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Abstract
In the oil industry, the drag-reducing agent has been used to reduce turbulent friction of fluids. The main effort of this study 
is to examine the feasibility of four novel machine learning models, namely multilayer perceptron, M5Rules, decision table 
(DT), and trees M5P to estimate the percentage of drag reduction. Then, the mentioned methods are utilized to identify a 
relationship between the input and output parameters of the crude oil pipeline system. The parameter percentage of drag 
reduction was taken as the essential output. In contrast, the input parameters selected the flow rate of oil, polymer concen-
tration, kind of polymer, temperature, as well as pipe diameter and roughness. The predicted results obtained by the tools 
mentioned above were evaluated according to several known statistical indices, namely coefficient of determination (R2), 
mean absolute error (MAE), root mean squared error (RMSE), relative absolute error (RAE), and root relative squared error 
(RRSE) as well as novel ranking systems of color intensity rating and total ranking method. The training and testing results of 
the DT learning method for the R2, MAE, RMSE, RAE, and RRSE were (0.9616, 3.9008, 5.8698, 24.5259%, and 27.4406%) 
and (0.8964, 6.937, 10.318, 43.3841%, and 45.6581%), respectively. The obtained results, in analyzing the training and test-
ing datasets, proved that DT is the best predictive network to predict the percentage of drag reduction.

Keywords  Crude oil · Drag-reducing agent · Pressure drop · Multilayer perceptron · M5 rules · Decision table · Trees M5P

1  Introduction

Turbulence can be described as a fluctuating and chaotic 
fluid motion, which manifests when nonlinear inertia effects 
dominate over viscous effects [1]. In other words, most 
operating systems require pumping fluids at high flow rates, 
which, in turn, generates high frictional pressure losses. By 
reducing the turbulence of the flow, drag-reducing agents 
can reduce the energy consumption of pumping. A spec-
tacular reduction in energy losses in turbulent flows can 
be achieved by the addition of small amounts of specific 
polymers. Drag-reducing agent (DRA) has been employed 
widely in the oil industry, to reduce the rate of turbulent fric-
tion of fluids [2]. Polymer drag reduction is due to the large 
elongational viscosity of the polymer solution; this stabilizes 
the turbulent boundary layer, leading to a decrease in the 
pressure drop in turbulent flows [3]. Drag-reducing polymer 
solution flows behave like viscoelastic characteristics. The 
most notable elastic property of the viscoelastic polymer 
solution is that stress does not immediately become zero 
when the fluid motion stops, but rather decays with appropri-
ate time (i.e., the relaxation time), which can reach seconds 
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and even minutes. It is generally believed that the frictional 
drag reduction caused by polymer and surfactant additives 
in a wall-bounded flow is the consequence of the interaction 
between viscoelasticity and turbulence in the flow [4]. This 
network microstructure imparts viscoelasticity to the solu-
tion flow, which was often stated to be responsible for the 
occurrence of drag reduction [5, 6]. Primary studies were 
conducted by Toms [7] and Mysels [8] on drag reduction. 
They investigated the effect of adding some polymers for 
reducing skin friction and pressure drop in pipelines in their 
individual studies. The experimental work done by Toms [7] 
led to the drag reduction effect being known as Toms’ effect. 
Due to the vital importance of this subject, numerous studies 
have focused on various parameters affecting drag reduction. 
Among these works, some of them are considerable [9–15].

Accurate determination of the friction pressure losses of 
dilute drag-reducing polymer solutions has remained a chal-
lenge in many practical applications. A polymer solution, 
even in a very dilute form, can be regarded as a viscoelastic 
fluid. In fact, due to the ability of polymers to store elastic 
energy, elasticity can propagate shear waves. These shear 
waves provide a natural cutoff that fluctuates at high fre-
quencies. Then, the cutoff would suppress the small eddies 
and, presumably, lead to drag reduction. Several research-
ers conducted a comprehensive study on drag reduction for 
water flow and proposed relationships for the Fanning fric-
tion factor, which helps other researchers to analyze their 
results [16–19]. Virk [20] investigated the performance of 
different polymer solutions and found a trend to a maxi-
mum drag reduction (MDR) asymptote in all cases. Sher and 
Hetsroni [21] proposed a mechanistic model for the turbulent 
drag reduction by additives, in accordance with the elastic 
properties of polymer, and compared their results with other 
studies [22, 23].

