.099 0.015 0.078
MFI 0.835 0.059 0.102
Plan curvature 0.377 0.034 0.078
Profile curvature -0.215 0.002 0.069
Slope 1.274 0.559 0.251
TWI 0.431 0.037 0.091

Table 7 Statistical metrics used to validate the FFPI results
Metrics Training dataset Validating dataset

FFPI
WOE

FFPI
LR-
WOE

FFPI
CART-
WOE

FFPI
RBFNN-
WOE

FFPI 
AHP-
WOE

FFPI
WOE

FFPI
LR-
WOE

FFPI
CART
-WOE

FFPI
RBFNN-
WOE

FFPI 
AHP-
WOE
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TP 137 151 144 149 147 55 65 63 67 69
TN 147 163 159 161 161 63 67 67 64 65
FP 42 28 35 30 32 16 11 13 9 7
FN 32 16 20 18 18 13 9 9 12 11
Sensitivity 0.811 0.904 0.878 0.892 0.891 0.809 0.878 0.875 0.848 0.863
Specificity 0.778 0.853 0.820 0.843 0.834 0.797 0.859 0.838 0.877 0.903
Accuracy 0.793 0.877 0.846 0.866 0.860 0.803 0.868 0.855 0.862 0.882
K index 0.587 0.754 0.693 0.732 0.721 0.604 0.737 0.711 0.724 0.763
Precision 0.765 0.844 0.804 0.832 0.821 0.775 0.855 0.829 0.882 0.908
F1 score 0.787 0.873 0.840 0.861 0.855 0.791 0.867 0.851 0.865 0.885
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