Due to the importance of this subject, numerous studies 
have focused on different operating parameters affecting drag 
reduction. In this regard, various researchers [24–27] investi-
gated the effect of pipe diameter on drag reduction and found 
that the drag reduction percentage increases by decreasing 
the pipe diameter. The impact of relative roughness of pipe 
on DR% was also investigated by Mowla and Naderi [25]. 
They proved that the higher DR% could be obtained at 
rougher pipes. Another parameter with significant effects on 
drag reduction is the concentration of DRA. They proposed 
a mathematical model for predicting the drag reduction by 
a given polymer at two-phase flow. Their proposed model 
could also be used for calculating friction and maximum 
drag reduction as a function of DRA concentration. Gallego 
and Shah [28] developed a generalized friction pressure cor-
relation for the phenomenon in coiled and straight tubing 
on the basis of the energy dissipation of eddies in turbulent 
flow fields and shear rate dependent relaxation time. They 
found that their model in straight tubing correlated better 

than the previously developed models. Also, Shah et al. [29] 
developed new correlations for predicting the friction factor 
values as a function of the solvent’s Reynolds number for 
both straight and coiled tubing using the data of an optimum 
concentration of the polymeric fluid. Most recently devel-
oped prediction techniques employed the computer science 
advances and intended to find a reliable solution in solving 
engineering and medical related problems. In this sense, 
the technique of extreme  machine learning approaches 
[30–32, 33], Harris hawks optimization [34, 35], spatial 
adjacent histogram [36], fruit fly optimization [37], chaotic 
moth-flame optimization [38, 39, 40], multi-swarm whale 
optimizer [41], grey wolf optimization [42] can be men-
tioned. Such multi-disciplinary techniques are widely used 
as analysis tools in most complex engineering projects such 
as building information modelling [43, 44], sustainable sedi-
ment management in hydropower [45], contractors’ dynamic 
price competition in mega projects [46], emotion recognition 
and image sharing [47], wireless sensor networks [48, 49], 
big data application [50, 51], landslide prediction over a 
large region [52], Digital Neuromorphic Architecture [53]. 

Due to the significance of the issue, the present study 
involves proposing a mathematical model for relating the 
drag reduction (PDR) with various parameters. Also, the 
effect of additives concentration, pipe diameter, solution 
flow rate, and the presence of radius elbows on the per-
centage of drag reduction (%DR) and the number of flow 
increases (%FI) were the variables of the study. The primary 
purpose of the present investigation was to make a reliable 
machine learning to calculate pressure drop reduction of 
crude oil pipelines. Firstly, four different machine learning-
based solutions were selected including multilayer percep-
tron (MLP), M5Rules (M5R), decision table (DT), and trees 
M5P (TM5P). Then, the obtained results of predictions are 
analyzed and discussed.

2 � Materials and methods

2.1 � Artificial intelligence‑based solution

The data-driven statistical concepts and machine learning-
based techniques that have been employed to estimate the 
percentage of drag reduction are briefly described in this 
section.

2.1.1 � Multilayer perceptron (MLP)

Multilayer perceptron (MLP) is one of the most common 
types of artificial neural networks (ANN). Inspired by the 
biological neural network, ANN was first presented in 
1949 [54]. A prominent superiority of ANN is the ability 
of nonlinear mapping over a dataset (i.e., inputs and the 
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corresponding targets) [55]. Due to this merit, many schol-
ars have successfully developed the MLP neural network 
in various fields of study [56–59, 53, 60]. In general, two 
types of data are required for implementing an ANN. The 
major part of the dataset is specified for training the network 
(training data), and the quality of this process is evaluated 
by using the testing data. The training procedure is usually 
carried out by the “back propagation” (BP) method [61–63]. 
In this sense, the main effort of BP is to minimize the error 
performance (i.e., the difference between the actual and esti-
mated outputs) through propagating on a backward path. The 
ANN parameters are adjusted in each iteration to produce a 
more compatible output vector. In addition to the network 
structure, the number of epochs, activation function, and 
learning law is three factors that influence the performance 
of ANN [64]. The proposed MLP structure in this study was 
used with a single hidden layer having six nodes.

2.1.2 � M5Rules

Similar to many other machine learning methods, tree learn-
ing (TL) is the essence of the M5Rules model. A straightfor-
ward working method that extracts rules from model trees 
is known as M5Rules. This model has been employed for 
various classification and prediction issues [65]. M5Rules 
uses a tree learner over the training samples to train a pruned 
tree. Then, the elite leaf is made into a rule, and the tree is 
discarded. Note that, this action can be mentioned as the sole 
difference between M5rules and regular process that creates 
a single rule. In the following, all samples covered by the 
specific rule are eliminated from the records. This procedure 
stops when entire instances are covered by at least one rule. 
Achieving the rules from the best leaf leads to decreases risk 
of over-pruning. Unlike the partial decision trees (PART), 
which generates partially explored trees, M5Rules produces 
full trees. Generating partial trees causes not only a higher 
level of computational veracity but also has no impact on 
the size and accuracy of the obtained rules [66]. For the 
proposed M5Rules, the batch size = 100, minimum number 
of instances were 4, number of decimal places = 2. Other 
terms such as build regression tree, debug, save instances, 
unpruned, and use unsmoothed conditions were set to be 
false.

2.2 � Decision table (DT)

Decision table (DT) sorts the rules and classes in some rows 
and columns (i.e., tabular form). Given a new instance, 
DT aims to find an exact match in the table. Accordingly, 
two responses are possible: if the desired match is found, 
it will be considered as the answer. Otherwise, the sys-
tem announces no match is found [67]. Up to now, DT has 
been effectively employed in various fields [68, 69]. Also, 

Abbinaya and Kumar [70] trained a DT by neural networks 
for software effort estimations. Due to its straightforward 
architecture, DT is a more stable and suitable method com-
pared to the decision tree technique, which has a hierarchi-
cal structure. Generally, a DT composed of four sections: 
condition stubs, condition entries, action stubs, and action 
entries. In this regard, action rules, required actions, condi-
tion rules (or alternatives), and conditions lie in the lower 
right quadrature, lower left quadrature, upper right quadra-
ture, and upper left quadrature, respectively. The validation 
stage is easy for DT to check cases such as incompleteness 
and contradiction [71]. For the proposed DT method, the 
batch size was considered to be 100, the cross validation was 
equal to 1 and number of decimal places considered to be 2. 
In this sense, the other terms such as debug, display rules, 
and using IBK were set to be false.

2.2.1 � Trees M5P (TM5P)

The name M5P tree (M5P) indicates an enhanced version 
of Quinlan’s M5 technique for regression works [72]. As a 
regression classifier, it uses a straightforward criterion. In 
this model, a conventional decision tree is combined with 
the possibility of linear regression at the leaves. Firstly, a 
tree is built by employing a decision tree. Note that, a split-
ting criterion is performed at every inner node instead of 
maximizing the gained information. The main task of this 
criterion is to minimize the intra-subset variation in the level 
of water at each branch. One of the stopping conditions of 
the performing splitting nodes is the slight variation of the 
level of water of all samples. Pruning the developed tree is 
the second, that during this process, an inner node exchanges 
a leaf with a regression aim. Finally, a smoothing process is 
applied to synthesize leaf method prediction with each node. 
Notably, this process occurs along the route back to the root 
[73]. In this study, meta-parameters used in M5Rules train-
ing process was used for the proposed M5P technique.

2.3 � Database collection

In order to propose a general model involving oil flow rate 
and temperature, pipe diameter, and roughness and the 
type of DRA and concentration, an experimental appara-
tus, as shown in Fig. 1, was constructed to carry out the 
experiments.

Various concentrations of three types of dilute polymeric 
solutions as drag-reducing agents have been tested at four 
temperatures and flow rates in the apparatus installed with 
three pipes, each with a different value for diameter and 
roughness. Pipe no. 1 is 1 inch in diameter, a rough pipe of 
galvanized iron (relative roughness); pipe no. 2 is 1 inch in 
diameter, a smoother pipe of carbon steel and pipe no. 3 is 
0.5 inch in diameter of the galvanized iron. All pipes were 
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8.8 m long. A progressive pump has done the circulation 
of the fluid through each pipe. Flow rates of the circulat-
ing crude oil are measured by a rotameter. Pressure drop 
is measured between two points with a distance of 5.6 m. 
The parameter percentage of drag reduction (PDR) was 
taken as the essential output, while the input parameters 
selected the Reynolds number, polymer concentration, type 
of polymer, temperature as well as pipe numbers. Changes in 
temperature are induced by a shell and tube heat exchanger 
that cools the fluid entering the pump. Heating is achieved 
using a heating element placed inside the crude oil tank. A 
thermometer is also placed at the entrance of the pipes to 
measure the temperature. The compositions of these poly-
mers include: DRA1 [polyolefin synthetic rubber (33 wt%), 
polyethylene wax (12%), polyacrylic acid (1%), aluminum 
particle (5%), and propylene glycol (49%)] DRA2 [ethyl-
ene–propylene–copolymer (33  wt%), polyethylene wax 
(12%), polyacrylic acid (1%), and propylene glycol (54%)] 
DRA3 [polypropylene (48%), ethylene glycol (39%), sur-
factant (8%), water (3%), and polyacrylic acid (2%)]. The 
physical properties of crude oil provided by the Shiraz oil 
refinery were calculated according to ASTM D-445 and 
ASTM D 1217-81.

All the experiments have been run at four different tem-
peratures of 4, 15, 29, and 41 °C. To investigate the effect 
of various DRAs on pressure drop reduction of crude oil, 
three types of polymeric DRAs are used in this study. In 
each experiment, a given amount of the employed DRA is 

added to the crude oil, and changes in pressure drop are 
measured. Since the ranges of the concentrations of added 
DRA made no observable change in the properties of the 
crude oil, the rheological properties of the fluid remain 
constant. Thus, in this work, 348 instances, including five 
input factors of Reynolds number, concentration, and type 
of drag-reducing agents, temperature, and type of pipe and 
drag reduction as the response parameter, construct the 
mentioned dataset. The database used to make machine 
learning models were obtained from previous studies that 
reviewed the percentage of drag reduction [2, 24, 74]. The 
following equations were used to calculate Reynolds num-
ber (Re), percentage drag reduction (DR%), respectively:

where ρ is density, v liner velocity, d pipe diameter, μ viscos-
ity, ΔP1 ΔP2 pressure drop before and after the addition of 
polymer and L is pipe length. Table 1. An example of data 
samples used for predicting response.

The graphical description of these parameters is illus-
trated in Fig. 2a–f showing the data number versus the 
Reynolds number, polymer concentration, kind of poly-
mer, temperature, and pipe numbers.

(1)Re =
�vd

�

(2)DR% =
||Δp1 − Δp2

||
Δp1

× 100

Fig. 1   Graphical methodology of applied procedure for DR modeling
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2.4 � Model validation and accuracy

The training process was performed entirely in WEKA soft-
ware, which is a useful framework for data mining and clas-
sification. Note that, many researchers have employed WEKA 
formerly for various simulating aims. Five statistical indices, 
including R2, MAE, RMSE, RAE, and RRSE were used to 
develop a colour intensity ranking to present a colored com-
parison of the results. This can be noted that these criteria 
have been extensively used in earlier studies. Equations (3) to 
(7) describe the formulation of R2, MAE, RMSE, RAE, and 
RRSE, respectively.

(3)R2 = 1 −

∑s

i=1
(Yipredicted − Yiobserved)

2

∑s

i=1
(Yiobserved − Ȳobserved)

2

(4)MAE =
1

N

s∑

I=1

|||
Yiobserved − Yipredicted

|||

(5)RMSE =

√√√
√ 1

N

s∑

i=1

[(
Yiobserved − Yipredicted

)]2

(6)RAE =

∑s

i=1

���
Yipredicted − Yiobserved

���
∑s

i=1

��
�
Yiobserved − Ȳobserved

��
�

Table 1   An example of data 
samples used for predicting the 
percentage of drag reduction

No. Input Output

Reynolds number (N/A) Polymer 
concentration 
(mg/l)

Kind of 
polymer 
(N/A)

Tempera-
ture (°C)

Pipe 
numbers 
(N/A)

Percentage of 
drag reduction 
(%)

1 6104.84 25 1 29 1 3.15
2 9940.11 25 1 29 1 4.21
3 13,531.89 25 1 29 1 4.98
4 16,777.77 25 1 29 1 5.95
5 6104.84 50 1 29 1 3.81
6 9940.11 50 1 29 1 5.04
7 13,531.89 50 1 29 1 7.08
8 16,777.77 50 1 29 1 9.77
9 6104.84 75 1 29 1 6.76
10 9940.11 75 1 29 1 9.04
11 13,531.89 75 1 29 1 11.98
12 16,777.77 75 1 29 1 14.92
13 6104.84 100 1 29 1 14.83
14 9940.11 100 1 29 1 19.01
15 13,531.89 100 1 29 1 21.8
16 16,777.77 100 1 29 1 25.17
17 6104.84 150 1 29 1 24.87
18 9940.11 150 1 29 1 31.53
19 13,531.89 150 1 29 1 34.02
20 16,777.77 150 1 29 1 38.65
21 6104.84 200 1 29 1 27.29
22 9940.11 200 1 29 1 34.67
23 13,531.89 200 1 29 1 38.22
24 16,777.77 200 1 29 1 44.06
25 2192.05298 150 1 4 1 14.67352
26 4019.86755 150 1 4 1 18.82094
27 5695.364238 150 1 4 1 21.00148
28 7294.701987 150 1 4 1 24.66126
29 4248.344371 150 1 15 1 23.00262
30 7370.860927 150 1 15 1 30.81635
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wherein all the above equations, Yi observed, and Yi predicted 
we denote the actual and predicted values of response, 
respectively. The term S represents the number of data, and 
Ȳobserved stands for the average of the actual values of the 
percentage of drag reduction. In the next part of this paper, 
the accuracy of applied models (i.e., MLP, M5R, DT, and 

(7)RRSE =

���
�

∑s

i=1
(Yipredicted − Yiobserved)

2

∑s

i=1
(Yiobserved − Ȳobserved)

2

TM5P) for the approximation of response is presented and 
discussed.

3 � Results and discussion

The main concentration of this research is to appraise the 
competency of four standard machine learning tools, namely 
MLP, M5R, DT, and TM5P, in estimating the percentage 
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of drag reduction. For this aim, as mentioned before, five 
input factors of Reynolds number, concentration, and type 
of drag reducing agents, temperature, and type of pipe were 
selected. The input database is provided from the previous 
literature study. To create the required training data samples, 
the critical parameters were listed against the correspond-
ing responses. In this regard, 80% of the gathered dataset 
was randomly selected for training the models MLP, M5R, 
DT, and TM5P (training phase comprising 278 samples). 
Then, the competency of each model was evaluated using 
the remaining 20% of the dataset (testing phase containing 
70 samples).

4 � Model assessment in the percentage 
of drag reduction prediction

The calculated values of R2, MAE, RMSE, RAE, and 
RRSE for estimating the response are tabulated in Tables 2 
and 3 for training and testing datasets. Also, the total 
ranking obtained for models is featured in Table 4. The 
same process is provided in other machine learning-based 
studies (e.g., [30–33], [36–39], [41], [42], [75], [76]). A 
graphical exhibition of the results is also presented, based 
on a colour intensity model. A red collection is considered 
for these tables. In this sense, a higher value of R2 and less 

MAE, RMSE, RAE, and RRSE have been addressed by a 
more intense red color. The final ranking was determined 
concerning the total score obtained for MLP, M5R, DT, 
and TM5P models. This is noteworthy that the proposed 
total score indicates the summation of the partial scores 
given based on the R2, MAE, RMSE, RAE, and RRSE for 
each model (see Tables 2, 3, 4).   

The results of statistical indexes (R2, MAE, RMSE, 
RAE, and RRSE) for the training datasets in MLP, M5R, 
DT, and TM5P were (0.9122, 10.1273, 11.6416, 63.6743%, 
and 54.4225%), (0.9032, 6.4502, 9.2499, 40.5548%, 
and 43.242%), (0.9616, 3.9008, 5.8698, 24.5259%, and 
27.4406%), and (0.8851, 7.1503, 10.1877, 44.9566%, and 
47.6261%), respectively (Table 2). Similarly, for the test-
ing datasets, the R2, MAE, RMSE, RAE, and RRSE of in 
MLP, M5R, DT, and TM5P datasets were (0.8109, 8.5967, 
13.7492, 53.7642, and 60.8413), (0.9025, 7.5829, 9.983, 
47.4238, and 44.1757), (0.8964, 6.937, 10.318, 43.3841, 
and 45.6581), and (0.8671, 8.8394, 11.831, 55.282, and 
52.3533), respectively (Table 3). In a glance, after review-
ing both training and testing datasets, it can be seen that the 
DT technique can be introduced as the outstanding model, 
due to the highest total and partial scores obtained for it. 
M5R predictive model presents the most effective training 
compared to other models. Also, DT can be introduced as 
the second accurate models, respectively. Furthermore, it 

Table 2   The results of proposed networks based on several statistical indexes (provided for training dataset only)

Proposed models
Network results Ranking the predicted models Total 

ranking 
score

Rank
R² MAE RMSE RAE (%) RRSE (%) R 2 MAE RMSE RAE (%) RRSE (%)

1 MLP 0.9122 10.1273 11.6416 63.6743 54.4225 3 1 1 1 1 7 4
2 M5R 0.9032 6.4502 9.2499 40.5548 43.242 2 3 3 3 3 14 2
3 DT 0.9616 3.9008 5.8698 24.5259 27.4406 4 4 4 4 4 20 1
4 TM5P 0.8851 7.1503 10.1877 44.9566 47.6261 1 2 2 2 2 9 3

Table 3   The results of proposed networks based on several statistical indexes (provided for testing dataset only)

Proposed models
Network results Ranking the predicted models Total ranking 

score Rank
R² MAE RMSE RAE (%) RRSE (%) R2 MAE RMSE RAE (%) RRSE (%)

1 MLP 0.8109 8.5967 13.7492 53.7642 60.8413 1 2 1 2 1 7 4
2 M5R 0.9025 7.5829 9.983 47.4238 44.1757 4 3 4 3 4 18 1
3 DT 0.8964 6.937 10.318 43.3841 45.6581 3 4 3 4 3 17 2
4 TM5P 0.8671 8.8394 11.831 55.282 52.3533 2 1 2 1 2 8 3

Table 4   The results of total ranking from proposed models in estimating the response

Proposed models
Network result

Total rank scoreTraining dataset Testing dataset
R2 MAE RMSE RAE (%) RRSE (%) R 2 MAE RMSE RAE RRSE

1 MLP 3 1 1 1 1 1 2 1 2 1 14
2 M5R 2 3 3 3 3 4 3 4 3 4 32
3 DT 4 4 4 4 4 3 4 3 4 3 37
4 TM5P 1 2 2 2 2 2 1 2 1 2 17

MLP Multilayer perceptron, M5R M5Rules, DT decision table, TM5P trees M5P, R2 Correlation coefficient, MAE Mean absolute error, MSE 
Root-mean-squared error, RAE Relative absolute error, RRSE Root relative squared error
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can be seen that the lowest training rate is obtained for the 
MLP model due to its lowest testifying outputs.

A comparison (regarding the results of both training and 
testing of MLP, M5R, DT, and TM5P datasets) of applied 
methods is presented in Table 4. In this table, considering 
the assumption of individual ranks obtained for each model 
(based on the R2, MAE, RMSE, RAE, and RRSE in Tables 2 
and 3), a total ranking is provided. According to this table, 
the DT (overall score = 37) achieved the supreme accuracy 
among four models employed in this study (Table 4). After 
that, M5R and TM5P (total scores of 32 and 17) have shown 
excellent performance. The notable point in all three tables 
is the same partial score obtained for all statistical index by 
each model. Moreover, every model has shown an almost 
equal accuracy for the training and testing of MLP, M5R, 
DT, and TM5P datasets. This claim can be proven due to 
the differences between the values of R2, MAE, RMSE, 
RAE, and RRSE calculated for each phase. Also, the cor-
relation between the real and modeled values of responses 
is depicted in Figs. 3 and 4 for the training and testing of 
MLP, M5R, DT, and TM5P datasets. The best prediction 
between the data shown on the horizontal (actual responses) 

and the vertical axis (predicted responses) is demonstrated 
by the line x = y, in the regression chart. According to Figs. 2 
and 3, the DT-based solution produced the outputs that are 
closest to the actual values of responses in both training 
(R2 = 0.9616) and testing (R2 = 0.8964) phases.

5 � Summary and conclusions

This study outlines the viability of four machine learn-
ing-based models, namely MLP, M5R, DT, and TM5P, in 
appraising the percentage of drag reduction. The Waikato 
environment for knowledge analysis (Weka) software was 
used to train the models. According to prior studies, five 
key factors influencing the percentage of drag reduction, 
namely the Reynolds number, polymer concentration, kind 
of polymer, temperature as well as pipe numbers were 
considered in this work. To provide the required dataset, 
the percentage of drag reduction was acquired from the 
previous researchers’ works. In the following, the train-
ing (i.e., 80% of the dataset) and testing (i.e., 20% of the 
dataset) samples were randomly opted to train and validate 
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Fig. 3   The network outputs for the training dataset; a MLP, b M5R, c DT, d TM5P



Journal of the Brazilian Society of Mechanical Sciences and Engineering          (2020) 42:562 	

1 3

Page 9 of 11    562 

the performance of the predictive models. To evaluate 
and compare the proficiency of the MLP, M5R, DT, and 
TM5P models, a colour intensity model was developed 
concerning the obtained results of R2, MAE, RMSE, RAE 
(%), and RRSE (%) indices. Based on the results from 
different predictive networks, the training and testing R2 
for the MLP, M5R, DT, and TM5P models were (0.9122, 
0.9032, 0.9616, and 0.8851) and (0.8109, 0.9025, 0.8964, 
and 0.8671), respectively. The results of total ranking 14, 
32, 37, and 17 for the proposed methods of MLP, M5R, 
DT, and TM5P models indicated the superiority of DT 
model performance (after analyzing the training and test-
ing stages) in predicting PDR.
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